Two functionally redundant FK506-binding proteins regulate multidrug resistance gene expression and govern azole antifungal resistance

Romila Moirangthem^{1,2,¶}, Kundan Kumar^{1,3,¶} and Rupinder Kaur^{1,*}

¹Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad-500039, India.

²Present address: Department of Immunology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa-3525433, Israel.

³Graduate studies, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.

[¶]R.M. and K.K. contributed equally to the work. Author order was determined based on initiation of the research idea.

^{*}For correspondence: Rupinder Kaur, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, Telangana, India. Tel.: 91-40-27216137; Fax: 91-40-27216006; E-mail: rkaur@cdfd.org.in.

Supplemental data

Supplemental Tables (S1-S6)

Table S1: MIC₈₀ of fluconazole (μ g/ml) for *wild-type* and *Cgfpr* Δ strains. **Table S2:** MIC₈₀ of fluconazole (μ g/ml) for *Cgrph1* Δ and *Cgset2* Δ mutants. **Table S3:** List of strains used in the study. **Table S4:** List of plasmids used in the study. **Table S5:** List of primers used in the study. **Table S6:** List of antibodies used in the study.

Supplemental Figures (S1-S5)

Figure S1: CgFpr3 and CgFpr4 possess peptidyl-prolyl cis-trans isomerase domain. **Figure S2:** CgFpr3-C_{trunc}-GFP and CgFpr4-C_{trunc}-GFP proteins are expressed well in the $Cgfpr3\Delta 4\Delta$ mutant.

Figure S3: Fluconazole and FK506 combination is not cidal for $Cgfpr3\Delta 4\Delta$ mutant.

Figure S4: CgRph1 contains JmjN and JmjC domains at the N-terminus.

Figure S5: Serial dilution spotting analysis illustrating susceptibility of $Cgset2\Delta$ and $Cgrph1\Delta$ to varied stresses.

Table S1: MIC80 of fluconazole (µg/ml) for wild-type and Cgfpr∆ strains.		
Strain	MIC ₈₀ (μg/ml)	
wt	16	
Cgfpr3 ∆	16	
Cgfpr4 ∆	16	
Cgfpr3∆4 ∆	64	

Table S2: MIC80 of fluconazole (μg/ml) for <i>Cgrph1</i> Δ and <i>Cgset2</i> Δ mutants.		
Strain	MIC ₈₀ (μg/ml)	
wt	16	
Cgrph1∆	8	
Cgset2∆ 32		

Table S3: List	t of <i>C. glabrata</i> strains used in the study.	
Yeast strain	Genotype	Reference
YRK19	ura3∆::Tn903 G418R (BG14)	Cormack and Falkow, 1999
YRK20	URA3 (BG462)	De Las Peñas <i>et al .,</i> 2003
YRK1948	ura3∆::Tn903 G418R Cgfpr3∆::nat1	This study
YRK1951	URA3 Cgfpr3∆::nat1	This study
YRK1874	ura3∆::Tn903 G418R Cgfpr4∆::nat1	This study
YRK1877	URA3 Cgfpr4∆::nat1	This study
YRK2015	ura3∆::Tn903 G418R Cgfpr3∆4∆::nat1	This study
YRK2308	URA3 Cgfpr3∆4∆::nat1	This study
YRK4188	URA3 Cgrph1::nat1	This study
YRK4183	URA3 Cgset2::nat1	This study
YRK809	ura3∆::Tn903 G418R Cgpdr1∆::nat1	Kaur Laboratory
YRK1503	URA3 Cgcdr1∆::nat1	Kaur Laboratory
YRK4162	ura3∆::Tn903 G418R Cgfpr3∆4∆cdr1∆::nat1	This study
YRK4180	ura3∆::Tn903 G418R Cgfpr3∆4∆pdr1∆::nat1	This study
YRK3896	ura3∆::Tn903 G418R (YRK19)/pRK2006	This study
YRK3900	ura3∆::Tn903 G418R (YRK19)/pRK2010	This study
YRK3934	ura3∆::Tn903 G418R Cgfpr3∆4∆::nat1 (YRK2015)/pRK2006	This study
YRK3936	ura3∆::Tn903 G418R Cgfpr3∆4∆::nat1 (YRK2015)/pRK2008	This study
YRK3938	ura3∆::Tn903 G418R Cgfpr3∆4∆::nat1 (YRK2015)/pRK2010	This study
YRK3940	ura3∆::Tn903 G418R Cgfpr3∆4∆::nat1 (YRK2015)/pRK2012	This study
YRK4191	ura3∆::Tn903 G418R Cgfpr3∆4∆cdr1∆::nat1 (YRK4162)/pRK1108	This study
YRK4293	ura3∆::Tn903 G418R Cgfpr3∆4∆pdr1∆::nat1 (YRK4180)/pRK945	This study

Table S4:	List of plasmids used in the study.	
Plasmid	Description	Reference
pRK1018	pGRB2.3 plasmid	Addgene (Plasmid #45343)
pRK2006	CgFPR3 (1.314 kb) cloned in Xbal-Spel sites of pRK1018 plasmid	This study
pRK2008	CgFPR3 (1.041 kb) lacking catalytic domain cloned in XbaI-SpeI sites of pRK1018 plasmid	This study
pRK2010	CgFPR4 (1.197 kb) cloned in Xbal-Spel sites of pRK1018 plasmid	This study
pRK2012	CgFPR4 (0.918 kb) lacking catalytic domain cloned in Xbal-Spel sites of pRK1018 plasmid	This study
pRK1108	CgCDR1 (4.500 kb) cloned in Spel-Xmal sites of pRK1018 plasmid	Kaur Laboratory
pRK945	pSF4, pCgACU5-derived plasmid containing CgPDR1 from wild-type strain	Sanglard laboratory
pRK70	pRD16, C. glabrata CEN/ARS plasmid for expressing S. cerevisiae FLP1	Cormack laboratory
pRK625	NAT cassette cloned in pCR2.1 plasmid	Cormack laboratory

Table S5 : L	ist of primers used in the study.	
Primer	Sequence (5'-3')	Description
For generat	tion of deletion strains	
OGRK2312	CGATAAACTTCCGCGTTAGC	CgFPR4_5' UTR Forward
OGRK2313	gcgtcgacctgcagcgtacgTTCAGGAGTAACCTTTCCTTCC	CgFPR4_5' UTR Reverse
OGRK2314	cgacggtgtcggtctcgtagCAAAGCTCATTTCTAGTTATTGTATGC	CgFPR4_3' UTR Forward
OGRK2315	GCTCGATAGCCTTGGCAAAT	CgFPR4_3' UTR Reverse
OGRK2316	TGGGAAGTGTGTCAAACCAA	CgFPR4_5' Integration check Forward
OGRK2317	TCGAACCAACCTCAATTTCC	CgFPR4_3' Integration check Reverse
OGRK2318	GCTATTTCCGAGGGTGATGA	CgFPR4_Internal check Forward
OGRK2319	TCTACGCTCACCCCCAATAG	CgFPR4_Internal check Reverse
OgRK2517	GGCTGCTTCCTTCTCTTGA	CgFPR3_5' UTR Forward
OgRK2518	gcgtcgacctgcagcgtacgCGCCACTAATAACCAACCTCA	CgFPR3_5' UTR Reverse
OgRK2519	cgacggtgtcggtctcgtagGAACTGCTCTGGCGTTCATT	CgFPR3_3' UTR Forward
OgRK2520	TTGGTGTAGCTTCGTTCTTTCA	CgFPR3_3' UTR Reverse
OgRK2521	CTCCTCCAAGCAAGTCAAGG	CgFPR3_5' Integration check Forward
OgRK2522	GGTAGATGCGGCTATTGCAT	CqFPR3 3' Integration check Reverse
OgRK2523	TGACATGGACGATAGCGAAG	CgFPR3 Internal check Forward
OgRK2524	GACGTCCCATCCCTTGATAA	CgFPR3 Internal check Reverse
OgRK4102	CTTCACCGGACATGATGTTG	CqRPH1 5' UTR Forward
OgRK4103	gcgtcgacctgcagcgtacgCAGCTCACCCCAGTTGGTAT	CgRPH1 5' UTR Reverse
OgRK4104	cgacggtgtcggtctcgtagGACGAAGGGAGATTGCAAAG	CqRPH1 3' UTR Forward
OgRK4105	GCCTGTCTCTCAGTTCTTGGA	CgRPH1 3' UTR Reverse
OgRK4106	AATCCACCTCGACGTCAAAC	CaRPH1 5' Integration check Forward
OgRK4107	CATCATCCTTACCGGCAACT	CaRPH1 3' Integration check Reverse
OgRK4108	GTCCCTGGTGTGGCTAAAAA	CaRPH1 Internal check Forward
OgRK4109	ATAGCCCCATGTCAAGCAAC	CaRPH1 Internal check Reverse
OgRK4139	GGTGTTAACCCAGCTTCTGCTCATTC	$C_{\alpha}SET2$ 5' UTB Forward
OgRK4140	gcgtcgacctgcagcgtacgCAGACATGTTATCGAAGGTATG	CaSET2 5' UTB Reverse
OgRK4141		CaSET2 3' UTR Forward
OgRK4142	GAGCATGTTGACATGCCAGGACAC	CaSET2 3' LITB Beverse
OgRK4143	GGCTCCAATAGGCCCATGGGATG	CaSET2 5' Integration check Forward
OgRK4144		CaSET2 3' Integration check Reverse
OgRK1724	TGTCATCGAATGAGGAGCTG	CaSET2 Internal check Forward
OgRK1725	AACAATTTCCCAACCAGGTG	CaSET2 Internal check Reverse
OgRK4063	CCTTCGCGTAATAGGACTGC	CaCDR1 5' UTB Forward
OgRK4064	GGTCAAAAGGTGTGGCAACT	CaCDR1 3' UTR Reverse
For gene cl	oning	-9
OgRK2525	TCGATCTAGA ATGTCTGATATGCTACCA	CaFPR3 Forward
OgRK2527	TCGAACTAGT TTTGATGGACACCAAC	CaFPR3 Reverse without stop codon
OGRK3835	TCGAACTAGTAGCTGGACCATCGCCAACGG	<i>CaFPR3</i> Reverse without stop codon Catalytic domain deletion
OGRK2320	ATGCTCTAGA ATGTCTGATATGTTACCG	CaEPR4 Forward
OGRK2322	ATGCACTAGT TTTTAGAGAAACTAAC	CaFPR4 Reverse without stop codon
OGRK3837	ATGCACTAGT ACCCTCACCTATCTTACGG	<i>CaFPR4</i> Reverse without stop codon Catalytic domain deletion
For aRT-PC	R	
OgRK127	TGCAGGACCAAGTCAGACAG	CaCDR1 Forward
OgRK128		CaCDR1 Reverse
OgRK120		CaCDR2 Forward
OgRK120	GCAGGTTCAGGAAAGTGCTC	CaCDR2 Reverse
		CaSNO2 Forward
		CaSNO2 Reverse
OgRK132		CaEBG11 Forward
OgRK133		CaEPG11 Peverse
		CaPDP1 Forward
OgRK135		
OgRK130		Caller Caller
OGEK103		
OBKK192	I GAAACAACAGUGI CUICAG	Cy I DHO _ KEVEISE
	cation of null casselle for C. glabrata gene disruption	E' NAT half Forward
OGRK340		S INAT half_FORWARD
UGKK343		5 INAT Half_Keverse
OGRK342		3' NAT half_Forward
OGRK341		3' NAT nalt_Reverse
OGRK344		5' Integration check_Forward
UGRK345	TGTGAATGCTGGTCGCTATACTGC	3' Integration check_Reverse

Nucleotide sequences written in small case letters represent overhangs.

* The underlined sequences correspond to cleavage sites of restriction enzymes.

Borah et al.,2011 Borah et al.,2011

Xbal

Spel

Spel Xbal

Spel

Spel

Kaur Laboratory Kaur Laboratory Kaur Laboratory Kaur Laboratory Kaur Laboratory Kaur Laboratory

Table S6 : List of antibodies used in the study.				
Name	Dilution used	Clonality	Company	Catalog number
Primary antibodi	es			
Anti-histone H3	1:5,000	Polyclonal	Abcam	ab1791
Anti-histone H4	1:5,000	Polyclonal	Abcam	ab10158
Anti-H3K36me3	1:5,000	Polyclonal	Abcam	ab9050
Anti-GAPDH	1:10,000	Polyclonal	Abcam	ab22555
Anti-GFP	1:10,000	Polyclonal	Abcam	ab290
Secondary antibo	odies			
Anti-rabbit	1:10,000		Cell Signaling Technology	7076S

References

- 1. Cormack BP, Falkow S. 1999. Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen *Candida glabrata*. Genetics 151:979–987.
- De Las Peñas A, Pan SJ, Castaño I, Alder J, Cregg R, Cormack BP. 2003. Virulencerelated surface glycoproteins in the yeast pathogen *Candida glabrata* are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev 17:2245-58.
- Borah S, Shivarathri R, Kaur R. 2011. The Rho1 GTPase-activating protein CgBem2 is required for survival of azole stress in *Candida glabrata*. J Biol Chem 286:34311– 34324.

	Candida glabrata		Saccharomyces cerevisiae	
	Cagl0L11484p (CgFpr3)	Cagl0M00638p (CgFpr4)	YML074C (Fpr3)	YLR449W (Fpr4)
Cagl0L11484p	100	80	84.21	83.93
Cagl0M00638p	80	100	73.38	80.34

Figure S1: CgFpr3 and CgFpr4 possess peptidyl-prolyl cis-trans isomerase domain.

- A. A schematic illustration of domains, as predicted by the Pfam tool (http://pfam.xfam.org), in CgFpr4 and CgFpr3 proteins. The nucleoplasmin-like domain and the PPIase (peptidyl-prolyl cis/trans isomerase) domains were identified at the C- and the N-termini, respectively, of CgFpr3 and CgFpr4 proteins. The NLS mapper tool (http://nls-mapper.iab.keio.ac.jp) predicted one bipartite nuclear localization signal (NLS) in the middle region of both proteins. The NLS region was marked based on the maximum score obtained by the NLS mapper tool. The FKBP_C peptidyl-prolyl cis-trans isomerase domain spanned 89 amino acids at the C-terminal region of proteins.
- B. A schematic depicting syntenic nature of the *FPR3* and *FPR4* gene loci in *C. glabrata* and *S. cerevisiae* that share 77% identity with each other at the nucleotide level. The YGOB tool (http://ygob.ucd.ie) was used to determine the synteny between genomic regions of *C. glabrata* and *S. cerevisiae* that contain *FPR3* and *FPR4* ORFs. *C. glabrata* and *S. cerevisiae* CgFpr3- and CgFpr4 -encoding ORFs are marked in red-colored boxes, with color-coded individual domain-encoding sequences.
- C. A summary table of amino acid sequence similarity between *C. glabrata* and *S. cerevisiae* Fpr3 and Fpr4 proteins. Sequence homology among proteins was determined using BLASTP analysis, after retrieving protein sequences of Fpr3 and Fpr4 of *C. glabrata* and *S. cerevisiae* from Candida Genome Database (CGD) and Saccharomyces Genome Database (SGD) respectively. *C. glabrata* Fpr3 and Fpr4 were used as a query sequence for the BLASTP analysis.

Figure S2: CgFpr3-C_{trunc}-GFP and CgFpr4-C_{trunc}-GFP proteins are expressed well in the *Cgfpr3* Δ 4 Δ mutant. An immunoblot showing expression of GFP-tagged full-length and C-terminally-truncated CgFpr3 and CgFpr4 proteins, that lack PPIase domain. The *Cgfpr3* Δ 4 Δ mutant expressing full length or truncated CgFpr3 and CgFpr4 proteins was grown in CAA medium for 4 h at 30°C. These log-phase cells were harvested and whole-cell extracts were prepared by glass bead lysis. 50 µg protein were resolved on 15% SDS-PAGE and probed with anti-GFP antibody. The bands of approximately 95 kDa for *Cgfpr3* Δ 4 Δ /*CgFPR3-GFP*, 85 kDa for *Cgfpr3* Δ 4 Δ /*CgFPR3-Ctrunc-GFP*, 90 kDa for *Cgfpr3* Δ 4 Δ /*CgFPR4-GFP* and 80 kDa for *Cgfpr3* Δ 4 Δ /*CgFPR4-Ctrunc-GFP* were observed. Ponceau S-stained membrane was used as loading control.

Figure S3: Fluconazole and FK506 combination is not cidal for *Cgfpr3Δ4Δ* mutant.

Liquid medium-based growth analysis of indicated *C. glabrata* strains to assess the sensitivity towards the combinatorial treatment with fluconazole and FK506. Wild-type (*wt*) and *Cgfpr3* Δ 4 Δ strains were grown in YPD medium lacking (YPD) or containing fluconazole (FLC; 128 µg/ml), FK506 (2 µg/ml) or fluconazole (128 µg/ml) plus FK506 (2 µg/ml) [FLC+FK506] at 30°C. After 24 h incubation, cultures were diluted in PBS, and 3 µl of 100-, 250- and 500-fold diluted cultures were spotted on YPD medium. Images were captured after 1 day of growth at 30°C.

Figure S4: CgRph1 contains JmjN and JmjC domains at the N-terminus.

- A. Schematic depiction of the domain composition of the CgRph1 protein, as predicted by the pfam tool. While the JmjC domain is known to function in the highly conserved histone demethylation mechanism, the JmjN and JmjC domains as two non-adjacent domains have often been found in the jumonji family of transcription factors.
- B. Schematic depiction of the domain organization of the CgSet2 protein, as predicted by the pfam tool. The SET domain is a characteristic feature of protein lysine methyltransferase enzymes, while AWS and SRI domains refer to Associated with SET domain and Set2-Rpb1 interacting domain, respectively. The WW domain containing two signature tryptophan residues is implicated in binding to proline-rich motifs and mediate protein-protein interaction.

Figure S5: Serial dilution spotting analysis illustrating susceptibility of *Cgset2* Δ and *Cgrph1* Δ to varied stresses. Methyl methane sulfonate (MMS), hydrogen peroxide (H₂O₂), menadione (MD), congo red (CR) and sodium dodecyl sulfate (SDS) were used at a concentration of 0.03%, 25 mM, 100 μ M, 2 mg/ml and 0.05%, respectively. All plates were incubated at 30°C, unless indicated otherwise. Images were captured after 1-2 days of incubation.