## **Supplementary Information**

Retinoblastoma from Human Stem Cell-Derived Retinal Organoids

Jackie L. Norrie, Anjana Nityanandam, Karen Lai, Xiang Chen, Matthew Wilson, Elizabeth Stewart, Lyra Griffiths, Hongjian Jin, Gang Wu, Brent Orr, Quynh Tran, Sariah Allen, Colleen Reilly, Xin Zhou, Jiakun Zhang, Kyle Newman, Dianna Johnson, Rachel Brennan and Michael A. Dyer



Supplementary Figure 1. Characterization of iPSC lines from patients with germline *RB1* mutations. A) Micrograph of representative karyotype for one of the iPSC clones. B) Spectral karyotype (SKY) of the same clone shown in (A). C) Brightfield micrograph of an iPSC colony. All 15 iPSC lines were analyzed with similar results. D) Scatterplot of FACS analysis for two markers of pluripotent cells (Q2 = 99.4% of single cells). E) Box and whisker plot of pluripotency gene expression from RNA-seq for each of the 15 individual iPSC lines (open gray circles) and H9 ESCs as a control (filled black circle). F-H) Box and whisker plot of endoderm, ectoderm and mesodermal cells from the trilineage assay for each of the 15 individual iPSC lines (open circles) and H9 ESCs. Box and whisker plots include center line as median, box as Q1 and Q3, and whiskers as 1.5x interquartile range. Scale bar, 50 mm.



Supplementary Figure 2. Characterization of retinal organoids from using two different protocols. A) Micrograph of all the retinal organoids from a single 96 well dish for the same cells side-by-side using the Sasai and 3D-RET protocol. Lower panels show brightfield images with retinal structures (arrows). **B**,**C**) Box and whisker plot of quantitation of roundness and cross-sectional area of retinal organoids using the two methods. All organoids that were generated from a 96 well dish during a single round of differentiation were quantified. **D**) Box and whisker plot of normalized relative fold expression of retinal genes for iPSC organoids using the two methods (n=6). **E**) Representative electron micrograph of a retinal organoid showing tightly packed cells in the apical surface of the organoid as well as mitotic figure (inset and arrows) and cilium and apical junctions (inset and arrow). All 15 lines were analyzed with similar results. Box and whisker plots include center line as median, box as Q1 and Q3, and whiskers as 1.5x interquartile range.



Mutation Types LOH MISSENSE FRAMESHIFT NONSENSE PROTEININS SPLICE Copy number gain Copy number loss

**Supplementary Figure 3. Germline and somatic mutations in retinoblastoma.** Heatmap of germline and somatic mutations in the retinoblastoma cohort analyzed here. Patient tumors have an \_D1 or \_D2 designation. O-PDX tumors have an \_X1 or \_X2 designation. 3D stem cell organoid derived tumors have an \_O1, \_O2 or \_O5 designation.



Supplementary Figure 4. Inferred copy number variation in scRNA-seq and RNA velocity analysis. A) Tumor cells can be distinguished from normal cells by inferring the chromosomal copy number of large chromosomal regions from gene expression levels as indicated. Normal cells including macrophages, fibroblasts and immune cells were identified by gene expression signatures of those cell types and the absence of inferred chromosomal copy number changes. **B-**D) RNA velocity analysis of a representative retinoblastoma patient tumor (RB177), O-PDX (PDX 124) and organoid derived tumor (H9CR) with cell identity from the label transfer shown as in Fig. 5. **E,F**) Velocity plot for a rod gene (NRL) and an amacrine/horizontal cell gene (CELF4) for normal retina and retinoblastoma showing that the tumor cells are a hybrid of multiple gene expression programs.



Supplementary Figure 5. Gating Strategy for Flow Cytometry. A) DAPI negative cells were selected as live cells. B) Single cells were selected from the population of live cells. C) Populations were analyzed for TRA-1-81 and SSEA4 positive cells. D) Population statistic for each stage of gating.

| Exon    | Sequence                  |
|---------|---------------------------|
| Exon 4  | GTAGTGATTTGATGTAGAGC      |
|         | CCCAGAATCTAATTGTGAAC      |
| Exon 8  | AGTAGTAGAATGTTACCAAG      |
|         | TACTGCAAAAGAGTTAGCAC      |
| Exon 10 | TCTTTAATGAAATCTGTGCC      |
|         | GATATCTAAAGGTCACTAAG      |
| Exon 14 | GTGATTTTCTAAAATAGCAGG     |
|         | TGCCTTGACCTCCTGATCTG      |
| Exon 21 | GGTATTTTTAAGACAAAACCATG   |
|         | AAGGTCAGACAGAATATATGATCTC |
| Exon 25 | GGTTGCTAACTATGAAACAC      |
|         | AGAAATTGGTATAAGCCAGG      |

Supplementary Table 1. RB1 genotyping primers

| Antibody  | Vendor                 | Cat#      | Source | Dilution |
|-----------|------------------------|-----------|--------|----------|
| PAX6      | DSHB                   | AB_528427 | Mouse  | 1:100    |
| Recoverin | Millipore              | AB5585    | Rabbit | 1:5000   |
| VSX2      | Exalpha Biologics Inc. | X1180P    | Sheep  | 1:200    |
| OTX2      | Santa Cruz             | sc-30659  | Goat   | 1:200    |
| OCT3/4    | <b>BD</b> Biosciences  | BD 611202 | Mouse  | 1:500    |

Supplementary Table 2. Antibody List

| Gene  | Sequence              |
|-------|-----------------------|
| PAX6  | CTAGCCAGGTTGCGAAGAAC  |
|       | GGGCAATCGGTGGTAGTAAA  |
| VSX2  | GGCTCCCTGGCTTCTACAC   |
|       | ACATTTTTCGATCGCTGGAG  |
| CRX   | GCCCCACTATTCTGTCAACG  |
|       | CTTCAGAGCCACCTCCTCAC  |
| GAPDH | CCAGCAAGAGCACAAGAGGAA |
|       | GCCCCTCCCCTCTTCAAG    |
| RCVN  | ACCAACCAGAAGCTGGAGTG  |
|       | CGTGTTTTCATCGTCTGGAA  |

## Supplementary Table 3. QRT-PCR primers

| Assay          | Gene          | Taqman Probe  |
|----------------|---------------|---------------|
| Neural         | PAX6          | Hs00240871_m1 |
| Neural         | NEUROG1       | Hs01029249_s1 |
| Neural         | NEUROG2       | Hs00702774_s1 |
| Neural         | EMX2          | Hs00244574_m1 |
| Neural         | FOXG1         | Hs01850784_s1 |
| Neural         | ASCL1         | Hs04187546_g1 |
| Neural         | GBX2          | Hs00230965_m1 |
| Neural         | DLX2          | Hs00269993_m1 |
| Neural         | DMBX1         | Hs00542612_m1 |
| Neural         | GAPDH         | Hs99999905_m1 |
| Neural         | SOX10         | Hs00366918_m1 |
| Neural         | ATOH1         | Hs00245453_s1 |
| Neural         | OTX2          | Hs00222238_m1 |
| Neural         | ZIC1          | Hs00602749_m1 |
| Neural         | SOX17         | Hs00751752_s1 |
| Neural         | GATA4         | Hs00171403_m1 |
| Neural         | FOXA2         | Hs00232764_m1 |
| Neural         | ETV2          | Hs01012850_g1 |
| Neural         | MESP1         | Hs01001283_g1 |
| Neural         | CD34          | Hs02576480_m1 |
| Neural         | NANOGP1;NANOG | Hs04399610_g1 |
| Retinoblastoma | MYC           | Hs00153408_m1 |
| Retinoblastoma | KLF4          | Hs00358836_m1 |
| Retinoblastoma | POU5F1        | Hs04260367_gH |
| Retinoblastoma | BMP2          | Hs00154192_m1 |
| Retinoblastoma | EPHA7         | Hs01033006_m1 |
| Retinoblastoma | GAPDH         | Hs99999905_m1 |
| Retinoblastoma | SYK           | Hs00895377_m1 |
| Retinoblastoma | RAX           | Hs00429459_m1 |
| Retinoblastoma | PDE6H         | Hs01124155_m1 |
| Retinoblastoma | RD3           | Hs01650935_m1 |
| Retinoblastoma | SIX6          | Hs00201310 m1 |

|               |        | 4 DD1        |            | •       |
|---------------|--------|--------------|------------|---------|
| Nunnlementary | i shle | <b>4 KKI</b> | genatyning | nrimerc |
| Supprementary | Lanc   | TINDI        | genotyping | princip |
|               |        |              |            | 1       |

| A          | C      |               |
|------------|--------|---------------|
| Assay      | Gene   | I aqman Probe |
| Trilineage | 18S    | Hs99999901_s1 |
| Trilineage | PAX6   | Hs01088114_m1 |
| Trilineage | KDR    | Hs00911700_m1 |
| Trilineage | KIT    | Hs00174029_m1 |
| Trilineage | NES    | Hs04187831_g1 |
| Trilineage | PDGFRA | Hs00998018_m1 |
| Trilineage | GSC    | Hs00418279_m1 |
| Trilineage | OTX2   | Hs00222238_m1 |
| Trilineage | CDX2   | Hs01078080_m1 |
| Trilineage | FOXA2  | Hs05036278_s1 |
| Trilineage | FABP7  | Hs00361424_g1 |
| Trilineage | HAND1  | Hs02330376_s1 |
| Trilineage | SOX17  | Hs00751752_s1 |
| Trilineage | DLK1   | Hs00171584_m1 |
| Trilineage | MESP1  | Hs00251489_m1 |
| Trilineage | GATA4  | Hs00171403_m1 |
| Trilineage | LHX2   | Hs00180351_m1 |
| Trilineage | ISL1   | Hs00158126_m1 |
| Trilineage | EOMES  | Hs00172872_m1 |
| Trilineage | SOX1   | Hs01057642_s1 |
| Trilineage | Т      | Hs00610080_m1 |
| Trilineage | GATA6  | Hs00232018_m1 |

## Supplementary Table 4 continued. RB1 genotyping primers

## Supplementary Table 5. RB1 gRNA sequences

| Name        | gRNA Sequence           | Location                |
|-------------|-------------------------|-------------------------|
| SM27.RB1.g2 | TGACATAGCATTATCAACTTNGG | chr13:48345124-48345146 |
| SM27.RB1.g3 | AGCATTATCAACTTTGGTACNGG | chr13:48345118-48345140 |