Supporting Information

Structure Activity Relationship of Heterocyclic P2Y₁₄ Receptor Antagonists: Removal of the Zwitterionic Character with Piperidine Bioisosteres

Young-Hwan Jung,[†] Veronica Salmaso,[†] Zhiwei Wen,[†] John M. Bennett,[†] Ngan B. Phung,[†] David I. Lieberman,[†] Varun Gopinatth,[†] John C. R. Randle,[¶] Zhoumou Chen,[¥] Daniela Salvemini,[¥] Tadeusz P. Karcz,^{+, x} Donald N. Cook,⁺ and Kenneth A. Jacobson^{†*}

[†] Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA.

 ⁺Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA.
[¥]Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for

Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO 63104, USA.

[®]Random Walk Ventures, LLC, 108 Lincoln Street Unit 6B, Boston, MA 02111 USA. ^xCurrent address: Jagiellonian University, Kraków, 2175 31-007, Poland.

^ equal contribution.

Contents	Pages
Synthetic Scheme S1 and S2	S2
Modeling of hP2Y ₁₄ R (Tables S1, S2)	S3-S4
Chronic pain model: data (Table S3)	S 5
Modeling of hP2Y ₁₄ R (Figures $S1 - S5$)	S6-S10
Off-target interactions (Figures S6)	S11-S12
Esterase cleavage of prodrugs (Figures S7 – S9)	S13-S21
NMR, MS and HPLC purity of final products	S22-S57
ADMET properties of 32 (Figure S10)	S58-S60
Patch clamp hERG assay of 1a, 1b, and 32	S61

Scheme S1. Reagents and Conditions: (a) LAH, THF, 0 °C, 1 h, 45%; (b) di-*tert*-butyl *N*,*N*-diethylphosphoramidite, tetrazole, THF, rt, 1 h, then MCPBA, -78 °C, 84%; (c) TFA:THF = 2:1, rt, 2 h, 69%. See the main text for the procedures.

Scheme S2. Reagents and conditions: a) Boc-propylene-diamine, HATU, DIPEA, DMF, rt, 2 h, 31%; b) PdCl₂(PPh₃)₂, copper iodide, THF, triethylamine, *N*-Boc-propargylamine, rt, 94%. See the main text for the procedures.

Molecular modeling

Table S1. Inter-replicate average RMSD, Interaction Energy (as sum of electrostatic and van der Waals), Weighted Dynamic Scoring Function (wDSF), percentage of hydrogen bonds of Lys77^{2.60}, Tyr102^{3.33} and Lys277^{7.35}. Compounds with wDSF/time lower than compound **3a** (reference) and IC₅₀ lower than 1 μ M are highlighted in green and considered true positives. False positives (wDSF lower than **3a**, but IC₅₀ higher than 1 μ M) are highlighted in red, false negatives (wDSF higher than **3a**, but IC₅₀ lower than 1 μ M) in orange, and not synthesized compounds in gray. See Figure S1 for structures.

Compound		Av	erage val	ues among 3 re	eplicates		IC50 (μM)
	RMSD (Å)	Interaction Energy (kcal/mol)	Slope wDSF	Lys77 ^{2.60} (% hbonds)	Tyr102 ^{3.33} (% hbonds)	Lys277 ^{7.35} (% hbonds)	
1a	1.90	-201.46	-99.63	63.89	26.98	83.20	0.00796
3 a	3.01	-173.21	-70.55	91.24	18.91	75.69	0.0317
7	3.25	-171.93	-50.64	88.04	74.31	66.91	1.48
8	2.22	-177.83	-71.17	83.20	48.07	64.22	0.811
9	2.94	-179.27	-53.88	65.91	31.47	65.16	1.86
10	2.98	-176.40	-52.43	83.67	7.02	81.89	3.16
11	2.00	-235.43	-120.39	92.96	77.49	73.24	0.197
13	4.30	-223.25	-37.41	1.62	66.31	48.44	0.632
14	2.37	-250.33	-107.21	82.93	60.16	77.18	0.588
15	3.05	-173.01	-53.41	86.53	54.38	74.64	>10
16	7.05	-148.38	-20.43	0.00	16.18	36.64	1.29
17	3.66	-177.61	-48.05	84.71	88.02	82.80	17.8
18	1.94	-200.75	-96.58	54.27	87.71	79.47	0.292
19	2.20	-243.49	-109.20	37.02	70.24	77.80	0.308
21	4.04	-175.87	-42.88	7.76	45.36	76.89	9.22
22	1.92	-263.37	-118.51	87.47	66.82	82.38	14.1
23	2.09	-210.72	-91.24	88.60	83.27	80.53	8.91
25	2.34	-223.24	-77.24	67.96	38.36	76.64	2.00
27	2.32	-204.06	-99.71	87.62	80.47	79.22	2.86
28	2.90	-140.71	-48.10	87.71	80.42	29.00	2.23
29	2.23	-206.94	-99.22	92.73	88.18	77.42	0.296
30	2.75	-209.82	-64.94	0.02	14.64	77.71	0.389
31-tau1	5.92	-211.06	-32.84	0.00	47.29	51.09	0.895
31-tau2	1.51	-207.34	-134.67	95.56	1.69	69.44	0.895
piperazine 6	2.15	-212.78	-107.65	87.02	73.80	80.24	0.233 ^a
oxadiazole, 91	2.92	-180.32	-63.42	70.04	52.24	81.11	-
4-hydroxy, 92	2.15	-217.61	-93.32	84.51	74.04	48.33	-
azido, 93	-	-	-	-	-	-	-

^aReported in Jung, Y. H. et al. Exploration of alternative scaffolds for P2Y₁₄ receptor antagonists containing a biaryl core. *J. Med. Chem.* **2020**, *63*, 9563–9589.

Table S2. Intra-replicate average RMSD, Interaction Energy (as sum of electrostatic and van der Waals), Weighted Dynamic Scoring Function (wDSF), percentage of hydrogen bonds of Lys77^{2.60}, Tyr102^{3.33} and Lys277^{7.35}, for compounds **29**, **32** and **33**.

Compound				Average values	within each rej	plicate	
		RMSD (Å)	Interaction Energy (kcal/mol)	Slope wDSF	Lys77 ^{2.60} (% hbonds)	Tyr102 ^{3.33} (% hbonds)	Lys277 ^{7.35} (% hbonds)
	run1	1.99	-210.51	-117.02	93.60	89.60	74.53
29	run2	2.39	-204.78	-92.71	90.93	84.47	76.80
	run3	2.30	-205.52	-87.92	93.67	90.47	80.93
	average	2.23	-206.94	-99.22	92.73	88.18	77.42
	run1	2.23	-196.17	-89.77	89.00	75.33	26.00
32	run2	2.12	-220.47	-107.67	74.00	86.87	80.13
	run3	1.85	-217.20	-104.66	69.27	79.60	81.00
	average	2.07	-211.28	-100.70	77.42	80.60	62.38
	run1	2.76	-151.94	-58.53	94.00	67.47	0.73
33	run2	7.31	-155.58	-11.72	0.00	50.60	1.20
	run3	3.51	-138.78	-23.08	85.87	59.93	1.47
	average	4.53	-148.77	-31.11	59.96	59.33	1.13

Compound (10 µmol/kg, i.p.)	Effects at 30 min (%Reversal±SD)	Effects at 1 h (%Reversal±SD)	Effects at 2 h (%Reversal±SD)	Effects at 3 h (%Reversal±SD)	Effects at 5 h (%Reversal±SD)	IC ₅₀ (mP2Y ₁₄ , nM)	MW (D)
1a ^a	87.9±12.9	100±0.0	96.4±6.2	78.6±9.4	21.3±14.1	21.6±7.0	475.5
1b ^a	83.3±9.6	100±0.0	100±0.0	92.4±8.7	40.7±7.5	29.7±9.3	517.6
3a ^a	52.4±9.6	67.4±7.0	57.2±13.3	31.9±16.8	12.7±13.2	142±58	492.5
32	41.5±13.4	71.0±17.4	34.9±18.4	15.7±14.4	0.0±0.0	18.6±8.4	489.5

Table S3. Reversal of CCI-induced mechano-allodynia in the mouse by P2Y14R antagonists.

a Data published in Mufti et al.¹ IC₅₀ values are from the fluorescent binding assay, as described in the main text.

1. Mufti, F.; Jung, Y. H.; Giancotti, L. A.; Yu, J.; Chen, Z..; Phung, N. B.; Jacobson, K. A.; Salvemini, D. P2Y₁₄ receptor antagonists reverse chronic neuropathic pain in a mouse model. *ACS Med. Chem. Lett.* **2020**, *11*, 1281–1286.

Commercially available precursors (corresponding antagonist derivative):

Synthesized easily using commercial precursors:

Figure S1. R-groups corresponding to 20 commercially available bromo-aryl precursors and 5 Rgroups easily obtainable by chemical synthesis starting from commercial precursors. These Rgroups were used to build a library of compounds of the triazole series, which was submitted to molecular modeling evaluation to prioritize the synthesis. The compound bearing the azido substituent was not subjected to MD simulations because of lack of parameters for the azido group.

Figure S2. Results of the MD simulations of the complex between hP2Y₁₄R and compound **29**. **A)** RMSD of ligand heavy atoms relative to the docking pose, after superposition of the protein C α atoms to the starting position. **B**) Ligand-receptor interaction energy (as sum of electrostatic and van der Waals components). **C)** Number of contacts (distance ≤ 4 Å) between ligand and receptor residues. Residues in contact with the ligand for more than half of the simulation in at least one replicate are reported. A stride of 20 ps was employed, so a maximum of 1500 contacts (frames) can be observed for each replicate. **D**, **E** and **F**) Last frame of replicates 1-2-3. The receptor is reported in gray and the ligand in lime.

Figure S3. Results of the MD simulations of the complex between hP2Y₁₄R and compound **32**. **A**) RMSD of ligand heavy atoms relative to the docking pose, after superposition of the protein C α atoms to the starting position. **B**) Ligand-receptor interaction energy (as sum of electrostatic and van der Waals components). **C**) Number of contacts (distance ≤ 4 Å) between ligand and receptor residues. Residues in contact with the ligand for more than half of the simulation in at least one replicate are reported. A stride of 20 ps was employed, so a maximum of 1500 contacts (frames) can be observed for each replicate. **D**, **E** and **F**) Last frame of replicates 1-2-3. The receptor is reported in gray and the ligand in orange.

Figure S4. Ligand-receptor hydrogen bonds during 30 ns MD simulations. Residues that are in contact (distance ≤ 4 Å) with the ligand for more than half of the simulation are shown. The panels on the left (**A**, **C** and **E**) are relative to compound **29** (replicates 1, 2 and 3), while panels on the right (**B**, **D** and **F**) are relative to compound **32** (replicates 1, 2 and 3).

Figure S4

Figure S5. Results of the MD simulations of the complex between hP2Y₁₄R and compound **33**. **A**) RMSD of ligand heavy atoms relative to the docking pose, after superposition of the protein C α atoms to the starting position. **B**) Ligand-receptor interaction energy (as sum of electrostatic and van der Waals components). **C**) Number of contacts (distance ≤ 4 Å) between ligand and receptor residues. Residues in contact with the ligand for more than half of the simulation in at least one replicate are reported. A stride of 20 ps was employed, so a maximum of 1500 contacts (frames) can be observed for each replicate. **D**, **E** and **F**) Last frame of replicates 1-2-3. The receptor is reported in gray and the ligand in cyan.

Off-target activity:

Determined by the the Psychoactive Drug Screening Program (PDSP)

We thank Dr. Bryan L. Roth (Univ. North Carolina at Chapel Hill) and National Institute of Mental Health's Psychoactive Drug Screening Program (Contract # HHSN-271-2008-00025-C) for screening data. Reference: Besnard, J.; Ruda, G. F.; Setola, V.; Abecassis, K.; Rodriguiz, R. M.; Huang, X. P.; Norval, S.; Sassano, M. F.; Shin, A. I.; Webster, L. A.; Simeons, F. R.; Stojanovski, L.; Prat, A.; Seidah, N. G.; Constam, D. B.; Bickerton, G. R.; Read, K. D.; Wetsel, W. C.; Gilbert, I. H.; Roth, B. L.; Hopkins, A. L. Automated design of ligands to polypharmacological profiles. *Nature* **2012**, *492*, 215–220.

Procedures: https://pdsp.unc.edu/pdspweb/content/UNC-CH%20Protocol%20Book.pdf

Unless noted in the text, no significant interactions (<50% inhibition at 10 µM) for any of the nucleosides were found at the following sites (human unless noted): 5HT_{1A}, 5HT_{1B}, 5HT_{1D},

5HT_{1E}, 5HT_{2A}, 5HT_{2B}, 5HT_{2C}, 5HT₃, 5HT_{5A}, 5HT₆, 5HT₇, α_{1A}, α_{1B}, α_{1D}, α_{2A}, α_{2B}, α_{2C}, β₁, β₂,

 β_3 , BZP rat brain site, D₁, D₂, D₃, D₄, D₅, GABA_A, H₁, H₂, H₃, H₄, M₁, M₂, M₅, δ-opioid receptor (DOR), κ-opioid receptor (KOR), μ-opioid receptor (MOR), σ_1 , σ_2 , DAT, NET, SERT. K_i values

in µM, or % inhibition at 10 µM, are given. Representative curves are shown in Fig. S6.

Results shown as: receptor, K_i , μM or % inhibition at 10 μM .

1a, PPTN (PDSP 37482): (in earlier paper)^{1,2}

1b, *N*-Ac-PPTN (PDSP 55252): (in earlier paper)²

1c, *N*-formyl-PPTN (PDSP 58298): 5HT_{1D} 81%; α_{1B}, 2.65; α_{2A} 3.97; α_{2B} 82%; α_{2C} 3.93; D₁

0.52, $D_5 1.44$; $\sigma_1 0.759$, $\sigma_2 84\%$, H_4 , 1.70.

1d, *N*-CF₃CO-PPTN: not submitted.

3a, MRS4217 (PDSP 37481): (in earlier paper)^{1,2}

6, MRS4544 (PDSP 53888): (in earlier paper)²

11, MRS4681 (PDSP 55946): σ₁, 2.33±0.15; DOR, 2.0±0.38.

13, MRS4678 (PDSP 57280): none detected.

16, MRS4594 (PDSP 53890): $\sigma_2 0.931 \pm 0.388$; TSPO, 2.81±0.18.

18, MRS4635 (PDSP 55841): none detected.

19, MRS4698 (PDSP 56449): none detected.

29, MRS4586 (PDSP 53889): DOR, 6.9±1.9; H₁, 2.65±0.74; TSPO, 0.751±0.101.

30, MRS4702 (PDSP 57282): DOR, 2.15, TSPO, 1.93.

31, MRS4683 (PDSP 57281): DOR, 3.30±1.76; σ₂, 2.26±1.28.

32, MRS4654 (PDSP 56758): σ₁ 2.68±0.21; σ₂ 4.78±0.99; TSPO 4.63±0.87.

37a, MRS4543 (PDSP 57573): 5HT_{1D}, 2.39; 5HT_{1B}, 5.57; 5HT_{5A}, 2.04; 5HT_{7A}, 2.22; D₁ 1.22;

D₃, 0.84; D₅, 3.01; H₂, 54%; α₁A, 1.23; α₁B, 2.52; α₂B, 1.81; α₂C, 0.790; σ₁, 0.133; σ₂, 0.23; M₅,

2.23; β₂, 4.18; β₃, 1.24; DAT 0.165; SERT, 1.80; NET, 0.469.

37c, MRS4741 (PDSP 57574): σ₂, 0.585±0.125.

References:

- 1. Yu, J.; Ciancetta, A.; Dudas, S.; Duca, S.; Lottermoser, J.; Jacobson, K.A. Structure-guided modification of heterocyclic antagonists of the P2Y₁₄ receptor. *J. Med. Chem.* **2018**, *61*, 4860–4882, doi: 10.1021/acs.jmedchem.8b00168.
- Jung, Y. H.; Yu, J.; Wen, Z.; Salmaso, V.; Phung, N. B.; Karcz, T.; Chen, Z.; Duca, S.; Bennett, J. M.; Dudas, S.; Cook, D. N.; Salvemini, D.; Gao, Z. G.; Jacobson, K. A. Exploration of alternative scaffolds for P2Y₁₄ receptor antagonists containing a biaryl core. *J. Med. Chem.* **2020**, *63*, 9563–9589.

Figure S6. Binding curves for selected off-target assays performed by the PDSP. A. Binding enhancement at $\alpha_{2A}R$ by compound **29**. B. Binding enhancement at $\alpha_{2A}R$ by compound **16**. C. TSPO binding inhibition by compound **30**.

S12

Figure S7A. Hydrolytic stability of the prodrug **37a** in the absence of PLE. HPLC traces of **3a** (active drug alone) and **37a** (prodrug alone), and of **37a** following incubation at pH 7.4 and 37 °C for 24 h.

Figure S7B. Enzymatic hydrolysis of the prodrug **37a** to produce active drug **3a**. HPLC traces of **37a** after the reaction with PLE for 5, 35, 65, and 120 min at 37 °C.

Figure S7C. Enzymatic hydrolysis of the prodrug **37a** to produce active drug **3a**. The half-life of **37a** by the reaction with PLE was 20.20 ± 1.85 min (Mean \pm SEM).

Figure S8A. Hydrolytic stability of the prodrug **37b** in the absence of PLE. HPLC traces of **32** (active drug alone) and **37b** (prodrug alone), and of **37b** following incubation at pH 7.4 and 37 °C for 24 h.

Figure S8B. Enzymatic hydrolysis of the prodrug **37b**. HPLC traces of **37b** after the reaction with PLE for 0, 2, 6, 24, 48, and 72 h at 37 °C.

Figure S8C. Enzymatic hydrolysis of the prodrug 37b. Mean \pm SD is shown.

Figure S9A. Hydrolytic stability of the prodrug **37c** in the absence of PLE. HPLC traces of **1b** (active drug alone) and **37c** (prodrug alone), and of **37c** following incubation at pH 7.4 and 37 °C for 24 h.

Figure S9B. Enzymatic hydrolysis of the prodrug **37c**. HPLC traces of **37c** after the reaction with PLE for 0, 2, 6, 24, 48, and 72 h at 37 °C.

4-(4-(1-Formylpiperidin-4-yl)phenyl)-7-(4-(trifluoromethyl)phenyl)-2-naphthoic acid (1c).

min

4-(4-(1-(2,2,2-Trifluoroacetyl)piperidin-4-yl)phenyl)-7-(4-(trifluoromethyl)phenyl)-2-naphthoic acid (1d).

(4'-(Piperidin-4-yl)-5-(4-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-3-yl)methyl dihydrogen phosphate (**3b**).

min

Amino-5-(4-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-3-carboxylic acid (7).

HPLC purity 97% ($R_t = 8.96 \text{ min}$)

4'-Acetamido-5-(4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-3-carboxylic acid (8).

HPLC purity 99% ($R_t = 7.95 \text{ min}$)

 $\label{eq:alpha} 4'-Benzamido-5-(4-(4-(trifluoromethyl)phenyl)-1\\ H-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-3-triazol-1-yl)-[1,1'-biphenyl]-3-triazol-1-yl)-[1,1'-biphenyl]-3-triazol-1-yl)-[1,1'-biphenyl]-3-triazol-1-yl)-[1,1'-biphenyl]-3-triazol-1-yl)-[1,1'-biphenyl]-3-triazol-1-yl)-[1,1'-biphenyl]-3-triazol-1-yl)-[1,1'-biphenyl]-3-triazol-1-yl]-3-triazol-1-yl]-[1,1'-biphenyl]-3-triazol-1-yl]-3-triazol-1-yl]-3-triazol-1-yl]-3-triazol-1-yl]-3-triazol-1-yl]-3-triazol-1-yl]-3-triazol-1-yl]-3-triazol-1-yl]-3-triazol-1-yl]-3-triazol-1-yl]-3-triazol-1-yl]-3-triazol-1-yl]-3-triazol-1-yl]-3-triazol-1-yl]-3-triazol-1-yl]-3-triazol-1-yl]-3-tr$ carboxylic acid (9). N=N 0

Elemental	Compositio	n Repo	rt				I	=₃C-√		N O	Н
Single Ma Tolerance = Element pre Number of i	ss Analysis 5.0 mDa / E diction: Off sotope peaks u)BE: min used for i	= -1.5, r -FIT = 3	nax = 10	0.0						
Monoisotopic 96 formula(e) Elements Us C: 0-100 H JYH-27JUN19	Mass, Even Ele evaluated with ed: 1: 0-250 N: 4 -244-HPLC 152 (2	ctron Ion: 2 results v -4 O: 0 .588) AM2	s vithin limi -60 F: (Ar,25000	its (up to 5 3-3 0,0.00,0.00	50 closest D); ABS	results for	each mass)		HNO	
TOF MS ES+										Ť	1.36e+006
100 500.9	506.9 509.5 510.0	516.9 5	<u>523.5</u> 20.0	529.1 530.	530.2 g	538.2,539.2 540.0	544.9 ^{549.5}	551.5,552.5 0.0	560.9 560.0	566.9 575.5 576 570.0	579.5 m/z 580.0
Minimum: Maximum:		5.0	5.0	-1.5 100.0							
Mass	Calc. Mass	mDa	PPM	DBE	1-FIT	Norm	Conf(%)	Formula			
529.1489	529.1488 529.1452	0.1 3.7	0.2 7.0	20.5 -1.5	408.2 416.5	0.000 8.327	99.98 0.02	C29 H20 C11 H28	N4 03 F3 N4 016 F3		

166 976 988

--9.7043

4'-((*tert*-Butoxycarbonyl)amino)-5-(4-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-3-carboxylic acid (**10**).

HPLC purity 99% ($R_t = 10.36 \text{ min}$)

4'-(Piperidine-4-carboxamido)-5-(4-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)-[1,1'biphenyl]-3-carboxylic acid (**11**).

4'-(1-(*tert*-Butoxycarbonyl)piperidine-4-carboxamido)-5-(4-(4-(trifluoromethyl)phenyl)-1*H*-

5-(4-(4-(Trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-3,4'-dicarboxylic acid (**13**)

Elemental	Compositio	n Repo	rt					F ₃ C	$-\bigcirc$	N=	N N	он Пон
Single Ma Tolerance = Element pre Number of i	ss Analysis 5.0 mDa / E ediction: Off sotope peaks u	DBE: min used for i	= -1.5, n -FIT = 3	nax = 10	0.0)
Monoisotopic 74 formula(e) Elements Us C: 0-100 F JYH-31JUL19 TOF MS ES+	Mass, Even Ele) evaluated with ed: 1: 0-250 N: 3 -256 146 (2.486) A	-3 O: 0 M2 (Ar,250	s within limi)-60 F:)00.0,0.00,1	ts (up to § 3-3 0.00); ABS	50 closest	results fo	r each mass	s)			0	`он
							454	1				1.31e+006
108 434	2 436.3 437.2 4	39.3 441	.2 443.2	445.1	446.9 449.	3450.0	452.3	455.1	458.3460.3 ⁴	62.3 463.3	464.3 468	5.4 467.3
4	35.0 437.5	440.0	442.5	445.0	447.5	450.0	452.5 4	455.0 457.5	460.0	462.5	465.0	467.5
Minimum: Maximum:		5.0	5.0	-1.5 100.0								
Mass	Calc. Mass	mDa	PPM	DBE	1-FIT	Norm	Conf(%)	Formula				
454.1017	454.1015	0.2	0.4	16.5	439.7	n/a	n/a	C23 H15 N3	04 F3			

HPLC purity 99% ($R_t = 13.46 \text{ min}$)

4'-((3-Aminopropyl)carbamoyl)-5-(4-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)-[1,1'- biphenyl]-3-carboxylic acid (**14**)

HPLC purity 97% ($R_t = 12.68 \text{ min}$)

4'-Bromo-5-(4-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-3-carboxylic acid (**15**)

Ele	emental	Composit	ion Repo	ort					Γ		N=N		0	
Sir Tol Ele Nu	ngle Mas erance = ment pre mber of is	ss Analysis 5.0 mDa / diction: Off sotope peaks	s DBE:mi s used for	n = -1.5, •i-FIT = 3	max = 10	0.0		I	F₃C{{		∕_Ń	Ŷ	[₩] он	
Mo 53 Ele C: JYF	noisotopic formula(e) ments Use 0-100 H 1-080CT19	Mass, Even B evaluated wited: 1: 0-250 N: -284-HPLC 205	Electron lo th 1 results 3-3 O: 5 (3.485) AM	ns within lin 0-60 F: 12 (Ar,2500	nits (up to : 3-3 79 0.0,0.00,0.	50 closest 9Br: 1-1 00); ABS	results fo	r each mass	5)		(Br		
10	478.0	.3 479.7 48 480.0	1.4 482.4 482.0 4	485.0	4 486.1 186.0 4	88.0 49	0.0 491.0	492.0 493.4 2.0 494.0	495.4 49	6.4 498 498.0	<u>.8 500</u> 500.0	0.9 501.9 502.0	7.0 502.9 ⁵⁰⁴ 504.0	0e+005 1.3 TT m/z
M1: Maj	nimum: cimum:		5.0	5.0	-1.5 100.0									
Mas	35	Calc. Mas	s mDa	PPM	DBE	1-FIT	Norm	Conf(%)	Formula					
488	8.0214	488.0221	-0.7	-1.4	15.5	481.8	n/a	n/a	C22 H14	N3 02	F3 79Br			
	56476	005A8 00588 02588 02588 0258	5221- 5221- 5282- 55579	17.17.9 17.6578 7.6578										
	1.00 1	111 1.05 1.01 1.05 1.01	1.97											
9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0 ppm	5.5	5.0	4.5	4.0	3.5	3.0	2.5

4'-(2-Amino-2-oxoethyl)-5-(4-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)-[1,1'- biphenyl]-3-carboxylic acid (**16**).

4'-(2-Cyanoethyl)-5-(4-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-3-carboxylic acid (17).

HPLC purity 99% ($R_t = 7.63 \text{ min}$)

4'-(3-Aminopropyl)-5-(4-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-3-carboxylic acid (**18**).

HPLC purity 98% ($R_t = 8.14 \text{ min}$)

 $\label{eq:2.1} 4'-(3-Aminoprop-1-yn-1-yl)-5-(4-(4-(trifluoromethyl)phenyl)-1\\ H-1,2,3-triazol-1-yl)-[1,1'-1,2]-(1,1'-1,2)-1\\ H-1,2,3-triazol-1-yl)-(1,1'-1,2)-1\\ H-1$ biphenyl]-3-carboxylic acid (19) N.

			LM.	M	1							\ كمال	n .	Ц.
	1													
		/.8.4221 /_8.2606	8.2218 8.2017 8.1679 7.8972	7.899	<7.5291							3,5377		
	463.1380	463.1382	-0.2	-0.4	17.5	486.8	n/a	n/a	C25 H18 M	14 O2 F3				
i	Maximum: Mass	Calc. Mass	5.0 mDa	5.0 PPM	100.0 DBE) 1-FIT	Norm	Conf(%)	Formula					
	¹⁰⁰	8.8 459.3 4 459.0 460.0	60.3 460.8 0 46	3 461.3 51.0	462.3 46	463.0	464.0	465.0	465.9_466 466.0	<u>1 466.9 467.</u> 467.0	4 467.946 468.0	8.4 469.2 469.0	469.4 1111111 m	/z
	68 formula(e Elements Us C: 0-100 JYH-280CT1 TOF MS ES+	e) evaluated with sed: H: 0-250 N: 4 9-290-HPLC-2 143	1 results 1-4 O: (3 (2.436) A	within li 0-60 F M2 (Ar,25	mits (up to -: 3-3 :000.0,0.00,	0.00); ABS	results for	r each mas	s)		1	NH ₂	2.23e+0	05
	Number of Monoisotopi	isotope peaks c Mass, Even El	used for ectron lor	i-FIT = ns	3							Í		
	Single Ma Tolerance : Element pr	ass Analysis = 5.0 mDa / ediction: Off	DBE: mii	n = -1.5,	, max = 1	00.0								
	Elementa	l Compositic	on Repo	ort					F₃C──(_/ \	N.	Ţ	`ОН	
									//					

4'-(3-((*tert*-Butoxycarbonyl)amino)propyl)-5-(4-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-3-carboxylic acid (**20**).

						-	~ [N	0	
Elementa	I Compositi	on Report				F ₃	C-_	/ 🌭	N	T OF	ł
Single Ma	ee Analveie										
Tolerance :	= 5.0 mDa /	DBE: min = -1	.5, max = 10	0.0						>	
Element pro Number of	ediction: Off isotope peaks	used for i-FIT	= 3								
Monoisotopi	c Mass, Even E	lectron lons									
106 formula Elements Us	(e) evaluated wi sed:	th 1 results with	in limits (up t	o 50 closes	st results fo	or each ma	ss)				
C: 0-100 JYH-09MAY1	H: 0-250 N: 9-219 213 (3.620)	4-4 O: 0-60 AM2 (Ar.25000.0	F: 3-3 N: .0.00.0.00): AB	a:1-1 S						NHBC	oc
TOF MS ES+											2.12e+
100 57	7.5 578.5 579.5 5	80.5 583.0.5	83.3 584.5	586.1 58	58 17.4	9.2 590.2 59	91.2.591.559	3.1593.6 5	95.4 596.	4 597.4 59	9.1_599
• mpn	578.0 580.	0 582.0	584.0	586.0	588.0	590.0	592.0	594.0	596.0	598.0	600.0
Minimum: Maximum:		5.0 5.0	-1.5 0 100.0								
Mass	Calc. Mass	mDa PPI	1 DBE	1-FIT	Norm	Conf (%)	Formula				
589.2043	589.2039	0.4 0.1	7 16.5	408.2	n/a	n/a	С30 Н29	N4 04 F3	Na		
0 0	ວຸທຸດທູ່ຜູ້ຜູ້	94649						0 Ø	0.4.00	0.00.00.00	a in P
248								1119	131 284	879 873 837 837 837	451.788
ရီ								n n	°°°°°		277
i		64 - 6									
	i i i					l.			Å	Å	, I
8		200 7 20 20 20 20 20 20 20 20 20 20 20 20 20						ئ ۲	 8	۲	44 ليرسير
	333	22 2 						й 	ñ 	۲. 	
5 9.0	8.5 8.0	7.5 7.	0 6.5	6.0	5.5 5 ppm	0 4.5	4.0	3.5	3.0 2	2.5 2.0	1.5
0				• 、							
	··· +·· · ()()/)	/ (D	1051								
<u>C pu</u>	rity 99%	$6 (R_t =$	10.56	<u>m1n)</u>							

4'-(4-Hydroxybutyl)-5-(4-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-3-carboxylic acid (**21**).

HPLC purity 99% ($R_t = 7.40 \text{ min}$)

4'-(1-Aminocyclopropyl)-5-(4-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)-[1,1'- biphenyl]-3-carboxylic acid (**22**).

HPLC purity 98% ($R_t = 6.80 \text{ min}$)

4'-(1-(Aminomethyl)cyclopropyl)-5-(4-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-3-carboxylic acid (**23**).

HPLC purity 97% ($R_t = 10.85 \text{ min}$)

4'-(1-(((*tert*-Butoxycarbonyl)amino)methyl)cyclopropyl)-5-(4-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-3-carboxylic acid (**24**).

5.0 ppm 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

7.0 6.5 6.0 5.5

8.5 8.0 7.5

9.5

9.0

 $\label{eq:2.1} 4'-(1-Aminocyclobutyl)-5-(4-(trifluoromethyl)phenyl)-1\\ H-1,2,3-triazol-1-yl)-[1,1'-1,2,3-triazol-1-yl)-[1,1'-1,2,3-triazol-1-yl)-[1,1'-1,2,3-triazol-1-yl)-[1,1'-1,2,3-triazol-1-yl]-[$ biphenyl]-3-carboxylic acid (25).

Elemental Compositio	n Report	F₃C−	N=N N	0
Single Mass Analysis Tolerance = 5.0 mDa / 1 Element prediction: Off Number of isotope peaks	DBE: min = -1.5, max = 100.0 used for i-FIT = 3			UH
Monoisotopic Mass, Even Ek 73 formula(e) evaluated with Elements Used: C: 0-100 H: 0-250 N: 4 JYH-28MAY19-230 103 (1.759). TOF MS ES+	actron lons 1 results within limits (up to 50 c I-4 O: 0-60 F: 3-3 AM2 (Ar,25000.0,0.00,0.00); ABS	losest results for each mass)	<	NH ₂
100- 477.8	77 0 470 0 470 4 470 4 470 5	478.8 479.2 479.3	470 4 470 7 470 0 479	5.21e+005 9.9
% 477.50 477.75	478.00 478.25 478.50	478.75 479.00 479.25	479.50 479.75 48	0.00 480.25 m/z
Minimum: Maximum:	-1.5 5.0 5.0 100.0			
Mass Calc. Mass	mDa PPM DBE 1-	-FIT Norm Conf(%) For	rmula	
479.1696 479.1695	0.1 0.2 16.5 1	76.3 n/a n/a C26	6 H22 N4 O2 F3	
-9.2788 	7, 7328 7, 7329 7, 7329 7, 7524		2.8943 2.28780 2.28469 2.28469 2.28555 2.2555 2.27055 2.26521 2.26521 2.26521 2.26521 2.26521 2.26521 2.26521	22128 22775 22775 22775 22775 22775 22775 22052 20175

triazol-1-yl)-[1,1'-biphenyl]-3-carboxylic acid (26).

Elemental Single Ma	Compositio	n Repo	rt				F				ОН
Tolerance = Element pre Number of i	5.0 mDa / E ediction: Off sotope peaks u)BE: min used for i	i = -1.5, i i-FIT = 3	max = 10	0.0						
Monoisotopio 111 formula(Elements Us C: 0-100 H JYH-21MAY18	: Mass, Even Ele e) evaluated with ed: H: 0-250 N: 4 0-228 133 (2.267)	-4 O: 0 AM2 (Ar,25	s within lir 0-60 F: 000.0,0.00	nits (up to 3-3),0.00); AB:	50 closest	t results fo	ir each ma	iss)		NH	Boc
TOP MS ES+						E70 2 co				\sim	4.11e+005
198 557.9	560.9 563.5 560.0 5	565.6 ⁵⁶⁶ 65.0	.6 <u>570</u> 570.0	. <u>5570.9</u> E	575.5 576.8 575.0	580.0		584.5 587.5 385.0	589.5 591.5 5 590.0	93.6 595.9596 595.0	4 599.5601.2 m/z 600.0
Minimum: Maximum:		5.0	5.0	-1.5 100.0							
Mass	Calc. Mass	mDa	PPM	DBE	1-FIT	Norm	Conf(%)) Formula			
579.2219	579.2219	0.0	0.0	17.5	372.6	n/a	n/a	С31 Н30	N4 O4 F3		

4'-(3-(Hydroxymethyl)oxetan-3-yl)-5-(4-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-3-carboxylic acid (**27**).

HPLC purity 99% ($R_t = 8.71 \text{ min}$)

4'-(Isoxazol-3-yl)-5-(4-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-3-carboxylic acid (**28**).

HPLC purity 98% ($R_t = 11.86 \text{ min}$)

 $\label{eq:constraint} 4'-(5-(Hydroxymethyl)isoxazol-3-yl)-5-(4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)-1H-1,3-triazol-1-yl)-1H-1,3-triazol-1-yl)-1H-1,3-triazol-1-yl)-1H-1,3-triazol-1-yl)-1H-1,3-triazol-1-yl)-1H-1,3-triazol-1-yl)-1H-1,3-triazol-1-yl)-1H-1,3-triazol-1-yl)-1H-1,3-triazol-1-yl)-1H-1,3-triazol-1-yl)-1H-1,3-triazol-1-yl)-1H-1,3-triazol-1-yl)-1H-1,3-triazol-1-yl-1+1H-1,3-triazol-1-yl-1+1H-1,3-triazol-1-yl-1+1H-1,3-triazol-1-yl-1+1H-1,3-triazol-1-yl-1+1H-1,3-triazol-1-yl-1+1H-1,3-triazol-1-yl-1+1H-1,3-triazol-1-yl-1+1H-1,3-triazol-1-yl-1+1H-1,3-triazol-1-yl-1+1H-1,3-triazol-1-yl-1+1H-1,3-triazol-1-yl-1+1H-1,3-tria$ [1,1'-biphenyl]-3-carboxylic acid (29).

						I	F ₃ C-) 	=N _N		он	
Elementa	l Compositio	n Report								√″		
Single Ma Tolerance = Element pro Number of	ass Analysis = 5.0 mDa / 1 ediction: Off isotope peaks	DBE: min = - used for i-FI	1.5, max = 1 Г = 3	00.0								
Monoisotopi 83 formula(e Elements Us C: 0-125 JYH-040CT1 TOF MS ES+	c Mass, Even Ele e) evaluated with sed: H: 0-200 N: 4 8-124 107 (1.827).	ectron lons 1 results with I-4 O: 0-60 AM2 (Ar,25000.	in limits (up to F: 3-3 0,0.00,0.00); AB	50 closest 35	results for	each mas	s)		C C	но	2.796	e+006
100 465	68.4 473.3 479.3 470 475 480	3483.4490.3 ⁴⁹³ 0 485 490	496.4 501	507.1 9 50 505 510	9.1 521.6 515 52	523.5.524 0 525	9 535.5 537.6 530 535 6	544.0 549 540 545	550 5550 5550 5550 5550 5550 5550 5550	560.9	<u>563.5_565</u> 565	5 m/z
Minimum: Maximum:		5.0 5.	-1.5									
Mass	Calc. Mass	mDa Pi	M DBE	1-FIT	Norm	Conf (%)	Formula					
507.1271	507.1280	-0.9 -3	1.8 18.5	551.2	n/a	n/a	C26 H18 M	14 O4 F3				
9.7761	8.5727 8.5419 8.3.3647 8.2.129	8.1927 8.0822 8.0611 8.0361 8.0150 7.9249	√7.9042 —7.0539			5.7366	4.6551	4,6405				
								ř				
1.00	-66'0 88'0	3.84	1.13-			1.06-	1	DD T				
9.5	9.0 8.5	8.0	7.5 7	0 6.5	6.0 ppm	5.5	5.0	4.5	4.0	3.5	3.0	2.5

4'-(5-(2-Hydroxyethyl)isoxazol-3-yl)-5-(4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-3-carboxylic acid (**30**).

min

4'-(1*H*-Tetrazol-5-yl)-5-(4-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-3-carboxylic acid (**31**).

 $\label{eq:2.1} 4-(4-(5-(Hydroxymethyl)isoxazol-3-yl)phenyl)-7-(4-(trifluoromethyl)phenyl)-2-(trifluoromethyl)phenyl)-2-(trifluoromethyl)phenyl)-2-(trifluoromethyl)phenyl)-2-(trifluoromethyl)phenyl)-2-(trifluoromethyl)phenyl)-2-(trifluoromethyl)$ naphthoic acid (32).

Elemental Composition Rep	port		F ₃ C,	ОН
Single Mass Analysis Tolerance = 5.0 mDa / DBE: n Element prediction: Off Number of isotope peaks used for	min = -1.5, max = 100 for i-FIT = 3	0.0		
Monoisotopic Mass, Even Electron I 94 formula(e) evaluated with 1 resul Elements Used: C: 0-100 H: 0-250 N: 1-1 C JYH-02JAN20-318 368 (6.242) AM2 (Ar, TOF MS ES+	N O-COH			
				5.30e+006
102 458.4,459.4 463.3 468.4 460.0 465.0 47	4 ^{72.1} 474.3 479.3 70.0 475.0 480	481.4 484.4 4 0.0 485.0 4	90.1 491.1 495.4 500.4 502 90.0 495.0 500.0	4503.0 507.5 512.4,513.4 517.4 505.0 510.0 515.0
Minimum: Maximum: 5.0	-1.5 5.0 100.0			
Mass Calc. Mass mDa	PPM DBE	1-FIT Norm	Conf(%) Formula	
490.1269 490.1266 0.3	0.6 18.5	657.9 n/a	n/a C28 H19 N O	4 F3

8,7344 8,6835 8,6835 8,60395 8,00395 8,00374 8,00374 8,00374 8,00374 8,00374 8,00374 7,95895 7,95895 7,95895 7,95895 7,91400 7,91400 7,91400 7,91400 7,91400 7,91400 7,91400 7,914000000000000000000000000000000000000	-7.0483	-5.8010 -5.7844 -5.7599 -5.7582	4.6667 4.6581 4.6316
			Y

4'-(5-(Hydroxymethyl)isoxazol-3-yl)-5-(4-(trifluoromethyl)benzamido)-[1,1'biphenyl]-3-carboxylic acid (**33**) F_3C

4-(4-(Piperidin-4-yl)phenyl)-6-(4-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)picolinic acid (**34**).

5 /1	
	F ₃ C
Elemental Composition Report	
Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3	\bigcirc
Monoisotopic Mass, Even Electron Ions 80 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-100 H: 0-250 N: 5-5 O: 0-60 F: 3-3 JYH-14JUN19-239-HPLC 108 (1.844) AM2 (Ar,25000.0,0.00); ABS TOF MS F84.	N H
100 144.9 452.3 461.3 466.2 468.4 477.3 482.4 491.3 494.2 500.9 506.9 516 445 450 450 456 470 475 480 485 470 475 480 485 490 495 500 505 510 515	4.16e+005 2 519.3 523.5 536.2 538.1540.5 561.5 556.4 559.4 520 525 630 535 540 545 550 555 660
Minimum: -1.5	

Max1mum:		5.0	5.0	100.0						
Mass	Calc. Mass	mDa	PPM	DBE	1-FIT	Norm	Conf(%)	Formula		
494.1805	494.1804	0.1	0.2	16.5	415.3	n/a	n/a	C26 H23 1	N5 02	F3

HPLC purity 99% ($R_t = 7.87 \text{ min}$)

yl)isonicotinic acid (35).

5 /			,							N=	N	о	
Elementa	l Compositio	n Repo	ort					F₃C−		-	Ň	$\bigvee^{\mathbb{I}}$	`он
Single Ma Tolerance = Element pre Number of	ss Analysis = 5.0 mDa / E ediction: Off isotope peaks u)BE: mir used for	n = -1.5, I i-FIT = 3	max = 10	0.0						Ň	_]	
Monoisotopie 80 formula(e Elements Us C: 0-100 JYH-13SEP19 TOF MS ES+	c Mass, Even Ele) evaluated with ed: H: 0-250 N: 5 9-267 234 (3.975) A	octron lon 1 results -5 O: (AM2 (Ar,25	ns within lim 0-60 F: 5000.0,0.00	its (up to 8 3-3 1,0.00); ABS	50 closest	results fo	r each mass	5)					7.65e+006
100 481 0 480.0	1.4 482.9,483.4 482.0 484.0	485.3	487.3 4	88.9 <u>489.3</u> 490.0	491.3 49 492.0	3.4 494.2	495.2 496.0	2 <u>498.8</u> 498.0	500.8	501.950 502.0	3.0 505 504.0	506.0	507.2
Minimum: Maximum:		5.0	5.0	-1.5 100.0									
Mass	Calc. Mass	mDa	PPM	DBE	1-FIT	Norm	Conf(%)	Formula	1				
494.1805	494.1804	0.1	0.2	16.5	513.8	n/a	n/a	C26 H23	8 N5 O2	F3			
	8.4226 8.3471 8.3314	7.9028 7.8823	$<^{7.4595}_{7.4391}$							3.6230 3.6028 3.5933	3.0733 3.0431 3.0142 3.0006	2.9358 2.9358 2.9311	2.0246 2.0221 1.9865 1.9237
ł	i i												
											/ \		

3.50 1.92 0.88 -1 1.00 1.89 10.0 7.5 9.5 9.0 8.5 8.0 7.0 6.0 ppm 3.5 6.5 5.5 5.0 4.5 4.0

4.04

3.0

2.5

4.38-

2.0

6-(4-(Piperidin-4-yl)phenyl)-4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1yl)picolinic acid (36). N -----

Elemental	Compositio	n Repo	rt					F ₃ C
Single Ma Tolerance = Element pre Number of i	ss Analysis 5.0 mDa / E diction: Off sotope peaks u)BE: min used for i	= -1.5, r -FIT = 3	nax = 10	0.0			
Monoisotopic 80 formula(e) Elements Usi C: 0-100 H: JYH-05JUN20	Mass, Even Ele evaluated with ed: 0-250 N: 5-5 -363 208 (3.535) A	O: 0-60 M2 (Ar,25	s within limi F: 3-3 000.0,0.00,	ts (up to 5 0.00); ABS	50 closest i	results for	each mass	s)
TOP MS ES+						494.2		1.69e+00
100 484.4 484.0	485.1 486.4 486.0	488.2 488.0	489.2 49 490.	0.3 492 0 4	2 <u>492.5 ⁴⁹ 192.0</u>	494.0	495.2 496.2 496.0	497.2, 498.1, 499.2, 500.1,500.4, 502.1,502.4, 504.1, m/z 498.0 500.0 502.0 504.0
Minimum: Maximum:		5.0	5.0	$^{-1.5}_{100.0}$				
Mass	Calc. Mass	mDa	PPM	DBE	1-FIT	Norm	Conf(%)	Formula
494.1808	494.1804	0.4	0.8	16.5	445.1	n/a	n/a	C26 H23 N5 O2 F3

3.4386 3.4078 3.0491 3.0100 2.9753 2.9753

2.0364 2.0029 1.9100 1.8785 1.8456

2-(Dimethylamino)-2-oxoethyl 4'-(piperidin-4-yl)-5-(4-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-3-carboxylate (**37a**).

2-(Dimethylamino)-2-oxoethyl 4-(4-(5-(hydroxymethyl)isoxazol-3-yl)phenyl)-7-(4-(trifluoromethyl)phenyl)-2-naphthoate (**37b**).

2-(Dimethylamino)-2-oxoethyl 4-(4-(1-acetylpiperidin-4-yl)phenyl)-7-(4-(trifluoromethyl)phenyl)-2-naphthoate (37c).

Elemental Single Mas Tolerance = Element prec Number of is	Composition ss Analysis 5.0 mDa / D diction: Off	n Repor BE: min	t = -1.5, n .FIT = 3	nax = 100	0.0		I	F ₃ C		
Monoisotopic 129 formula(e Elements Use C: 0-100 H: JYH-02JUN20- TOF MS ES+	Mass, Even Ele) evaluated with d: 0-250 N: 2-2 359 162 (2.757) A	ctron lons 1 results O: 0-60 M2 (Ar,250	within lim F: 3-3	its (up to 0.00); ABS	50 closest	results fo	r each mas	is)		
¹ % <u>580.6</u>	582.9 585.5 5	87.4 589.4	<u>1 592</u>	8,593.4	597.3 60	0.5 <u>601.5</u>	03.2 604.3 6	06.3 610.2 611.2 6	13.2	5.58e+006 617.5 619.4 621.4 622.4 520.0
Minimum: Maximum:	565.0	5.0	5.0	-1.5 100.0	0	10.0	605.0	610.0	615.0	620.0
Mass	Calc. Mass	mDa	PPM	DBE	1-FIT	Norm	Conf(%)	Formula		
603.2479	603.2471	0.8	1.3	18.5	547.9	n/a	n/a	C35 H34 N2 O4 F	3	

ADMET properties of compound 32 (MRS4654). Determined by Jai Research Foundation (JRF), Department of Toxicology, Valvada - 396 105, Dist. Valsad, Gujarat, India; Protocol RES 1-02-26140 (MRS4654).

Simulated gastric fluid (SGF)

		SGF Re	SGF Profile		
Compound	Replicate	% Remaining in 120 min	Avg % Remaining (120 min)	Half-life (min)	MRS_4654 100 • Omeprazde
	1	69.02		160.60	
32	2	77.48	68.13		
	3	57.89			- 40- - 8
	1	0.00			20-
Omeprazole	2	0.00	0.46	10.84	0 20 40 60 80 100 120 140
	3	1.37			Time (min)

Simulated intestinal fluid (SIF)

SIF Results										
Compound	Replicate	% Remaining in 120 min	Avg % Remaining (120 min)	Half-life (min)						
32	1	130.73								
	2	107.29	114.41	NA						
	3	105.20]							
Verapamil	1	130.85								
	2	120.47	125.65	NA						
	3	125.62								

NA=Not Applicable

Liver microsome stability (human, rat, mouse)

	Microsomal stability Results HLM										
Compound	% Remaining (60 min)	Half life (min)	Avg Half life (min)	CL _{int} (µL/min/m g of protein)	Avg CL _{int} (µL/min/m g of protein)						
32-Set 1	112.60	NA	Stable	NA	NA						
32-Set 2	115.70	NA	Stable	NA	INA						
Testosterone-Set 1	9.12	9.43	10.12	44.11	41.25						
Testosterone-Set 2	9.34	10.83	10.15	38.39	71.23						

Microsomal stability Results RLM									
Compound	% Remaining (60 min)	Half-life (min)	Avg Half- life (min)	CL _{int} (μL/min/mg of protein)	Avg CL _{int} (µL/min/mg of protein)				
32-Set 1	51.19	52.34	47.69	7.94	8.80				
32-Set 2	45.68	43.02	47.08	9.67					
Testosterone-Set 1	3.65	1.43	1.52	290.16	273.89				
Testosterone-Set 2	3.83	1.61	1.52	257.62					

	Microsomal stability Results MLM										
Compound	% Remaining (60 min)		Half life (min)	Avg Half life (min)	CL _{int} (µL/min/mg of protein)	Avg CL _{int} (μL/min/mg of protein)					
32-Set 1	148.46		NA	Stable	NA	NA					
32-Set 2	116.07		NA	Static	NA	NA					
Testosterone-Set 1	16.24		11.28	11.59	36.86	25.05					
Testosterone-Set 2	16.64		11.87	11.56	35.03	33.33					

NA=Not Applicable

Caco2 cell permeability

Compound Name	Average Values								
	Papp (10 ⁻⁶ cm/sec)		Efflux Datio			Classification			
	Apical to Basal	Basal to Apical	Elliux Ratio	A to B % Recovery	B to A % Recovery	Classification			
32	0.00	1.32	NC	10.39	58.12	LOW			
Digoxin	2.12	11.77	6.38	91.00	96.23	MEDIUM			
Propranolol	25.07	21.74	0.86	68.10	86.70	HIGH			
Atenolol	0.45	0.30	0.66	83.58	86.95	LOW			
NC: denotes Not calcula Efflux ratio > 2 is Efflux i	ted; as very low Papp i ndicated	n A-B and B-A.							
Result of permeability Papp (10 ⁻⁶ cm/s)		Range							
<1.5		Low permeable							
1.5 to 10		Medium permeable							
>10		High permeable							

Figure S10. Time (h) – mean plasma concentration (ng/mL) graph for compound 32.

Patch clamp hERG assay

ScreenPatch® Assay (SyncroPatch® 384PE Based Assay), performed by Charles River Cleveland, Inc., 14656 Neo Parkway, Cleveland, OH 44128 USA.

Procedure: Cells were cultured in Ham's F-12 supplemented with 10% fetal bovine serum, 100 U/mL penicillin G sodium, 100 μ g/mL streptomycin sulfate and 400 μ g/mL Zeocin. Before testing, cells in culture dishes were rinsed with Hank's Balanced Salt Solution, detached with Accutase. Immediately before use in the SyncroPatch® 384PE system, the cells were washed in HB-PS to remove the Accutase and re-suspended in 20 mL of HB-PS.

The test article effects were evaluated using SyncroPatch® 384PE systems (SP384PE; Nanion Technologies, Livingston, NJ). HEPES-buffered intracellular solution (Charles River proprietary) for whole cell recordings was loaded into the intracellular compartment of the SP384PE. Extracellular buffer (HB-PS) and Cell suspension (in HB-PS) were pipetted into the extracellular compartment of the SP384PE chip. After establishment of a whole-cell configuration, membrane currents were recorded using patch clamp amplifier in the SP384PE system. Test article (TA) concentrations were applied to naïve cells (n = 4, where n = replicates/ concentration). Each application consisted of addition of 40 μ L of 2X concentrated test article solution to the total 80 μ L of final volume of the extracellular well of the SP384PE chip. Duration of exposure to each compound concentration was five (5) minutes.

hERG Test Voltage Protocol. hERG current was measured using stimulus voltage patterns with fixed amplitudes: activation pre-pulse (TP1) to +40 mV for 2 s and test pulse (TP2) to -40 mV for 2 s from a holding potential of -80 mV. hERG current was measured as the outward peak current at TP2 (tail current). The stimulation was repeated with 0.1 Hz frequency during 2 min as baseline and 5 min after TA application. The control inhibitor Cisapride showed an IC₅₀ value of 0.019 μ M.

Test Article ID	Test Conc., ∝tM	Mean, %	SEM	N	IC₅₀/(EC₅₀), ∞M		
1a	0.01	-0.4	1.0	4	>30	- 12	
	0.03	1.4	5.7	4		100	
	0.1	1.1	5.0	4		5 70	
	0.3	1.2	2.2	4			
	1	1.8	4.3	4			
	3	-1.8	2.9	3			
	10	-3.0	2.8	4		-20	
	30	-10.8	0.7	3		Conc (µM)	
22	0.01	4.0	5.7	4	(>30)	22	
	0.03	4.9	6.7	4		70 - 52	
	0.1	0.0	3.0	4		5 40	
	0.3	-4.8	3.7	4			
52	1	0.9	2.5	4			
	3	-19.0	5.6	4		° -20 E 9 2 2	
	10	-31.4	4.3	4		-50 -50	
	30	-28.1	3.8	4		Conc (µM)	
1b	0.01	1.7	3.4	4	(16.032)	1h	
	0.03	1.6	8.0	4		30	
	0.1	-1.3	2.9	4		5 0	
	0.3	8.5	4.7	4		12 -30 - I	
	1	-5.0	4.3	4			
	3	-19.3	5.2	4			
	10	-42.1	2.5	4		-90	
	30	-79.0	5.4	4		Conc (µM)	