Supporting Information

Iron-Catalyzed Vinylsilane Dimerization and Cross-Cycloadditions with 1,3-Dienes: Probing the Origins of Chemo- and Regioselectivity

C. Rose Kennedy,[‡] Matthew V. Joannou,[‡] Janelle A. Steves, Jordan M. Hoyt, Carli B. Kovel, and Paul J. Chirik*

Department of Chemistry, Princeton University Princeton, New Jersey 08544, United States

* pchirik@princeton.edu

Table of Contents for the Supporting Information

1.	Procedures, Materials, and Instrumentation	S4
	1.1 General Considerations	S4
	1.2 Materials	S4
	1.3 Instrumentation and Software	S4
	1.4 Abbreviations	S6
2.	Synthesis of Iron Complexes	S7
	2.1 Alternate Synthesis of [(^{Me} PDI)Fe(N ₂)] ₂ (μ^2 -N ₂)	S7
	2.2 Synthesis of (^{Me} PDI)Fe(vinylsilane) ₂	S8
	2.3 Synthesis of (MePDI)Fe(isoprene) and (MePDI)Fe(myrcene)	S10
3.	Catalytic Procedures and Product Characterization	S12
	3.1 General Procedure for Head-to-Head Vinylsilane Dimerization	S12
	3.2 General Procedure for Cross-Cycloaddition Reactions	S12
	3.3 Product Characterization Data	S13
4.	Independent Synthesis of 17bi	S122
5.	Kinetic Analysis	S126
	5.1 General Kinetic Procedure	S126
	5.2 Test for Catalyst Death and/or Product Inhibition	S129
	5.3 Determination of Order in Diene 9b	S134
	5.4 Determination of Order in Vinyl Silane 5b	S141
	5.5 Determination of Order in [Fe]tot	S151
6.	Supplemental Figures	S159
	6.1 The α -Silicon Effect	S159
	6.2 Lewis Acid Screen	S160
7.	Computational Analyses	S161
	7.1 Sample Input File for Geometry Optimization & Mössbauer Parameter Calculation	S161

	7.2 Sample Input File for Natural Bond Order (NBO) Analysis	S164
8.	References	S167

1. Procedures, Materials, and Instrumentation

1.1 General Considerations

All air- and moisture-sensitive manipulations were carried out using standard Schlenk techniques on a high vacuum line ¹ or in an M. Braun glovebox containing an atmosphere of purified N₂. The M. Braun glovebox was equipped with a cold well designed for freezing samples in liquid N₂. Column chromatography was performed on SiliaFlash P60 (230–400 mesh) silica gel from SiliCycle using standard glass columns. Thin layer chromatography (TLC) was performed using aluminum-backed plates pre-coated with silica gel and a fluorescent indicator for visualization upon UV irradiation.

1.2 Materials

Reagents were purchased in reagent grade from commercial suppliers and used without further purification unless described otherwise. Pure (E)-piperylene and (E/Z)-piperylene were purchased from TCI, but crude (E/Z)-piperylene (also containing cyclopentene) was provided by Firmenich. Ethylene (1e), propylene (1a), and 3,3,3-trifluoropropylene (1d) were stored over activated 4 Å molecular sieves in a thickwalled glass pressure vessel for >24 hours prior to use, and t-butyl-ethylene (1c) was stored over calcium hydride in a thick-walled glass pressure vessel for >24 hours then degassed prior to use. Hydrogen (H₂) and deuterium (D₂) gas were passed through a column of activated molecular sieves and manganese oxide prior to use.¹ Allyltrimethylsilane (1b) and vinylsilanes (6) were stirred over lithium aluminum hydride for >48 hours, degassed, and distilled under high vacuum. Conjugated dienes (13) were stirred over calcium hydride for >48 hours, degassed, and distilled under high vacuum. The liquid reagents were then either passed through a plug of activated alumina and/or stored over activated 4 Å molecular sieves in the glovebox. Solvents (diethyl ether, dichloromethane, n-hexane, n-pentane, tetrahydrofuran, and toluene) used for air- and moisture-sensitive manipulations were dried and deoxygenated by passage through an activated alumina column.² Deuterated solvents for NMR spectroscopy of air- and moisture-sensitive species (C₆D₆ and C₆D₁₂) were distilled from sodium metal under an atmosphere of argon and stored over 4 Å molecular sieves. Deuterated chloroform (CDCl₃) was stored over anhydrous potassium carbonate. Dienes 13b-c,³ 13d,⁴ 13e,⁵ 13f,⁶ 13g,⁷ 13k-m,⁸ 13n-o,⁹ and 13p¹⁰ were prepared as reported previously. Iron complexes $[(^{Me}PDI)Fe(N_2)]_2(\mu^2-N_2),^{11} [(^{Me}(Et)PDI)Fe(N_2)]_2(\mu^2-N_2),^{12} [(^{Me}PDI)Fe(N_2)]_2(\eta^4-C_4H_6),^{13} were$ prepared as reported previously. Magnesium butadiene (Mg(C₄H₆)•2THF),¹⁴ was prepared according to a literature procedure.

1.3 Instrumentation and Software

Proton nuclear magnetic resonance (¹H NMR) spectra were recorded at 25 °C on a Bruker NanoBay 300 or Avance III 500 spectrometers operating at 300.13 MHz and 500.46 MHz, respectively. Protondecoupled ¹³C{¹H} APT NMR and quantitative q¹³C{¹H} NMR nuclear magnetic resonance spectra were recorded at 25 °C on a Bruker Avance III 500 instrument operating at 125.86 MHz. All experiments were performed at the Princeton University Nuclear Magnetic Resonance Facility. Chemical shifts are reported in parts per million downfield from tetramethylsilane (SiMe₄) and are referenced in ppm relative to the NMR solvent according to literature values: ^{15,16} $\delta(^{1}H) = 7.26$, $\delta(^{13}C) = 77.0$ for CDCl₃, $\delta(^{1}H) = 7.16$, $\delta(^{13}C) = 128.1$ for C₆D₆.¹H NMR data for diamagnetic substances are reported as follows: chemical shift, (multiplicity, coupling constant in Hz, integration) where s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and br = broad. ¹H NMR data for paramagnetic substances are reported as follows: chemical shift (integration, full-width at half-maximum height for broad signals). ¹³C NMR data for diamagnetic substances are reported as a list of chemical shifts. NMR spectra were processed using the MestReNova software suite.¹⁷

Zero-field ⁵⁷Fe Mössbauer spectra were recorded on a SEE Co. Mössbauer spectrometer (MS4) at 80 K in constant acceleration mode. ⁵⁷Co/Rh was used as the radiation source. The temperature of the sample was controlled by a Janis Research Co. CC2-860 He/N₂ cryostat within an accuracy of 0.3 K. Isomer shifts were determined relative to α -iron at 298 K. WMOSS Spectral Analysis Software was used for the quantitative evaluation of the spectral parameters (least-squares fitting to Lorentzian peaks).¹⁸

Gas chromatographic analyses were performed using a Shimadzu GC-2010 gas chromatograph equipped with a Shimadzu AOC-20s autosampler. For samples analyzed on a Shimdzu SHRXI-5MS achiral stationary phase capillary column (15 m × 250 μ m), the instrument was set to an injection volume of 1.0 μ L, an inlet split ratio of 20:1, and inlet and detector temperatures of 250 °C and 275 °C, respectively. UHP-grade S3 helium was used as carrier gas with a flow rate of 1.96 mL/min. For samples analyzed on a Supelco BETA DEX 120 chiral stationary phase capillary column (30 m × 250 μ m), the instrument was set to an injection volume of 1.0 μ L, an inlet split ratio of 1.0 μ L, an inlet split ratio of 10:1, and inlet and detector temperatures of 250 °C. UHP-grade S3 helium was used as carrier gas with a flow rate of 1.00 mL/min.

High-resolution mass spectra were measured using an Agilent 5975C GC-MS or an Agilent 6210 TOF LC/MS at the Princeton University Mass Spectrometry Facility. In general, vinylsilane-derived substrates proved difficult to ionize and/or highly prone to fragmentation under standard conditions. Where mass spectral data are not reported, the parent ions for the indicated product were not readily detected. Infrared spectra were collected on a Thermo-Nicolet iS10 FT-IR spectrometer calibrated with a polystyrene standard. Elemental analyses were performed at Robertson Microlit Laboratories, Inc., in Ledgewood, NJ. Solid-state magnetic moments were determined at room temperature using a Johnson–Matthey magnetic susceptibility balance calibrated with HgCO(SCN)₄. Solution-state magnetic moments were determined in C₆D₆ at 25 °C using ferrocene as a standard according to the Evans procedure modified for use with an NMR spectrometer with a superconducting magnet.^{19,20} Curve fitting and statistical analyses were carried out using the NumPy, SciPy, and MatPlotLib Python packages²¹ in Jupyter Notebooks.^{22,23} Kinetic simulations were performed with Copasi Software 4.24.197.²⁴

All electronic structure calculations were performed on the Della computing cluster maintained by Princeton University Research Computing. Geometry optimizations and energy calculations for organic molecules only were performed using Gaussian²⁵ with the M06-2X level of density functional theory²⁶ with

the 6-311++g(d,p) basis set^{27,28} and implicit solvent correction (CPCM, cyclohexane).^{29,30,31} For iron complexes, geometry optimizations and single point calculations were carried out using ORCA^{32,33} with the M06L^{34,35} or B3LYP^{35,36,37,38} level of DFT. The latter hybrid functional often outperforms pure gradientcorrected functionals in the accurate representation of transition metal complexes, especially those involving significant metal-ligand covalency.³⁹ Alrichs's all-electron Gaussian basis sets were employed for all calculations,^{40,41} wherein the triple-ξ basis set def2-TZVP, which includes one set of polarization functions, was used to describe metal atoms and all atoms directly coordinated to a metal center. The double- ξ basis set def2-SV(P), which includes one set of polarizing d functionals on all non-hydrogen atoms, was used for all other atoms. Weigend's "universal" Coulomb fitting basis, which is suitable for all def2 type basis sets, was employed to generate auxiliary basis sets.^{42,43,44} The RIJCOSX approximation was used to accelerate the calculations.^{45,46,47,48} The ZORA relativistic correction was applied for the calculation of Mössbauer spectral parameters.^{49,50} This correction has previously been demonstrated empirically to correct for systematic errors in these predictions.^{10,51} Throughout this manuscript, computational results are described using the broken symmetry approach introduced by Ginsberg⁵² and Noodleman et al.⁵³ Because several broken symmetry solutions to the spin-unrestricted Kohn–Sham equations may be obtained, the general notation for broken symmetry (m,n) has been adopted, where m (n) denotes the number of spin-up (spin-down) electrons at the two interacting fragments.^{54,55} Computed structures were rendered using CYLview.⁵⁶ Representations of canonical orbitals and the corresponding spin density plots were generated with the program Chimera.⁵⁷

1.4 Abbreviations

Bn = benzyl; DMAP = 4-dimethylaminopyridine; dme = 1,2-dimethoxyethane; dppe = 1,2-bis(diphenylphosphino)ethane; dvtms = 1,3-divinyltetramethyldisiloxane; EDC•HCI = *N*-(3-dimethylaminopropyl)-*N*'-ethylcarbodiimide hydrochloride; Im = imidazole; IR = infrared spectroscopy; NMR = nuclear magnetic resonance spectroscopy; ^{Me}PDI = 1,1'-(pyridine-2,6-diyl)bis(*N*-(2,6-dimethylphenyl)ethan-1-imine); ^{iPr}PDI = 1,1'-(pyridine-2,6-diyl)bis(*N*-(2,6-diisopropylphenyl)ethan-1-imine); ^{iPr(TB)}PDI = 4,5-bis((2,6-diisopropylphenyl)- λ^4 -azanylidene)-1,2,3,4,5,6,7,8-octahydroacridine; Piv = pivalate = 2,2-dimethylpropionyl; PTFE = polytetrafluoroethylene; Py = pyridine; TBDPS = *tert*-butyldiphenylsilyl; Tf = triflic = trifluoromethanesulfonyl; THF = tetrahydrofuran; TLC = thin-layer chromatography; TMS = trimethylsilyl; vtms = vinyltrimethylsilane

2. Synthesis of Iron Complexes

2.1 Alternate Synthesis of [(MePDI)Fe(N₂)]₂(µ²-N₂)

A synthetic procedure for the preparation of iron precatalyst $[(^{Me}PDI)Fe(N_2)]_2(\mu^2-N_2)$ was reported previously by our group.¹¹ However, yields were found to be highly variable because $[(^{Me}PDI)Fe(N_2)]_2(\mu^2-N_2)$ is (a) highly moisture sensitive, (b) prone to over-reduction in the presence of excess sodium, and (c) unstable to prolonged vacuum due to loss of the dinitrogen ligands. To improve the reliability of the synthesis, the following modifications were made to the published procedure.

Figure S1. Modified procedure for the synthesis of $[(^{Me}PDI)Fe(N_2)]_2(\mu^2-N_2)$.

In a glovebox filled with an inert atmosphere of purified N₂, a 100-mL round-bottom flask was charged with finely chopped sodium (0.046 g, 2.0 mmol, 2.0 equiv), a PTFE-coated magnetic stir bar, and THF (~5 mL). The suspension was stirred for 3 minutes; then, the THF was removed with a pipette. Additional THF (16 mL) was added, the flask was sealed with a rubber septum, and the suspension was stirred at ambient temperature in the glovebox. After 2-8 hours, the sodium chunks were removed and freshly chopped sodium was added (0.046 g, 2.0 mmol, 2.0 equiv). Naphthalene (0.032 g, 0.25 mmol, 0.25 equiv) was added, and the suspension was stirred 5-10 minutes until a green color persisted. The iron dihalide complex (MePDI)FeCl₂ (0.496 g, 1.0 mmol, 1.0 equiv) was then added as a solid in a single portion. The flask was sealed with a rubber septum, and the suspension was stirred vigorously at ambient temperature in the glovebox. The purple hue of the iron dihalide complex gave way to green, then deep red. Upon formation of this red color (after 90 minutes) the reaction mixture was diluted with pentane (60 mL) and filtered through a pad of Celite on a medium porosity glass frit, rinsing with diethyl ether (20 mL). The filtrate was concentrated in vacuo for the minimum possible time to afford a brown residue. The residue was resuspended in a 1:1 mixture of diethyl ether and pentane, then filtered through a short plug of Celite in a monster pipette. The filtrate was concentrated in vacuo to half its initial volume and transferred to a -35 °C freezer overnight. After 12-24 hours, the supernatant was removed with a pipette and reserved. The remaining solid was rinsed twice with 2-3 mL portions of pentane, then dried briefly (5-10 minutes in vacuo). A second crop of clean material could also be obtained upon partial concentration and recrystallization of the supernatant to afford $[(^{Me}PDI)Fe(N_2)]_2(\mu^2-N_2)$ as a deep red solid (0.234 g + 0.055 g, 0.35 mmol, 69% yield). Spectroscopic data including ¹H NMR, ¹³C NMR, and zero-field ⁵⁷Fe Mössbauer (solid-state, 80 K) spectra were consistent with the values reported previously.¹¹ The material was used without any further attempts to remove residual solvent.

2.2 Synthesis of (MePDI)Fe(vinylsilane)2

Figure S2. Procedure for the synthesis of (MePDI)Fe(6a)₂, (MePDI)Fe(6b)₂, and (MePDI)Fe(6d)₂.

Procedure: In an N₂-filled glovebox, a J. Young NMR tube was charged with $[(^{Me}PDI)Fe(N_2)](\mu-N_2)$ (20.0 mg, 0.0214 mmol) and 600 µL of benzene-*d*₆. The appropriate vinyl silane (**6**, 0.0856 mmol, 2 equivalents per iron center) was added via microliter syringe and the tube sealed and removed from the glovebox. After mixing at ambient temperature for 5 minutes, the reaction mixture was analyzed via ¹H NMR spectroscopy to reveal the title compounds formed in >98% conversion.

(^{Me}PDI)Fe(6a)₂: ¹H NMR (300 MHz, C₆D₆) δ 169.34 (s, 1H, 218 Hz, *p*-pyridine), 41.99 (s, 2H, 240 Hz, *m*-pyridine), 5.95 (s, 6H, Ar*H*), -0.01 (br s, 15H, *olefinic* and SiCH₃), -3.52 (s, 9H, SiCH₃), -16.33 & -17.77 (12H, ArCH₃), -117.20 (s, 6H, 1010 Hz, ArNCCH₃).

Figure S3. ¹H NMR (300Mz, C₆D₆) spectrum of (^{Me}PDI)Fe(6a)₂.

(^{Me}PDI)Fe(6b)₂: ¹H NMR (300 MHz, C₆D₆) δ 171.47 (1H, *p*-pyridine), 37.27 (2H, *m*-pyridine), 9.24 (2H, *olefinic*), 7.37 (6H, ArH), 5.97(4H, *olefinic*), 3.26 (10H, SiPh), 2.11 (3H, SiCH₃), 1.11 (3H, SiCH₃), 0.25 (3H, SiCH₃), -12.49 (3H, SiCH₃), -16.64 & -18.17 (12H, ArCH₃), -114.14 (6H, ArNCCH₃).

Figure S4. ¹H NMR (300Mz, C₆D₆) spectrum of (^{Me}PDI)Fe(**6b**)₂.

(^{Me}PDI)Fe(6d)₂: ¹H NMR (300 MHz, C₆D₆) δ 166.49 (1H, *p*-pyridine), 38.54 (2H, *m*-pyridine), 5.98 (6H, ArH), 3.26 (4H, Si(OCH₂CH₃), 2.11-1.99 (m, 6H), 0.43- -0.18 (15H), -2.48 (6H, Si(OCH₂CH₃), -14.53 (3H, SiCH₃), -16.27 (6H, ArCH₃), -21.45 (6H, ArCH₃), -109.36 (6H, ArNCCH₃).

Figure S5. ¹H NMR (300Mz, C₆D₆) spectrum of (^{Me}PDI)Fe(6d)₂.

2.3 Synthesis of (MePDI)Fe(isoprene) and (MePDI)Fe(myrcene)

 $R = Me, (CH_2)_2C(H)(CMe_2)$

Figure S6. Procedure for the synthesis of (^{Me}PDI)Fe(13i) and (^{Me}PDI)Fe(13j).

In an N₂-filled glovebox, a J. Young NMR tube was charged with $[(^{Me}PDI)Fe(N_2)](\mu-N_2)$ (20.0 mg, 0.0214 mmol) and 600 µL of benzene-*d*₆. The appropriate 2-substituted diene (0.0428 mmol, 1 equivalents per iron center) was added via microliter syringe and the tube sealed and removed from the glovebox. After mixing at ambient temperature for 2 hours, the reaction mixture was analyzed via ¹H NMR spectroscopy to reveal the title compounds formed in >98% conversion. Half-life of the isoprene complex: 3 hours. Half-life of the myrcene complex: 9-12 hours. Spectroscopic data of (^{Me}PDI)Fe(isoprene) including ¹H NMR data were consistent with the previously reported complex.⁵⁸

(^{Me}PDI)Fe(13j): ¹H NMR (300 MHz, C₆D₆) δ 7.95 (d, *J* = 29.0 Hz, 2H, *m*-pyridine), 7.38 (s, 1H *p*-pyridine), 6.91 (d, *J* = 12.9 Hz, 4H, *m*-*ArH*) 6.65-6.23 (m, 2H, *p*-*ArH*), 5.11 (m, 5H), 4.73 (d, *J* = 13.9, 1H, CH₂CH(C)CH₂), 4.62 (s, 1H, CH₂CH(C)CH₂), 4.16 (s, 1H, CH₂CH(C)CH₂), 3.51 (d. *J* = 8.7 Hz, 1H, CH₂CH(C)CH₂), 3.27 (s, 2H, allylicCH₂, alkene), 2.58-1.12 (m, 40H), 0.67 (s, 1H, myrcene (CH₃)₂C(CH)R), 0.04 (d, *J* = 6.2 Hz, 2H, allylicCH₂, diene).

Figure S7. ¹H NMR (300Mz, C₆D₆)of Spectrum of (MePDI)Fe(myrcene)

3. Catalytic Procedures and Product Characterization

3.1 General Procedure for Head-to-Head VinyIsilane Dimerization

In a glovebox, a 1.5 mL vial was charged with [(^{Me}PDI)Fe(N₂)]₂(µ²-N₂) (0.012 g, 0.0125 mmol, 2.5 mol% dimer, 5 mol% [Fe]). The vinylsilane substrate **6** (0.5 mmol, 1.0 equiv) was added by mass. A PTFE-coated magnetic stir bar was added, and the vial was sealed with a PTFE-lined screw cap. The reaction was maintained with stirring at ambient temperature (~23 °C) in the glovebox. After 48 hours, an aliquot was removed for gas chromatographic analysis to evaluate conversion (i.e. consumption of the starting material) and the selectivity of product formation. The reaction vial was then removed from the glovebox and opened to air. The reaction mixture was diluted with pentane and filtered through a plug of silica, rinsing with pentane until the product eluted completely, as judged by TLC. Where necessary, mixtures of pentane and benzene, diethyl ether, and/or ethyl acetate were employed. Fractions containing the major product, as judged by TLC (staining with KMnO₄) were combined and concentrated under reduced pressure prior to analysis by ¹H NMR and ¹³C NMR spectroscopy and mass spectrometry. Yield was determined on the basis of the mass of product isolated.

3.2 Representative Procedure for Cross-Cycloaddition Reactions

In a glovebox, a 1.5 mL vial was charged with vinylsilane substrate **6** (1.0–1.2 mmol, 1.0–1.2 equiv) and diene substrate **13** (1.0–1.2 mmol, 1.0–1.2 equiv). The lower-boiling substrate was added in slight excess. Precatalyst [(^{Me}PDI)Fe(N₂)]₂(μ^2 -N₂) (0.012 g, 0.0125 mmol, 1.25 mol% dimer, 2.5 mol% [Fe]) was added as a solid to initiate the reaction. A PTFE-coated magnetic stir bar was added, and the vial was sealed. The vial was maintained with stirring at ambient temperature (~23 °C). Reaction progress was monitored by GC analysis of aliquots removed from the reaction mixture. Upon consumption of the limiting substrate, the vial was removed from the glovebox. The reaction mixture was diluted with pentane and filtered through a plug of silica, rinsing with pentane until the product eluted completely, as judged by TLC. Where necessary, mixtures of pentane and benzene, diethyl ether, and/or ethyl acetate were employed. Fractions containing the major product, as judged by TLC (staining with KMnO₄) were combined and concentrated under reduced pressure prior to analysis by ¹H NMR and ¹³C NMR spectroscopy and mass spectrometry (when compounds were suitable). Yield was determined on the basis of the mass of product isolated.

3.3 Product Characterization Data

A mixture of **1,2-dimethylcyclobutane (2a)** and **2,3-dimethylbut-1-ene (3a)** was afforded in 96% conversion (4% recovered **1a**, 40% **2a**, 56% **3a**) after 48 hours upon exposure of a solution of the iron precatalyst (2.5 mol% dimer, 5 mol% [Fe]) in benzene- d_6 to an excess of propylene.⁵⁹

¹H NMR (300 MHz, C₆D₆) δ 4.78 (s, 1H, **3a**), 4.74 (s, 1H, **3a**), 2.43 – 2.28 (m, 2H, *cis*-**2a**), 2.15 (hept, *J* = 6.8 Hz, 1H, **3a**), 2.04 – 1.85 (m, 2H, *cis*-**2a** + *trans*-**2a**), 1.84 – 1.67 (m, 1H, *trans*-**2a**), 1.62 (s, 3H, **3a**), 1.66 – 1.47 (m, 2H, *cis*-**2a**), 1.45 – 1.26 (m, 2H, *trans*-**2a**), 0.98 (d, *J* = 6.2 Hz, 6H, *trans*-**2a**), 0.97 (d, *J* = 6.9 Hz, 6H, **3a**), obscured at ~0.94 (d, 6H, *cis*-**2a**)

¹³C NMR (101 MHz, C₆D₆) δ 151.5 (**3a**), 108.2 (**3a**), 39.2 (*trans*-**2a**), 35.6 (**3a**), 27.0 (*trans*-**2a**), 21.6 (**3a**), 20.6 (**3a**), 20.2 (*trans*-**2a**)

Figure S8. ¹H NMR (300 MHz, C₆D₆) spectrum of 2a and 3a.

Figure S9. ¹³C NMR (101 MHz, C₆D₆) spectrum of **2a** and **3a**.

Figure S10. $^{1}H-^{13}C$ HSQC (300 MHz, C₆D₆) spectrum of **2a** and **3a**.

Figure S11. $^{1}H-^{13}C$ HMBC (300 MHz, C₆D₆) spectrum of **2a** and **3a**.

Figure S12. ¹H–¹H COSY (300 MHz, C₆D₆) spectrum of 2a and 3a.

(*E*)-but-1-ene-1,4-diylbis(trimethylsilane) (9a) was prepared in 32% Me₃Si vield, >98% purity, 98:2 *E/Z* after 48 hours as described in 3.1.

¹H NMR (500 MHz, CDCl₃) δ 6.32 (dt, J = 13.9, 7.8 Hz, 1H, Z), 6.09 (dt, J
= 18.4, 5.8 Hz, 1H, E), 5.61 (dt, J = 18.4, 1.6 Hz, 1H, E), 5.38 (d, J = 13.9 Hz, 1H, Z), 2.27 (t, J = 7.8 Hz, 1H, Z), 2.16 - 2.04 (m, 2H), 0.66 - 0.53 (m, 2H), 0.04 (s, 9H), -0.01 (s, 9H)

¹³C NMR (126 MHz, CDCl₃) δ 150.04, 127.76, 30.94, 15.53, -1.00, -1.42

Figure S13. ¹H NMR (500 MHz, CDCl₃) spectrum of 9a.

Figure S14. ¹³C NMR (126 MHz, CDCl₃) spectrum of 9a.

Figure S15. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 9a.

Figure S16. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 9a.

Figure S17. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 9a.

(*E*)-but-1-ene-1,4-diylbis(dimethyl(phenyl)silane) (9b) was prepared in 92% isolated yield, 96% purity, 97:3 *E*/*Z* after 48 hours as described in 3.1.

 1 H NMR (500 MHz, CDCl₃) δ 7.55 – 7.49 (m, 4H), 7.39 – 7.33 (m, 6H),

6.43 (dt, *J* = 14.0, 8.0 Hz, 1H, *Z*), 6.17 (dt, *J* = 18.3, 5.8 Hz, 1H, *E*), 5.75 (dd, *J* = 18.3, 2.3 Hz, 1H, *E*), 5.54 (d, *J* = 14.0 Hz, 1H, *Z*), 2.18 (q, *J* = 8.2, 5.8 Hz, 2H, *E*), 2.03 (q, *J* = 9.3, 8.4, 8.0 Hz, 2H, *Z*), 0.89 (t, *J* = 8.2 Hz, 2H, *E*), 0.75 (t, *J* = 9.3, 8.4 Hz, 2H, *Z*), 0.31 (d, *J* = 1.9 Hz, 6H), 0.28 (s, 6H)

¹³C NMR (126 MHz, CDCl₃) δ 151.6, 139.5, 139.4, 134.0, 133.7, 129.0, 128.9, 127.9, 127.8, 125.7, 30.9, 14.6, -2.3, -2.8

GC-MS (EI): for $[M]^+$ = C₂₀H₂₈Si₂, calculated m/z = 324.17296, found m/z = 324.17207

Figure S18. ¹H NMR (500 MHz, CDCl₃) spectrum of 9b.

Figure S19. ¹³C NMR (126 MHz, CDCl₃) spectrum of 9b.

Figure S20. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 9b.

Figure S21. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 9b.

Figure S22. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 9b.

(*E*)-but-1-ene-1,4-diylbis(triphenylsilane) (9c) was prepared in 29% isolated yield, >98% purity, >98:2 *E*/*Z* after 48 hours as described in 3.1 but with added toluene (0.2 mL) as solvent. Due to precipitation of the product from solution, very poor mixing and low conversion was observed.

¹H NMR (500 MHz, CDCl₃) δ 7.57 (d, *J* = 7.3 Hz, 6H), 7.55 (d, *J* = 7.3 Hz, 6H), 7.44 (t, *J* = 7.2 Hz, 6H), 7.39 (t, *J* = 7.3 Hz, 12H), 6.33 (dt, *J* = 18.5, 5.4 Hz, 1H), 6.24 (d, *J* = 18.5 Hz, 1H), 2.44 (q, *J* = 8.8, 5.4 Hz, 2H), 1.65 – 1.49 (m, 2H)

¹³C NMR (126 MHz, CDCl₃) δ 155.37, 136.08, 135.78, 135.07, 134.96, 129.62, 129.52, 128.04, 127.92, 121.87, 31.16, 12.01

LC-MS (ESI): for $[M+Na]^+ = C_{40}H_{36}Si_2Na$, calculated m/z = 595.22533; found m/z = 595.22254; for $[M+K]^+ = C_{40}H_{36}Si_2K$, calculated m/z = 611.19927; found m/z = 611.19784

Figure S23. ¹H NMR (500 MHz, CDCI₃) spectrum of 9c.

Figure S24. ¹³C NMR (126 MHz, CDCl₃) spectrum of 9c.

Figure S25. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 9c.

Figure S26. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 9c.

Figure S27. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 9c.

¹H NMR (500 MHz, CDCl₃) δ 6.56 (dt, J = 18.7, 5.8 Hz, 1H), 5.75 (dt, J =

18.7, 1.7 Hz, 1H, *E*), 5.55 (d, *J* = 14.1 Hz, 1H, *Z*), 3.78 (q, *J* = 7.0 Hz, 4H), 3.65 (q, *J* = 7.0 Hz, 4H), 2.53 (q, *J* = 7.6 Hz, 2H, *Z*), 2.34 – 2.26 (m, 2H, *E*), 1.20 (t, *J* = 7.0 Hz, 6H), 1.14 (t, *J* = 7.0 Hz, 6H), 0.82 – 0.75 (m, 2H), 0.33 (s, 3H, *Z*), 0.29 (s, 3H, *E*), 0.17 (s, 3H, *Z*), 0.12 (s, 3H, *E*)

¹³C NMR (126 MHz, CDCl₃) δ 153.65, 122.98, 58.30, 58.17, 30.13, 18.75, 18.71, 12.99, -3.74, -4.45

GC-MS (EI): for $[M]^+ = C_{14}H_{32}O_4Si_2$, calculated m/z = 320.18394, found m/z = 320.18283; for $[M - EtOH]^+ = C_{12}H_{26}O_3Si_2$, calculated m/z = 274.14207, found m/z = 274.14121

Figure S28. ¹H NMR (500 MHz, CDCl₃) spectrum of 9d.

Figure S29. ¹³C NMR (126 MHz, CDCI₃) spectrum of 9d.

Figure S30. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 9d.

Figure S31. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 9d.

Figure S32. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 9d.

(E)-3,3'-(but-1-ene-1,4-diyl)bis(1,1,1,3,5,5,5-Me_3SiO_OSiMe_3heptamethyltrisiloxane) (9e) was prepared in 87% isolated yield,Si97% purity, 96:4 E/Z after 48 hours as described in 3.1.9eMe_3SiO_OSiMe_3Me_3SiO_OSiMe_3

¹H NMR (500 MHz, CDCl₃) δ 6.28 (dt, *J* = 14.1, 7.3 Hz, 1H, *Z*), 6.20 (dt, *J* = 18.6, 5.8 Hz, 1H, *E*), 5.46 (dt, *J* = 18.6, 1.7 Hz, 1H, *E*), 5.26 (d, *J* = 14.1 Hz, 1H, *Z*), 2.19 (dt, *J* = 11.9, 7.3, 6.0 Hz, 2H, *Z*), 2.11 (tdd, *J* = 9.9, 7.0, 6.0, 1.2 Hz, 2H, *E*), 0.56 (dt, *J* = 8.5, 4.9 Hz, 2H), 0.09 (s, 36H), 0.08 (s, 3H), 0.02 (s, 3H)

¹³C NMR (126 MHz, CDCl₃) δ 153.08 (*Z*), 151.50 (*E*), 125.78 (*E*), 125.71 (*Z*), 29.79 (*E*), 27.23 (*Z*), 18.02 (*Z*), 16.31 (*E*), 2.04, 2.01, 0.12, -0.03

LC-MS (ESI): for $[M+Na]^+ = C_{18}H_{48}O_4Si_6Na$, calculated m/z = 519.20663, found m/z = 519.20348

Figure S33. ¹H NMR (500 MHz, CDCl₃) spectrum of 9e.

Figure S34. ¹³C NMR (126 MHz, CDCl₃) spectrum of 9e.

Figure S35. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 9e.

Figure S36. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 9e.

Figure S37. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 9e.

(E)-4,4,9,9-tetraethoxy-3,10-dioxa-4,9-disiladodec-5-ene (9f) was (EtO)₃Si OEt prepared in 68% isolated yield, 95% purity, 94:6 *E/Z* after 48 hours as described in 3.1.

¹H NMR (500 MHz, CDCl₃) δ 6.51 (dt, *J* = 18.7, 5.7 Hz, 1H), 5.42 (dt, *J* = 18.8, 1.8 Hz, 1H), 3.81 (q, *J* = 7.0 Hz, 12H), 2.31 – 2.20 (m, 2H), 1.22 (t, *J* = 7.0 Hz, 18H), 0.78 – 0.69 (m, 2H)

¹³C NMR (126 MHz, CDCl₃) δ 155.69, 117.31, 58.56, 58.52, 29.54, 18.42, 18.37, 8.93

GC-MS (EI): for $[M - EtOH]^+ = C_{14}H_{30}O_5Si_2$, calculated m/z = 334.16321, found m/z = 334.16351

LC-MS (ESI): for $[M]^+ = C_{16}H_{37}O_6Si_2$, calculated m/z = 381.2129, found m/z = 381.21083; for $[M + Na]^+ = C_{16}H_{36}O_6Si_2Na$, calculated m/z = 403.19485, found m/z = 403.19432

Figure S38. ¹H NMR (500 MHz, CDCl₃) spectrum of 9f.

Figure S39. ¹³C NMR (126 MHz, CDCl₃) spectrum of 9f.

Figure S40. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 9f.

Figure S41. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 9f.

Figure S42. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 9f.

(3E,10E,17E)-2,2,7,7,9,9,14,14,16,16,21,21-dodecamethyl-

 1,8,15-trioxa-2,7,9,14,16,21-hexasilacyclohenicosa-3,10,17

 triene
 and
 (3E,12E,17E)-2,2,7,7,9,9,14,14,16,16,21,21

 dodecamethyl-1,8,15-trioxa-2,7,9,14,16,21

hexasilacyclohenicosa-3,12,17-triene (9g) was prepared in 97% isolated yield, \geq 95% purity, 96:4 *E*/*Z* after 48 hours as described in 3.1. The product structure is proposed to be a cyclic trimer of dvtms on the basis of mass spectrometric data and observation of a single major set of peaks by Diffusion Ordered NMR Spectroscopy (DOSY).

¹H NMR (500 MHz, CDCl₃) δ 6.17 (dt, *J* = 18.7, 6.3 Hz, 1H), 5.60 (dd, *J* = 18.7, 2.5 Hz, 1H), 2.13 (p, *J* = 7.6, 6.3, 2.5 Hz, 2H), 0.64 (t, *J* = 7.6 Hz, 2H), 0.12 (s, 6H), 0.07 (s, 6H)

 ^{13}C NMR (126 MHz, CDCl₃) δ 150.7, 150.6, 150.6, 150.5, 127.7, 127.6, 127.5, 30.1, 30.1, 17.1, 17.1, 1.0, 1.0, 0.7, 0.7

LC-MS (ESI): for trimer $[M + Na]^+ = C_{24}H_{54}O_3Si_6Na$, calculated m/z = 581.25866, found m/z = 581.17408LC-MS (APCI): for trimer $[M]^+ = C_{24}H_{54}O_3Si_6$, calculated m/z = 558.3, found m/z = 557.6

Figure S43. ¹H NMR (500 MHz, CDCl₃) spectrum of 9g.

Figure S44. ¹H NMR (500 MHz, C_6D_6) spectrum of 9g.

Figure S45. ¹³C NMR (126 MHz, CDCl₃) spectrum of 9g.

Figure S46. ¹³C NMR (126 MHz, C₆D₆) spectrum of 9g.

Figure S47. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 9g.

Figure S48. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 9g.

Figure S49. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 9g.

Figure S50. 1D ¹H DOSY (500 MHz, CDCl₃) spectrum of 9g.

Figure S51. 2D ¹H DOSY (500 MHz, CDCl₃) spectrum of 9g.

A mixture of 1-methyl-3-(6-methylhepta-1,5-dien-

2-yl)cyclobutane (14aj) and (*E*)-2,5,9trimethyldeca-1,4,8-triene (16aj) was obtained in 65% combined yield (2:97 14aj : 16aj) after 24 hours upon exposure of a solution of the iron precatalyst (1.25 mol% dimer, 2.5 mol% [Fe]) and myrcene to excess propylene.

¹H NMR (500 MHz, Chloroform-*d*) δ 5.20 (td, *J* = 7.4, 1.5 Hz, 1H, **16aj**), 5.11 (tt, *J* = 7.0, 1.6 Hz, 1H, **16aj**), 4.71 (t, *J* = 1.7 Hz, 1H, **14aj**), 4.70 (s, 2H, **16aj**), 4.67 (d, *J* = 2.0 Hz, 1H, **14aj**), 2.70 (d, *J* = 7.4 Hz, 2H, **16aj**), 2.29 – 2.20 (m, 2H, **14aj**), 2.10 (t, *J* = 7.5 Hz, 2H, **16aj**), 2.04 (dd, *J* = 8.7, 6.4 Hz, 2H, **16aj**), 1.97 (dd, *J* = 9.3, 6.5 Hz, 2H, **14aj**), 1.72 (s, 3H, **16aj**), 1.69 (s, 3H, **16aj**), 1.62 (s, 3H, **16aj**), 1.61 (s, 3H, **16aj**), 1.45 (ddd, *J* = 11.4, 7.0, 2.4 Hz, 2H, **14aj**), 1.01 (d, *J* = 6.2 Hz, 3H, **14aj**)

¹³C NMR (126 MHz, CDCl₃) δ 153.7 (**14aj**), 145.6, 136.7, 131.5, 124.5 (**14aj**), 124.5, 122.0, 109.8, 106.4 (**14aj**), 39.9, 36.9 (**14aj**), 36.6, 35.9 (**14aj**), 34.4, 26.8, 26.6 (**14aj**), 26.4 (**14aj**), 25.9, 25.8 (**14aj**), 22.7, 22.1 (**14aj**), 17.8, 16.0

GC-MS (EI): for $[M]^+$ = C₁₃H₂₂, calculated m/z = 178.17215, found m/z = 178.17111

Figure S52. ¹H NMR (500 MHz, CDCl₃) spectrum of 14aj and 16aj.

Figure S53. ¹³C NMR (126 MHz, CDCl₃) spectrum of 14aj and 16aj.

Figure S54. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 14aj and 16aj.

Figure S55. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 14aj and 16aj.

Figure S56. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 14aj and 16aj.

A mixture of trimethyl((3-(6-methylhepta-1,5-dien-2-yl)cyclobutyl)methyl)silane (14bj) and (*E*)- (*E*)- (5,9-dimethyl-2methylenedeca-4,8-dien-1yl)trimethylsilane (16bj) was obtained in 45% combined yield (58:38 14bj : 16bj) after 24 hours as described in 3.2.

¹H NMR (500 MHz,CDCl₃) δ 5.19 (tq, *J* = 7.3, 1.3 Hz, 1H, **16bj**), 5.11 (t, *J* = 6.9 Hz, 1H, **14bj** & 1H, **16bj**), 4.70 (t, *J* = 1.6 Hz, 1H, **14bj**), 4.65 (s, 1H, **14bj**), 4.61 (q, *J* = 1.6 Hz, 1H, **16bj**), 4.51 (dt, *J* = 2.2, 1.1 Hz, 1H, **16bj**), 2.65 (d, *J* = 7.7 Hz, 2H, **16bj**), 2.69 – 2.59 (m, 1H, **14bj**), 2.29 (qd, *J* = 7.6, 2.6 Hz, 2H, **14bj**), 2.18 (tt, *J* = 16.6, 14.9, 9.2, 7.6 Hz, 1H, **16bj**), 2.13 – 2.02 (m, 2H, **14bj** & 2H, **16bj**), 1.96 (dd, *J* = 9.5, 6.3 Hz, 1H, 2H, **14bj** & 2H, **16bj**), 1.69 (s, 3H, **14bj** & 3H, **16bj**), 1.61 (s, 3H, **14bj** & 6H, **16bj**), 1.54 (d, *J* = 1.1 Hz, 2H, **16bj**), 1.45 (tdd, *J* = 10.2, 8.2, 2.6 Hz, 2H, **14bj**), 0.66 (d, *J* = 7.6 Hz, 2H, **14bj**), 0.04 (s, 9H, **16bj**), -0.03 (s, 9H, **16bj**).

¹³C NMR (126 MHz, CDCl₃) δ 153.7 (14bj), 147.0 (16bj), 136.6 (16bj), 131.6 (14bj), 131.5 (16bj), 124.5 (14bj & 16bj), 122.3 (16bj), 107.2 (16bj), 106.4 (14bj), 39.9 (16bj), 37.8 (14bj), 37.4 (14bj), 37.1 (16bj), 34.5 (14bj), 28.2 (14bj), 27.0 (16bj), 26.8 (16bj), 26.6 (14bj), 25.9 (16bj), 25.9 (14bj), 25.7 (14bj), 17.84 (14bj & 16bj), 16.1 (16bj), -0.9 (14bj), -1.13 (16bj)

GC-MS (EI): for $[M]^+$ = C16H30Si, calculated m/z = 250.21168, found m/z = 250.2116

Figure S57. ¹H NMR (500 MHz, CDCl₃) spectrum of **14bj** and **16bj**.

Figure S58. ¹³C NMR (126 MHz, CDCl₃) spectrum of 14bj and 16bj.

Figure S59. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of **14bj** and **16bj**.

Figure S60. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 14bj and 16bj.

Figure S61. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of **14bj** and **16bj**.

(*E*)-trimethyl(3-(prop-1-en-1-yl)cyclobutyl)silane (17aa) was prepared in 87% isolated yield, 95% [2+2]-selectivity, 56:44 d.r. after 48 hours as described in 3.2.

¹H NMR (500 MHz, CDCl₃) δ 5.60[§] (ddd, *J* = 15.2, 7.1, 1.7 Hz, 1H), 5.47^{*} (ddd, *J* = 15.1,

7.0, 1.6 Hz, 1H), 5.41 – 5.29 (m, 1H), 3.01* (dq, J = 16.8, 8.1 Hz, 1H), 2.81[§] (h, J = 7.9 **17aa**

Hz, 1H), $2.12 - 2.03^{*}$ (m, 1H), $2.01^{\$}$ (t, J = 8.1 Hz, 2H), $1.72 - 1.66^{*}$ (m, 1H), $1.65^{\$}$ (d, J = 6.8 Hz, 3H), 1.63^{*} (d, J = 6.3 Hz, 3H), $1.61 - 1.49^{*}$ (m, 2H), $1.53 - 1.46^{\$}$ (m, 1H), -0.01 (s, 9H), -0.07 (s, 9H) where resolved resonances arising from the *cis*(*) and *trans*($^{\$}$) diastereomers are indicated.

SiMe₃

¹³C NMR (126 MHz, CDCI₃) δ 136.7*, 136.4[§], 122.9[§], 122.6*, 39.3[§], 37.3*, 30.0[§], 29.0*, 19.2*, 18.0* or [§], 17.9* or [§], 17.1[§], -3.3* or [§], -3.3* or [§] where resolved resonances arising from the *cis*(*) and *trans*([§]) diastereomers are indicated.

GC-MS (EI): for $[M]^+$ = C₁₀H₂₀Si, calculated *m*/*z* = 168.13, found *m*/*z* = 168

Figure S62. ¹H NMR (500 MHz, CDCl₃) spectrum of 17aa.

Figure S63. ¹³C NMR (126 MHz, CDCl₃) spectrum of 17aa.

Figure S64. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of **17aa**.

Figure S65. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of **17aa**.

Figure S66. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of **17aa**.

(*E*)-dimethyl(phenyl)(3-(prop-1-en-1-yl)cyclobutyl)silane (17ba) was prepared in 87% isolated yield, 98% [2+2]-selectivity, 50:50 d.r. after 72 hours as described in 3.2.

¹H NMR (500 MHz, CDCl₃) δ 7.50 (ddd, *J* = 16.1, 6.5, 2.9 Hz, 2H), 7.42 – 7.29 (m, **17ba** 3H), 5.60[§] (dd, *J* = 15.1, 5.7 Hz, 1H), 5.45* (dd, *J* = 15.1, 5.3 Hz, 1H), 5.40 – 5.21 (m, 1H), 3.06* (h, *J* = 7.6 Hz, 1H), 2.75[§] (h, *J* = 7.1 Hz, 1H), 2.19 – 2.00 (m, 3H), 1.96 – 1.71 (m, 2H), 1.66[§] (d, *J* = 6.5 Hz, 3H), 1.63* (d, *J* = 6.2 Hz, 3H), 0.30 (s, 6H)[§], 0.24 (s, 6H)* where resolved resonances arising from the *cis*(*) and *trans*([§]) diastereomers are indicated.

S

¹³C NMR (126 MHz, CDCl₃) δ 139.20*, 139.05[§], 136.36[§], 136.12*, 133.88, 133.84, 128.98, 128.91, 127.83, 127.80, 123.06*, 122.74[§], 39.61*, 37.18[§], 30.27*, 29.06[§], 18.39*, 17.96, 17.94, 16.51[§], -4.66[§], -4.75* where resolved resonances arising from the *cis*(*) and *trans*([§]) diastereomers are indicated.

GC-MS (EI): for [M]⁺ = C₁₅H₂₂Si, calculated m/z = 230.14908, found m/z = 230.14889

Figure S67. ¹H NMR (500 MHz, CDCl₃) spectrum of 17ba.

Figure S68. ¹³C NMR (126 MHz, CDCl₃) spectrum of **17ba**.

Figure S69. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of **17ba**.

Figure S70. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of **17ba**.

Figure S71. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of **17ba**.

¹³C NMR (126 MHz, CDCl₃) δ 137.0, 136.1, 136.0, 136.0, 135.1, 129.7, 128.0, 127.9, 122.8, 40.5, 36.7, 30.9, 29.2, 17.9, 16.4, 14.4.

Figure S72. ¹H NMR (500 MHz, CDCl₃) spectrum of 17ca.

Figure S73. ¹³C NMR (126 MHz, CDCl₃) spectrum of 17ca

Figure S74. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of **17ca**.

Figure S75. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of **17ca**.

Figure S76. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of **17ca**.

(*E*)-diethoxy(methyl)(3-(prop-1-en-1-yl)cyclobutyl)silane (17da) was prepared in 91% isolated yield, 96% [2+2]-selectivity, 33:67 d.r. after 72 hours as described in 3.2.

¹H NMR (500 MHz, CDCl₃) δ 5.59[§] (dd, J = 15.2, 6.1 Hz, 1H), 5.48^{*} (dd, J = 14.9, 6.5 Hz, 1H), 5.41 – 5.28 (m, 1H), 3.76[§] (q, J = 7.1 Hz, 4H), 3.74^{*} (q, J = 7.1 Hz, 4H, 4H), 3.74^{*} (q, J = 7.1 Hz, 4H), 5.41 – 5.28 (m, 1H), 5.41 –

4H), 3.03^{*} (h, J = 8.3 Hz, 1H), $2.93^{\$}$ (h, J = 7.6 Hz, 1H), $2.23 - 2.15^{\$}$ (m, 1H), 2.12^{*} (qd, J = 10.9, 8.5, 2.8 Hz, 1H), $2.02^{\$}$ (q, J = 10.6 Hz, 1H), 1.86^{*} (qd, J = 11.8, 10.0, 9.8, 2.4 Hz, 1H), 1.76 - 1.65 (m, 1H), $1.65^{\$}$ (d, J = 7.4 Hz, 3H), 1.63^{*} (d, J = 6.3 Hz, 3H), 1.20 (t, J = 7.0 Hz, 6H), $0.16^{\$}$ (s, 3H), 0.10^{*} (s, 3H) where resolved resonances arising from the *cis* (*) and *trans* ([§]) diastereomers are indicated.

¹³C NMR (126 MHz, CDCl₃) δ 136.23[§], 136.11^{*}, 123.19^{*}, 122.86[§], 58.39[§], 58.34^{*}, 39.94^{*}, 37.52[§], 29.78^{*}, 28.52[§], 18.60, 17.95[§], 17.91^{*}, 16.98^{*}, 15.23[§], -6.55[§], -6.62^{*} where resolved resonances arising from the major(^{*}) and minor([§]) diastereomers are indicated.

GC-MS (EI): for $[M + Na]^+ = C_{12}H_{24}O_2SiNa$, calculated m/z = 251.14434, found m/z = 250.9681; for $[M + H - OEt]^+ = C_{10}H_{20}OSi$, calculated m/z = 184.12835, found m/z = 184.12722

Figure S77. ¹H NMR (500 MHz, CDCl₃) spectrum of 17da.

Figure S78. ¹³C NMR (126 MHz, CDCl₃) spectrum of **17da**.

Figure S79. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of **17da**.

Figure S80. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of **17da**.

Figure S81. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of **17da**.

(E)-1,1,1,3,5,5,5-heptamethyl-3-(3-(prop-1-en-1-yl)cyclobutyl)trisiloxane

(17ea) was prepared in 92% isolated yield, >98% [2+2]-selectivity, 33:67 d.r. after 72 hours as described in 3.2.

¹H NMR (500 MHz, CDCl₃) δ 5.59[§] (ddd, J = 15.2, 7.1, 1.5 Hz, 1H), 5.48^{*} (ddd, J = 15.2, 7.0, 1.3 Hz, 1H), 5.40 – 5.24 (m, 1H), 2.99^{*} (h, J = 8.3, 7.5 Hz, 1H), (ddd, Me₃SiO['] OSiMe₃)

2.89[§] (tq, J = 8.8, 7.5 Hz, 1H), 2.20 – 1.99 (m, 2H), 1.95[§] (tdd, J = 10.4, 7.9, 1.5 Hz, 2H), 1.77* (qt, J = 11.3, 9.4, 2.4 Hz, 2H), 1.66[§] (dq, J = 6.4, 1.5, 1.0 Hz, 3H), 1.63* (dq, J = 6.3, 1.0 Hz, 3H), 1.48* (tt, J = 10.9, 8.7 Hz, 1H), 1.41[§] (tdd, J = 11.3, 5.5, 1.2 Hz, 0H), 0.09 (s, 18H), -0.03 (s, 3H) where resolved resonances arising from the *cis* (*) and *trans* ([§]) diastereomers are indicated.

¹³C NMR (126 MHz, CDCl₃) δ 136.66[§], 136.36^{*}, 123.00^{*}, 122.62[§], 39.27^{*}, 37.22[§], 29.43^{*}, 28.47[§], 19.39, 17.94^{*}, 17.60[§], 2.04^{*}, 1.99[§], -2.12 where resolved resonances arising from the *cis* (*) and *trans* ([§]) diastereomers are indicated.

GC-MS (EI): for $[M - Me]^+ = C_{13}H_{29}O_2Si_3$, calculated m/z = 301.14756, found m/z = 301.14834

Figure S82. ¹H NMR (500 MHz, CDCl₃) spectrum of **17ea**.

Figure S83. ¹³C NMR (126 MHz, CDCl₃) spectrum of **17ea**.

Figure S84. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of **17ea**.

Figure S85. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of **17ea**.

Figure S86. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of **17ea**.

(*E*)-triethoxy(3-(prop-1-en-1-yl)cyclobutyl)silane (17fa) was prepared in 89% isolated yield, 95% [2+2]-selectivity, 30:70 d.r. after 72 hours as described in 3.2.

¹H NMR (500 MHz, CDCl₃) δ 5.59[§] (ddd, *J* = 15.3, 7.1, 1.7 Hz, 1H), 5.50^{*} (ddq, *J* = 15.3, 7.1, 1.6 Hz, 1H), 5.42 – 5.27 (m, 1H), 3.83[§] (q, *J* = 6.9 Hz, 6H), 3.81^{*} (q, *J* = 7.1 Hz, 6H), 3.10 – 2.95 (m, 1H), 2.24[§] (dddd, *J* = 10.0, 8.2, 5.8, 1.8 Hz, 1.4 Hz)

1H), 2.14* (qd, J = 8.5, 2.9 Hz, 1H), 2.09 – 1.91 (m, 2H), 1.73 – 1.54 (m, 1H), 1.65[§] (ddd, J = 7.1, 1.6, 0.9 Hz, 3H), 1.63* (ddd, J = 6.4, 1.6, 0.9 Hz, 3H), 1.23[§] (t, J = 6.9 Hz, 9H), 1.22* (t, J = 7.1 Hz, 6H) where resolved resonances arising from the *cis*(*) and *trans*([§]) diastereomers are indicated.

¹³C NMR (126 MHz, CDCl₃) δ 136.18[§], 136.07^{*}, 123.29^{*}, 122.90[§], 58.69[§], 58.57^{*}, 40.31^{*}, 37.61[§], 30.02^{*}, 28.70[§], 18.52, 17.96[§], 17.91^{*}, 14.37^{*}, 12.69[§] where resolved resonances arising from the *cis*(*) and *trans*([§]) diastereomers are indicated.

GC-MS (EI): for $[M + H - OEt]^+ = C_{11}H_{22}O_2Si$, calculated m/z = 214.13892, found m/z = 214.13867

Figure S87. ¹H NMR (500 MHz, CDCl₃) spectrum of **17fa**.

Figure S88. ¹³C NMR (126 MHz, CDCl₃) spectrum of **17fa**.

Figure S89. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of **17fa**.

Figure S90. ¹H-¹³C HMBC (500 MHz, CDCl₃) spectrum of 17fa.

Figure S91. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of **17fa**.

1,1,3,3-tetramethyl-1,3-bis(3-((*E*)-prop-1-en-1-

yl)cyclobutyl)disiloxane (17ga) was prepared in 90% isolated yield, 86% [2+2]-selectivity, 37:47:16 d.r. after 72 hours as described in 3.2. The mass balance of the material consists of the [2+2] cycloadduct where only one of the two

vinyl groups of **6g** reacted (60:40 d.r.). The two products were not separated.

¹H NMR (500 MHz, CDCl₃) δ 5.59[§] (ddt, *J* = 15.2, 7.1, 1.6 Hz, 1H), 5.48 (dddd, *J* = 15.2, 6.8, 3.0, 1.5 Hz, 1H), 5.41 – 5.23 (m, 1H), 3.01 (ttd, *J* = 9.9, 8.4, 7.2 Hz, 1H), 2.86[§] (h, *J* = 7.8 Hz, 1H), 2.12 – 2.03 (m, 2H), 1.99*(ddd, *J* = 11.8, 10.2, 7.8 Hz, 2H), 1.75[§](dtd, *J* = 11.5, 9.1, 2.4 Hz, 2H), 1.66[§] (d, *J* = 6.4 Hz, 3H), 1.64 (dd, *J* = 6.4, 1.3 Hz, 3H), 1.61 – 1.50 (m, 1H), 1.51 – 1.42 (m, 1H), 0.06* (s, 3H), 0.06*(s, 3H), -0.00[§] (s, 3H), -0.00[§](s, 3H) where resolved resonances arising from the major(*) and minor([§]) diastereomers are indicated.

¹³C NMR (126 MHz, CDCl₃) δ 136.7, 136.4, 122.9, 122.6, 39.3, 39.2, 37.3, 37.3, 29.5, 28.6, 20.3, 18.4, 18.3, 18.0, 17.9, 0.60, -1.3, -1.3, -1.4, -1.4

GC-MS (EI): for $[M - C_9H_{11}]^+ = C_{11}H_{23}OSi_2$, calculated m/z = 227.12876, found m/z = 227.12729

Figure S92. ¹H NMR (500 MHz, CDCl₃) spectrum of **17ga**.

Figure S93. ¹³C NMR (126 MHz, CDCl₃) spectrum of **17ga**.

Figure S94. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of **17ga**.

Figure S95. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of **17ga**.

Figure S96. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of **17ga**.

(*E*)-trimethylsilyl-3-styrylcyclobutane (17ab) was prepared in a 26% isolated Phyeild, >98% [2+2]-selectivity, 51:49 d.r. after 48 hours as described in 3.2, with 1 mol% (^{Me}PDI)Fe(butadiene). The mass balance of the material consists of the [4+2] cycloaddition product from the dimerization of **13b**.

¹H NMR (500 MHz, CDCl₃) δ7.36 (dd, *J* =13.7, 6.8 Hz, 2H), 7.29(m, 2H), 7.20(m,

1H) 6.4 (m, 1H), 6.40-6.29 (m, 1H), 3.25* (m, 1H), 3.05[§] (m, 1H), 2.16 (m, 3H), 1.82* (m, 1H), 1.75–1.55 (m, 1H), 0.03[§] (s, 9H), -0.03* (s, 9H) where resolved resonances arising from the *cis*(*) and *trans*([§]) diastereomers are indicated.

¹³C NMR (126 MHz, CDCl₃) δ 137.94, 137.91, 135.7, 135.3, 128.62, 128.60, 127.7, 127.5, 126.95, 126.94, 126.1, 39.6, 37.7, 29.9, 28.9, 19.4, 17.3, -3.2, -3.3.

Figure S97. ¹H NMR (500 MHz, CDCl₃) spectrum of 17ab.

Figure S98. ¹³C NMR (126 MHz, CDCI₃) spectrum of 17ab.

Figure S99. ¹H–¹³C HSQC (500 MHz, CDCI₃) spectrum of **17ab.**

((*E*)-(3-(hept-1-en-1-yl)cyclobutyl)trimethylsilane (17ac) was prepared in an 85% isolated yeild, >98% [2+2]-selectivity, 48:55 d.r. after 70 hours as described in 3.2, with 1 mol% (^{Me}PDI)Fe(butadiene).

¹H NMR (500 MHz, CDCl₃) δ 5.57[§] (ddt, *J* = 15.3, 7.1, 1.5 Hz, 1H),

5.44* (dd, J = 15.3, 6.9 Hz, 1H), 5.41 – 5.23 (m, 1H), 3.01* (h, J = 8.4 Hz, 1H), 2.81[§] (h, J = 8.1 Hz, 1H), 2.13 – 1.87 (m, 6H), 1.67* (qd, J = 9.3, 8.9, 2.7 Hz, 1H), 1.62 – 1.46 (m, 2H), 1.46 – 1.11 (m, 6H), 0.88 (t, J = 7.0 Hz, 3H), -0.01[§] (s, 9H), -0.07* (s, 9H) where resolved resonances arising from the *cis* (*) and *trans* ([§]) diastereomers are indicated.

¹³C NMR (126 MHz, CDCl₃) δ 135.3, 135.0, 128.6, 128.3, 39.2, 37.3, 32.6, 31.6, 30.0, 29.5, 29.1, 22.7, 19.1, 17.1, 14.2, -3.2, -3.3.

Figure S100. ¹H NMR (500 MHz, CDCl₃) spectrum of 17ac.

Figure S101. ¹³C NMR (126 MHz, CDCl₃) spectrum of 17ac.

Figure S102. ¹H–¹³C HSQC (500 MHz, CDCI₃) spectrum of **17ac.**

Figure S103. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 17ac.

Figure S104. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of **17ac.**

1H), 2.84 (m, 1H), 2.69 (m, 1H), 2.34 (m, 1H), 2.15-1.91 (m, 8H), 1.74-1.49 (m, 3H), 0.03 (s, 9H) $^{\circ \text{ or } \$}$, -0.03 (s, 9H) $^{\circ \text{ or } \$}$ where resolved resonances arising from the *cis* (*) and *trans* ($^{\$}$) diastereomers are indicated.

¹³C NMR (126 MHz, CDCl₃) δ 142.33, 136.05, 135.72, 128.62, 128.36, 127.47, 127.21, 125.83, 39.16, 37.24, 36.28, 34.50, 29.88, 28.42, 19.14, 17.14, -3.25, -3.31 where resolved resonances arising from the *cis* (*) and *trans* ([§]) diastereomers are indicated.

Figure S105. ¹H NMR (500 MHz, CDCl₃) spectrum of 17ad.

Figure S106. ¹³C NMR (126 MHz, CDCl₃) spectrum of 17ad.

Figure S107. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 17ad.

Figure S108. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of **17ad.**

Figure S109. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of **17ad.**

(E)-tert-butyldiphenyl((3-(3-

(trimethylsilyl)cyclobutyl)allyl)oxy)silane (17ae) was obtained in a 90% yield, 57:43 d.r. after 48 hours as described in 3.2.

¹H NMR (500 MHz, CDCl₃) δ 7.76 – 7.66 (m, 4H), 7.49 – 7.32 (m, 6H), 5.81[§] (ddt, *J* = 15.3, 6.9, 1.5 Hz, 1H), 5.70* (ddt, *J* = 15.4, 6.6, 1.5 Hz, 1H), 5.58 – 5.37 (m, 1H), 4.20[§] (dt, *J* = 5.2, 1.4 Hz, 2H),

4.18* (dt, J = 5.3, 1.3 Hz, 2H), 3.08* (h, J = 8.9, 8.0 Hz, 1H), 2.88§

(h, J = 8.0 Hz, 1H), 2.12* (qd, J = 8.1, 2.1 Hz, 1H), 2.05[§] (t, J = 8.2 Hz, 2H), 1.71* (qt, J = 10.6, 9.9, 2.6, 1.1 Hz, 1H), 1.66 – 1.58* (m, 1H), 1.58 – 1.48[§] (m, 1H), 1.08 (s, 9H), 0.02[§] (s, 9H), -0.04* (s, 9H) where resolved resonances arising from the *cis*(*) and *trans*([§]) diastereomers are indicated.

¹³C NMR (126 MHz, CDCl₃) δ 136.02[§], 135.74, 135.72^{*}, 134.07, 129.68, 127.72, 126.74^{*}, 126.55[§], 64.83[§], 64.76^{*}, 38.62^{*}, 36.84[§], 29.59^{*}, 28.68[§], 27.02, 19.38, 19.09^{*}, 17.17[§], -3.24[§], -3.31^{*} where resolved resonances arising from the *cis*(*) and *trans*([§]) diastereomers are indicated.

Figure S110. ¹H NMR (500 MHz, CDCl₃) spectrum of 17ae.

Figure S111. ¹³C NMR (126 MHz, CDCl₃) spectrum of **17ae**.

Figure S112. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of **17ae**.

Figure S113. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 17ae.

Figure S114. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of **17ae**.

((E)-(3-(4-(benzyloxy)but-1-en-1-

yl)cyclobutyl)trimethylsilane **(17af)** was obtained in a 73% yield, >98% [2+2]-selectivity, 56:44 d.r.after 48 hours as described in 3.2, with 1 mol% (^{Me}PDI)Fe(butadiene).

¹H NMR (500 MHz, CDCl₃) δ 7.36 (dd, *J* = 4.5, 1.4 Hz, 4H), 7.30 (dt, *J* = 5.3, 3.9 Hz, 1H), 5.68[§] (ddd, *J* = 15.1, 7.2, 1.7

7.30 (dt, J = 5.3, 3.9 Hz, 1H), 5.68[§] (ddd, J = 15.1, 7.2, 1.7 Hz, 1H), 5.56^{*} (ddd, J = 15.4, 6.9, 1.6 Hz, 1H), 5.46 – 5.28 (m, 1H), 4.53 (d, J = 2.8 Hz, 2H), 3.49 (q, J = 6.9 Hz, 2H), 3.04^{*} (h, J = 8.3 Hz, 1H), 2.85[§] (h, J = 7.9 Hz, 1H), 2.33 (h, J = 7.6, 7.0, 6.3, 5.4 Hz, 2H), 2.17 – 2.05^{*} (m, 1H), 2.04[§] (td, J = 8.0, 1.6 Hz, 2H), 1.75 – 1.65^{*} (m, 1H), 1.65 – 1.54^{*} (m, 1H), 1.56 – 1.46[§] (m, 1H), 0.01[§] (s, 9H), -0.05^{*} (s, 9H) where resolved resonances arising from the *cis*(*) and *trans*([§]) diastereomers are indicated.

¹³C NMR (126 MHz, CDCl₃) δ 138.7, 137.5[§], 137.2^{*}, 128.5, 127.8, 127.6, 124.3^{*}, 124.1[§], 73.0, 70.4, 70.3, 39.2^{*}, 37.3[§], 33.1[§], 33.0^{*}, 29.8^{*}, 28.9[§], 19.1^{*}, 17.1[§], -3.3[§], -3.3^{*} where resolved resonances arising from the *cis*(*) and *trans*(§) diastereomers are indicated.

Figure S115. ¹H NMR (500 MHz, CDCl₃) spectrum of 17af.

Figure S116. ¹³C NMR (126 MHz, CDCl₃) spectrum of 17af.

Figure S117. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 17af.

Figure S118. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of **17af.**

Figure S119. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of **17af.**

Trimethyl(4-(4-methylpent-3-en-1-yl)cyclohex-3-en-1-yl)silane (18aj) was prepared in an 88% isolated yield with 93% [4+2]-selectivity, 62:38 after 24 hours as described in 3.2, with 2.5 mol% (^{Me}PDI)Fe(butadiene).

¹H NMR (500 MHz, CDCl₃) δ 5.46 (s, 1H), 5.11 (t, *J* = 7.8 Hz, 1H), 2.10-1.74 (m, 9 H), 1.68 (s, 3H), 1.60 (s, 3H), 1.30 (m, 1H), 0.70 (m, 1H), -0.04 (s, 9H).

 ^{13}C NMR (126 MHz, CDCl3) δ 138.0, 131.4, 124.7, 121.6, 38.3, 29.5, 26.7, 26.2, 25.9, 24.0, 21.3, 17.8, - 3.4.

Figure S120. ¹H NMR (500 MHz, CDCl₃) spectrum of 18aj.

Figure S121. ¹³C NMR (126 MHz, CDCl₃) spectrum of 18aj.

Figure S122. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 18aj.

Figure S123. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 18aj.

Figure S124. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 18aj.

Dimethyl(4-(4-methylpent-3-en-1-yl)cyclohex-3-en-1yl)(phenyl)silane (18bj) was prepared in a 74% isolated yield with >98% [4+2]-selectivity, 62:38 after 70 hours as described in 3.2, with 2.5 mol% (^{Me}PDI)Fe(butadiene).

¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.43 (m, 2H), 7.43 – 7.31 (m, 3H),

18bj

5.43 (d, *J* = 3.5 Hz, 1H), 5.10 (tt, *J* = 7.1, 1.4 Hz, 1H), 2.18 – 1.75 (m, 9H), 1.68 (s, 3H), 1.59 (s, 3H), 1.32 (tdd, *J* = 13.0, 10.9, 5.5 Hz, 1H), 0.97 (dddd, *J* = 15.0, 12.9, 5.2, 2.4 Hz, 1H), 0.27 (s, 3H), 0.26 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 138.54, 137.94, 134.09, 131.42, 128.94, 127.77, 124.63, 121.39, 38.25, 29.46, 26.61, 26.32, 25.85, 24.01, 20.99, 17.83, -4.95, -5.12.

Figure S125. ¹H NMR (500 MHz, CDCI₃) spectrum of 18bj.

Figure S126. ¹³C NMR (126 MHz, CDCl₃) spectrum of 18bj.

Figure S127. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 18bj.

Figure S128. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 18bj.

Figure S129. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 18bj.

¹H NMR (500 MHz, CDCl₃) δ 7.57 (d, *J* = 6.4 Hz, 6H), 7.40 (t, *J* = 7.2 Hz, 3H), 7.39 - 7.32 (m, 6H), 5.44 (d, *J* = 5.0 Hz, 1H), 5.21 - 4.95 (m, 1H),

2.26 (d, *J* = 17.2 Hz, 1H), 2.17 – 1.97 (m, 5H), 1.98 – 1.85 (m, 3H), 1.77 (td, *J* = 11.5, 3.0 Hz, 1H), 1.68 (s, 3H), 1.59 (s, 3H), 1.53 – 1.35 (m, 1H).

18cj

¹³C NMR (126 MHz, CDCl₃) δ 137.9, 136.2, 134.5, 131.5, 129.4, 127.9, 124.6, 121.4, 38.2, 29.7, 26.9, 26.6, 25.8, 24.8, 19.4, 17.8.

Figure S130. ¹H NMR (500 MHz, CDCl₃) spectrum of 18cj.

Figure S131. ¹³C NMR (126 MHz, CDCl₃) spectrum of 18cj.

Figure S132. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 18cj.

Figure S133. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 18cj.

Figure S134. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 18cj.

were prepared as a mixture in a 74% combined isolated yield with 84% [4+2]-selectivity for **18dj** and 10% selectivity for hydroalkenylation product **19dj** after 72 hours as described in 3.2, with 1 mol% (^{Me}PDI)Fe(butadiene).

¹H NMR (500 MHz, CDCl₃) δ 5.44 (d, *J* = 3.6 Hz, 1H), 5.10 (tt, *J* = 7.0, 1.5 Hz, 1H), 3.78 (q, *J* = 7.0 Hz, 2H), 3.77 (q, *J* = 7.0 Hz, 2H), 2.18 – 1.77 (m, 9H), 1.67 (s, 3H), 1.59 (s, 3H), 1.39 (tdd, *J* = 12.9, 10.6, 5.7 Hz, 1H), 1.21 (t, *J* = 7.0 Hz, 3H), 1.21 (t, *J* = 7.0 Hz, 3H), 0.93 (tdd, *J* = 11.4, 5.6, 2.4 Hz, 1H), 0.07 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 137.9, 131.4, 124.6, 121.1, 58.4, 58.3, 38.3, 29.1, 26.6, 25.8, 25.4, 23.3, 20.2, 18.6, 17.8, -6.9.

Figure S135. ¹H NMR (500 MHz, CDCI₃) spectrum of 18dj and 19dj.

Figure S136. ¹³C NMR (126 MHz, CDCl₃) spectrum of 18dj and 19dj.

Figure S137. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 18dj and 19dj.

Figure S138. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 18dj and 19dj.

Figure S139. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 18dj and 19dj.

trien-2-yl)-1,1,1,3,5,5,5-heptamethyltrisiloxane (**19ej**) were prepared as a mixture in a 74% isolated yield with 77% [4+2]-selectivity for **18ej** and 12% selectivity for hydroalkenylation product **19ej** after 72 hours as described in 3.2, with 2 mol% (^{Me}PDI)Fe(butadiene).

J = 12.5, 9.8, 7.8, 2.0 Hz, 1H)

¹³C NMR (126 MHz, CDCl₃) δ 137.8, 131.4, 124.7, 121.1, 58.6, 38.3, 29.1, 26.6, 25.8, 25.6, 23.4, 18.5, 18.2, 17.8

((4*E*)-5,9-dimethyldeca-1,4,8-trien-1-yl)triethoxysilane (19fj) was prepared in a 27% isolated yield with 69% purity as in the procedure above.

Figure S140. ¹H NMR (500 MHz, CDCl₃) spectrum of 18fj.

Figure S141. ¹³C NMR (126 MHz, CDCl₃) spectrum of 18fj.

Figure S142. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 18fj.

Figure S143. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 18fj.

Figure S144. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 18fj.

Figure S145. ¹H NMR (500 MHz, CDCl₃) spectrum of 19fj.

Figure S146. ¹³C NMR (126 MHz, CDCI₃) spectrum of 19fj.

Figure S147. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 19fj.

Figure S148. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 19fj.

Figure S149. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 19fj.

1,1,3,3-tetramethyl-1,3-bis(4-(4-methylpent-3-en-1-yl)cyclohex-3-en-1-yl)disiloxane (18gj) was prepared as a mixture in 84% isolated yield with 74% [4+2]-selectivity for 18gj after 24 hours as described in 3.2, with 2 mol% (^{Me}PDI)Fe(N₂)_{1.5}.

¹H NMR (500 MHz, CDCl₃) δ 5.46 (m, 1H), 5.11 (m, 1H), 2.10-1.73 (m, 9H), 1.61 (m, 3H), 1.53 (m, 3H), 1.30 (m, 1H), 0.72 (m, 1H), 0.05 (s, 6H), -0.03 (s, 6H)

¹³C NMR (126 MHz, CDCl₃) δ 148.39, 148.24, 137.94, 137.93, 137.41, 137.37, 131.42, 131.37, 124.70, 124.68, 124.67, 124.44, 124.25, 121.45, 121.39, 120.44, 120.40, 38.30, 37.39, 34.79, 29.42, 29.38, 27.01, 26.63, 25.87, 25.85, 25.61, 25.60, 23.41, 23.39, 23.10, 23.09, 17.84, 17.82, 13.67, 0.41, 0.35, -1.33, -1.38, -1.45, -1.53.

Figure S150. ¹H NMR (500 MHz, CDCI₃) spectrum of 18gj and 19gj.

Figure S151. ¹³C NMR (126 MHz, CDCl₃) spectrum of 18gj.

Figure S152. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 18gj.

Figure S153. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 18gj.

Figure S154. ¹H–¹H COSY (500 MHz, CDCI₃) spectrum of 18gj.

trimethyl(4-methylcyclohex-3-en-1-yl)silane (18ai) was prepared in a 74% isolated yield with 90% [4+2]-selectivity, after 30 hours as described in 3.2, with 2.5 mol% (^{Me}PDI)Fe(butadiene).

18ai

¹H NMR (500 MHz, CDCl₃) δ 5.43 (m, 1H), 2.01-1.70 (m, 5H), 1.64 (s, 3H), 1.31 (m, 1H), 0.69 (m, 1H), 0.09 (m, 1H), 0.04 (s, 9H).

 ^{13}C NMR (126 MHz, CDCl_3) δ 134.27, 121.90, 31.11, 26.24, 24.11, 23.92, 21.07, -3.44.

Figure S155. ¹H NMR (500 MHz, CDCl₃) spectrum of 18ai.

Figure S156. ¹³C NMR (126 MHz, CDCl₃) spectrum of 18ai.

Figure S157. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 18ai.

Figure S158. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of **18ai**.

Figure S159. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 18ai.

7.21 (t, *J* = 7.2 Hz, 1H), 6.18 (s, 1H), 2.54 – 2.32 (m, 2H), 2.32 – 2.15 (m, 1H), 2.06 (td, *J* = 15.7, 4.1 Hz, 1H), 1.96 (dd, *J* = 13.0, 2.7 Hz, 1H), 1.53 – 1.38 (m, 1H), 0.91 – 0.75 (m, 1H), 0.01 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 142.9, 136.8, 128.3, 126.6, 125.7, 125.1, 28.5, 26.9, 24.1, 20.9, -3.4.

Figure S160. ¹H NMR (500 MHz, CDCl₃) spectrum of 18ak.

Figure S161. ¹³C NMR (126 MHz, CDCl₃) spectrum of 18ak.

Figure S162. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of **18ak**.

Figure S163. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of **18ak**.

Figure S164. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 18ak.

[1,1'-bi(cyclohexan)]-1-en-4-yltrimethylsilane (18al) was prepared in an 85% isolated yield with 97% [4+2]-selectivity, after 27 hours as described in 3.2, with 2.5 mol% (^{Me}PDI)Fe(butadiene).

Cy 18al

¹H NMR (500 MHz, CDCl₃) δ 5.43 (s, 1H), 2.05-1.65 (m, 10H), 1.30-1.09 (m, 7H), 0.71 (1H), -0.05 (s, 9H).

 ^{13}C NMR (126 MHz, CDCl₃) δ 143.33, 119.56, 46.04, 32.27, 31.83, 27.91, 26.98, 26.65, 25.79, 24.13, 21.63, -3.42.

Figure S165. ¹H NMR (500 MHz, CDCl₃) spectrum of 18al.

Figure S166. ¹³C NMR (126 MHz, CDCl₃) spectrum of 18al.

Figure S167. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 18al.

Figure S168. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 18al.

Figure S169. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 18al.

¹H NMR (500 MHz, CDCl₃) δ 7.28 (t, *J* = 7.7, 7.2 Hz, 2H), 7.20 (d, *J* = 7.7 Hz, 2H), 7.18 (t, *J* = 7.2 Hz, 1H), 5.51 (s, 1H), 2.72 (td, *J* = 7.7, 4.4 Hz, 2H), 2.24 (t, *J* = 8.3 Hz, 2H), 2.10 – 1.92 (m, 3H), 1.91 – 1.85 (m, 1H), 1.85 – 1.78 (m, 1H), 1.40 – 1.20 (m, 1H), 0.73 (tt, *J* = 12.1, 4.9, 2.2 Hz, 1H), –0.02 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 142.81, 137.56, 128.50, 128.37, 125.77, 122.06, 40.23, 34.64, 29.64, 26.21, 23.94, 21.31, -3.43.

Figure S170. ¹H NMR (500 MHz, CDCl₃) spectrum of 18am.

Figure S171. ¹³C NMR (126 MHz, CDCl₃) spectrum of 18am.

Figure S172. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 18am.

Figure S173. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 18am.

Figure S174. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 18am.

tert-butyldimethyl(3-(4-(trimethylsilyl)cyclohex-1-en-1-yl)propoxy)silane SiMe₃ (18an) was prepared in an 88% isolated yield with 95% [4+2]-selectivity, after Me₂^tBuSiO 24 hours as described in 3.2, with 2.5 mol% (MePDI)Fe(butadiene). 18an ¹H NMR (500 MHz, CDCl₃) δ 5.46 (s, 1H), 3.59 (t, *J* = 7.6 Hz, 2H) 2.04-1.76 (m,

2H), 1.60 (m, 3H), 1.30 (m, 3H), 0.89 (s, 13H), 0.69 (m, 1H), 0.05 (s, 7H), -0.04 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 137.64, 121.67, 63.21, 34.35, 31.07, 29.49, 26.20, 26.13, 23.95, 21.35, 13.67, -3.44, -5.09.

Figure S175. ¹H NMR (500 MHz, CDCl₃) spectrum of 18an.

Figure S176. ¹³C NMR (126 MHz, CDCl₃) spectrum of 18an.

Figure S177. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 18an.

Figure S178. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 18an.

Figure S179. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 18an.

¹³C NMR (126 MHz, CDCl₃) δ 138.83, 137.14, 121.92, 116.01, 113.59, 104.43, 52.91, 52.83, 33.05, 31.11, 30.79, 29.48, 27.11, 23.91, 21.29, -3.44.

Figure S180. ¹H NMR (500 MHz, CDCl₃) spectrum of 18ao.

Figure S181. ¹³C NMR (126 MHz, CDCl₃) spectrum of 18ao.

Figure S182. ¹H–¹³C HSQC (500 MHz, CDCI₃) spectrum of 18ao.

Figure S183. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 18ao.

Figure S184. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 18ao.

1-(2-(4-(trimethylsilyl)cyclohex-1-en-1-yl)ethyl)pyrrolidine(18ap)was prepared in a 74% isolated yield with 93%[4+2]-selectivity, after24 hours as described in 3.2, with 2.5 mol% (MePDI)Fe(butadiene).

¹H NMR (500 MHz, CDCl₃) δ 5.46 (s, 1H), 2.48 (s, 4H), 2.39 (t, *J* = 8.1 Hz, 2H), 1.98-1.89 (m, 4H), 1.8-1.73 (m, 4H), 1.65-1.56 (m, 2H), 1.27(m, 1H), -0.05 (s, 9H).

SiMe₃

¹³C NMR (126 MHz, CDCl₃) δ 137.73, 121.63, 56.65, 54.40, 36.27, 29.39, 26.81, 26.19, 23.93, 23.54, 21.33, -3.64.

Figure S185. ¹H NMR (500 MHz, CDCl₃) spectrum of 18ap.

Figure S186. ¹³C NMR (126 MHz, CDCl₃) spectrum of 18ap.

Figure S187. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 18ap.

Figure S188. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 18ap.

Figure S189. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 18ap.

4. Independent Synthesis of 17bi

Figure S190. Independent synthesis of 17bi

An authentic sample of **dimethyl(phenyl)(3-(prop-1-en-2-yl)cyclobutyl)silane (17bi)** was prepared through independent synthesis using procedures adapted from those reported previously for related molecules.^{60,61}

¹H NMR (500 MHz, CDCl₃) δ 7.57 – 7.49[§] (m, 2H), 7.51 – 7.45^{*} (m, 2H), 7.40 – 7.29 (m, 3H), 4.70[§] (s, 1H), 4.66^{*} (s, 1H), 4.65[§] (s, 1H), 4.58^{*} (s, 1H), 3.04^{*} (p, *J* = 9.0, 8.4 Hz, 1H), 2.74[§] (p, *J* = 8.5 Hz, 1H), 2.27 – 2.03 (m, 2H), 1.92 – 1.81 (m, 1H), 1.74 (tt, *J* = 11.0, 4.6 Hz, 1H), 1.64[§] (s, 3H), 1.61^{*} (s, 3H), 0.31[§] (s, 6H), 0.23^{*} (s, 6H) where resolved resonances arising from the *cis*(*) and *trans*([§]) diastereomers are indicated.

¹³C NMR (126 MHz, CDCl₃) δ 149.3[§], 149.2^{*}, 139.0, 133.9[§], 133.8^{*}, 129.0[§], 128.9^{*}, 127.9[§], 127.8^{*}, 107.6^{*}, 107.3[§], 43.3^{*}, 40.6[§], 28.8^{*}, 26.1[§], 20.2[§], 20.0^{*}, 17.5^{*}, 15.5[§], -4.6[§], -4.8^{*} where resolved resonances arising from the *cis*(*) and *trans*([§]) diastereomers are indicated.

GC-MS (EI): for $[M]^+$ = C₁₅H₂₂Si, calculated *m*/*z* = 230.14908, found *m*/*z* = 232.95.

Figure S191. ¹H NMR (500 MHz, CDCl₃) spectrum of 17bi.

Figure S192. ¹³C NMR (126 MHz, CDCl₃) spectrum of 17bi.

Figure S193. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 17bi.

Figure S194. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 17bi.

Figure S195. ¹H–¹H COSY (500 MHz, CDCI₃) spectrum of **17bi**.

5. Kinetic Analysis

5.1 General Kinetic Procedure

Kinetic experiments were performed in an N₂ atmosphere glovebox, using dimethylphenyl vinylsilane (**5b**) and myrcene (**9b**) as model substrates and cyclooctane as an internal standard. Stock mixtures of **5b**, **9b**, and [4+2]-cycloadduct **14bb** were prepared separately for to determine the GC response factors for each component relative to cyclooctane. The molar ratio vs. GC integrated area were fit with a linear regression to a function of the form:

$$\binom{n}{n_{\rm ST}} = \alpha_{\rm 5b} \left(\frac{A}{A_{\rm ST}}\right) + b \tag{S1}$$

where α is the response factor relative to cyclooctane. The raw data and fit parameters are listed in Table S1 and depicted in Figures S194-S196.

Figure S196. Calibration curve to determine the GC response factor (α_{5b}) of **5b** relative to cyclooctane. See Table S1 for tabulated values.

Figure S197. Calibration curve to determine the GC response factor (α_{9b}) of **9b** relative to cyclooctane. See Table S1 for tabulated values.

Figure S198. Calibration curve to determine the GC response factor (α_{14b}) of **14bb** relative to cyclooctane. Regression limited to the linear range shown in blue. See Table S1 for tabulated values.

Raw Data: ^a											
Entry	5	b	9	b	14	bb					
Enu y	$A_{\rm 5b}/A_{\rm ST}$	<i>п</i> 5ь/ <i>п</i> sт	A_{9b}/A_{ST}	<i>п</i> 9ь/ <i>п</i> sт	A_{14bb}/A_{ST}	п _{14ьь} /л _{st}					
1	0.473	0.382	0.517	0.487	0.786	0.327					
2	0.508	0.382	0.486	0.487	0.805	0.327					
3	0.906	0.765	1.096	0.974	1.437	0.653					
4	0.932	0.765	1.062	0.974	1.446	0.653					
5	1.438	1.147	1.793	1.461	2.172	0.980					
6	1.425	1.147	1.734	1.461	2.167	0.980					
7	1.966	1.529	2.471	1.948	2.768	1.306					
8	1.943	1.529	2.372	1.948	2.765	1.306					
9	3.984	3.058	4.881	3.895	4.310	2.612					
10	3.913	3.058	4.795	3.895	4.364	2.612					
11	6.059	4.587	7.825	5.843	5.656	3.918					
12	5.977	4.587	7.782	5.843	5.649	3.918					
13	8.109	6.116	10.349	7.791	7.223	5.225					
14	8.150	6.116	10.361	7.791	7.359	5.225					
			Fit Paramet	ers: ^b							
α ^b	0.	75	0.7	74	0.4	0.47 ^c					
b ^b	0.	05	0.1	15	–0.03 ^c						
$R^{2 b}$	0.	99	0.9	99	0.9	9 ^c					

Table S1. Calibration curves to determine the GC response factors relative to cyclooctane.^a

^{*a*} See Figures S194–S196. ^{*b*} Determined from the linear regression of the data to Equation S1. ^{*c*} Determined for the linear regime only where $A_{14bb}/A_{ST} \le 2.768$.

To minimize any confounding effects arising, all trials necessary for comparison within a single experiment were performed side-by-side using the same batches of starting materials and precatalyst where possible. All kinetic experiments were conducted in a glovebox. While standard preparative conditions were conducted in neat substrate, kinetic experiments were performed in benzene solution to ensure uniform mixing and ease of analysis. The chemoselectivity for formation of [4+2]-cycloadduct **14bb** (XX% [4+2]) was the same under neat conditions as in benzene solution. For each trial, substrate **9b** was filtered through a monster pipette (9.75 mm OD, 14.6 cm body, 4.5 mL capacity) filled with activated Al₂O₃ immediately prior to use. Substrates **5b** and **9b** were dispensed by mass into a 1.5 mL oven-dried glass vial. Cyclooctane and benzene were added using microliter glass syringes, and the vial was charged with a PTFE-coated flea magnetic stir bar. Separately, a 5.00 mL volumetric flask was charged with $[(^{Me}PDI)Fe(N_2)]_2(\mu_2-N_2)$ (0.044 g, 0.106 mmol), and benzene was added to volume. The [Fe] precatalyst solution was mixed to homogeneity, filtered through a plug of glass wool, and dispensed using a microliter glass syringe to initiate reaction. The precatalyst solution was frozen and stored at –35 °C. The reaction vial was sealed with a PTFE-lined screw cap, and the reaction was maintained with stirring at ambient temperature (25 °C) in the glovebox.

Aliquots ($\sim 2 \mu L$) were removed from the reaction mixture with the tip of a glass Pasteur pipette at regular intervals. Each aliquot was immediately diluted ~ 500 -fold in Et₂O (1 mL). The samples were removed from

the glovebox, exposed to air, and analyzed by gas chromatography. The conversion of substrates **5b** and **9b** to product **14bb** was monitored over the full course of the reaction relative to the cyclooctane internal standard. Using the calibrated response factors, an empirically determined constant infinity point, and the known initial concentrations of cyclooctane and substrates **5b** and **9b**, the concentration of each reaction component was calculated from the raw GC integration data as a function of time. The total volume (V_{tot}) was assumed constant over the course of the reaction.

In general, the reaction time-courses demonstrated clean exponential substrate consumption and product formation. As such, the concentration vs. time data were fit to a net first-order rate law as shown in Equations S2–S4 for the limiting substrate ([SM]_{limiting} = [**5b**] or [**9b**]), the substrate used in excess ([SM]_{excess} = [SM]_{limiting} + *excess* = [**5b**] or [**9b**]), and the product, respectively. Fit values for variable parameters describing the initial (or final) concentrations and the first-order rate constant, k_{obs} , were extracted.

$$[SM]_{t,\text{limiting}} = [SM]_{0,\text{limiting}} e^{-k_{\text{obs}}t}$$
(S2)

$$[SM]_{t,excess} = [SM]_{0,limiting}e^{-k_{obs}t} + excess$$
(S3)

$$[\mathbf{14bb}]_t = [\mathbf{14bb}]_{\infty} (1 - e^{-k_{\text{obs}}t})$$
(S4)

Alternatively, the initial rates (v_0) were determined from linear regression to concentration vs. time data obtained at time points where conversion of the limiting substrate $\leq 10\%$.

$$[SM]_t = -\nu_0 t + [SM]_0$$
(S5)

$$[\mathbf{14bb}]_t = v_0 t + [\mathbf{14bb}]_0 \tag{S6}$$

5.2 Test for Catalyst Death and/or Product Inhibition

To evaluate whether the total concentration of active iron catalyst remained constant over the course of the reaction, a "same excess" experiment was performed as described by Blackmond.⁶² Full reaction time courses were monitored for trials conducted with the same $[Fe]_{tot}$ and the same excess of one substrate (*excess* = $[9b]_0 - [5b]_0$) but with different absolute substrate concentrations. These variations mimic initiating the reaction at an intermediate substrate conversion. The overlay of time-shifted concentration vs. time plots from these experiments indicates that catalyst deactivation and product inhibition are negligible under the reaction conditions examined. The concentration and rate data are presented in Tables S2–4 and plotted in Figure S198.

Figure S199. "Same-Excess" experiment to test for catalyst death and/or product inhibition.

time					[5b] _t (N	1), v	where:				
(min)	wh	nere [5b] 0	= 1.0 M, [9b] ₀ = 1.2	2 M			$[5b]_0 = 0.5$	54 M, [9b]	₀ = 0.74 N	Λ
(11111)	trial i	trial ii	trial iii	trial iv	avg	_	trial i	trial ii	trial iii	trial iv	avg.
10	0.901	0.944	0.917	0.928	0.922		0.494	0.498	0.500	0.503	0.499
20	0.896	0.931	0.905	0.910	0.910		0.489	0.498	0.488	0.492	0.492
30	0.899	0.910	0.879	0.934	0.905		0.480	0.490	0.477	0.476	0.481
45	0.886	0.888	0.858	0.871	0.876		0.463	0.487	0.466	0.467	0.471
60	0.863	0.849	0.852	0.860	0.856		0.453	0.465	0.451	0.457	0.456
80	0.852	0.846	0.829	0.831	0.839		0.439	0.442	0.448	0.441	0.443
100	0.828	0.826	0.815	0.814	0.821		0.425	0.450	0.429	0.447	0.438
120	0.799	0.812	0.783	0.777	0.793		0.421	0.428	0.414	0.447	0.428
150	0.785	0.795	0.759	0.762	0.775		0.406	0.417	0.399	0.430	0.413
180	0.757	0.753	0.721	0.728	0.740		0.392	0.403	0.384	0.389	0.392
210	0.733	0.740			0.736		0.376	0.383			0.379
240	0.700	0.704	0.669	0.675	0.687		0.363	0.366	0.349	0.391	0.367
270	0.676	0.697			0.687		0.346	0.366			0.356
300	0.678	0.685	0.628	0.642	0.658		0.349	0.367	0.328	0.330	0.344
330	0.661	0.674			0.667		0.335	0.342			0.339
360	0.633	0.641	0.584	0.576	0.609		0.319	0.332	0.300	0.309	0.315
420	0.582	0.585	0.539	0.535	0.560		0.285	0.290	0.275	0.280	0.283
480			0.495	0.495	0.495				0.257	0.286	0.271
540			0.459	0.475	0.467				0.232	0.241	0.237
600			0.420	0.417	0.418				0.188	0.222	0.205
720			0.358	0.354	0.356				0.187	0.189	0.188
1040	0.300	0.256			0.278		0.134	0.141			0.138
1255			0.166	0.179	0.172				0.095	0.103	0.099
1440			0.137	0.147	0.142				0.085	0.089	0.087
1620			0.114	0.119	0.117		0.080	0.057			0.069
1800			0.103	0.106	0.105		0.494	0.498	0.500	0.503	0.499
2880	0.137	0.084			0.110		0.489	0.498	0.488	0.492	0.492

Table S2. Concentration [5b] vs. time data from the "same-excess" experiment. ^a

^{*a*} For all experiments, *excess* = 0.2 M, [Fe]_{tot} = 0.010 M. Reactions conducted in benzene at 25 °C. See Figure **S197**.

time e	[9b] _{<i>t</i>} (M), where:										
(min)	wh	ere [5b] 0	= 1.0 M, [[9b] ₀ = 1.2	2 M			5b] ₀ = 0.5	54 M, [9b]	₀ = 0.74 N	1
(11111)	trial i	trial ii	trial iii	trial iv	avg		trial i	trial ii	trial iii	trial iv	avg.
10	1.041	1.128	1.112	1.137	1.105		0.674	0.652	0.721	0.653	0.675
20	1.027	1.110	1.103	1.121	1.090		0.671	0.664	0.713	0.638	0.672
30	1.034	1.091	1.067	1.098	1.072		0.657	0.651	0.695	0.625	0.657
45	1.008	1.061	1.051	1.076	1.049		0.644	0.638	0.685	0.619	0.646
60	0.997	1.036	1.044	1.067	1.036		0.635	0.625	0.671	0.604	0.634
80	0.972	1.026	1.019	1.032	1.012		0.620	0.604	0.659	0.589	0.618
100	0.963	0.994	0.999	1.005	0.990		0.609	0.606	0.636	0.586	0.609
120	0.931	0.972	0.970	0.980	0.963		0.587	0.578	0.624	0.596	0.596
150	0.914	0.970	0.933	0.949	0.942		0.575	0.572	0.605	0.559	0.578
180	0.883	0.929	0.898	0.920	0.908		0.563	0.560	0.590	0.535	0.562
210	0.861	0.902			0.882		0.552	0.541			0.547
240	0.828	0.865	0.841	0.859	0.848		0.541	0.521	0.555	0.547	0.541
270	0.799	0.866			0.832		0.514	0.520			0.517
300	0.795	0.848	0.791	0.813	0.812		0.516	0.518	0.523	0.470	0.507
330	0.783	0.842			0.812		0.505	0.486			0.495
360	0.750	0.815	0.755	0.757	0.769		0.483	0.481	0.501	0.444	0.477
420	0.707	0.749	0.709	0.712	0.719		0.457	0.436	0.473	0.414	0.445
480			0.660	0.669	0.665				0.451	0.414	0.432
540			0.610	0.605	0.607				0.423	0.367	0.395
600			0.564	0.571	0.568				0.368	0.344	0.356
720			0.496	0.499	0.498				0.364	0.311	0.338
1040	0.393	0.406			0.400		0.286	0.289			0.287
1255			0.298	0.305	0.301				0.269	0.220	0.245
1440			0.277	0.281	0.279				0.248	0.206	0.227
1620			0.254	0.262	0.258						
1800			0.237	0.249	0.243						
2880	0.231	0.213			0.222		0.223	0.186			0.204

Table S3. Concentration [9b] vs. time data from the "same-excess" experiment. ^a

^{*a*} For all experiments, *excess* = 0.2 M, [Fe]_{tot} = 0.010 M. Reactions conducted in benzene at 25 °C. See Figure **S197**.

time e					[14bb] _t (M),	where:				
(min)	wh	ere [5b]0	= 1.0 M, [[9b] ₀ = 1.2	2 M			[5b] ₀ = 0.5	54 M, [9b]	₀ = 0.74 N	1
(11111)	trial i	trial ii	trial iii	trial iv	avg	_	trial i	trial ii	trial iii	trial iv	avg.
10	0.002	0.003	0.006	0.009	0.005		0.000	0.000	0.006	0.005	0.003
20	0.015	0.018	0.023	0.025	0.020		0.011	0.010	0.016	0.017	0.013
30	0.028	0.029	0.039	0.045	0.035		0.019	0.020	0.029	0.028	0.024
45	0.045	0.047	0.061	0.062	0.054		0.030	0.034	0.048	0.041	0.038
60	0.065	0.065	0.078	0.080	0.072		0.045	0.047	0.054	0.053	0.050
80	0.085	0.086	0.100	0.104	0.094		0.058	0.057	0.070	0.068	0.063
100	0.104	0.105	0.124	0.130	0.116		0.069	0.072	0.083	0.085	0.077
120	0.119	0.123	0.144	0.143	0.132		0.080	0.079	0.092	0.098	0.087
150	0.148	0.153	0.174	0.178	0.163		0.098	0.099	0.113	0.119	0.107
180	0.169	0.172	0.203	0.207	0.188		0.113	0.118	0.129	0.133	0.123
210	0.197	0.207			0.202		0.131	0.130			0.130
240	0.226	0.234	0.256	0.268	0.246		0.151	0.145	0.164	0.173	0.158
270	0.254	0.259			0.256		0.157	0.167			0.162
300	0.284	0.296	0.322	0.333	0.309		0.177	0.191	0.208	0.198	0.193
330	0.306	0.325			0.316		0.192	0.194			0.193
360	0.330	0.338	0.377	0.391	0.359		0.210	0.214	0.230	0.231	0.221
420	0.370	0.375	0.429	0.435	0.402		0.227	0.235	0.257	0.255	0.243
480			0.476	0.491	0.483				0.294	0.321	0.308
540			0.537	0.537	0.537				0.315	0.306	0.311
600			0.575	0.608	0.592				0.340	0.339	0.339
720			0.662	0.667	0.664				0.388	0.378	0.383
1040	0.894	0.764			0.829		0.421	0.406			0.413
1255			0.861	0.928	0.895				0.496	0.483	0.490
1440			0.931	0.950	0.941				0.534	0.508	0.521
1620			0.938	0.965	0.952		0.500	0.551			0.526
1800			0.965	0.948	0.956		0.000	0.000	0.006	0.005	0.003
2880	0.974	1.014			0.994		0.011	0.010	0.016	0.017	0.013

Table S4. Concentration [14bb] vs. time data from the "same-excess" experiment. ^a

^{*a*} For all experiments, *excess* = 0.2 M, [Fe]_{tot} = 0.010 M. Reactions conducted in benzene at 25 °C. See Figure **S197**.

Figure S200. Concentration vs. time data for trials initiated with the "same excess" substrate concentrations. (**A**.) [**5b**]₀ = 1.0 M, [**9b**]₀ = 1.2 M, excess = 0.2 M, [Fe]_{tot} = 0.010 M. (**B**.) [**5b**]₀ = 0.54 M, [**9b**]₀ = 0.74 M, excess = 0.20 M, [Fe]_{tot} = 0.010 M. (**C**.) Overlay of plots A and B where the time-axis is shifted +450 minutes and [**14bb**] is shifted +0.44 M. Open markers represent data points obtained from individual trials; closed markers represent average values obtained from duplicate trials. See Table S2 for tabulated data.

5.3 Determination of Kinetic Order in Diene 9b

Figure S201. Determination of order in diene 9b.

To determine the order in myrcene, initial rate measurements and full reaction time courses were monitored for trials conducted with the same [Fe]_{tot} and [**5b**]₀ but differing [**9b**]₀. The overlay of concentration vs. time plots from these experiments indicates that the reaction exhibits a zero-order dependence on diene **9b** (i.e. no rate dependence) under the conditions examined. This is consistent with saturation of the iron catalyst with diene in the resting state (see Section 5.2). The concentration and rate data are presented in Tables S5–7 and plotted in Figure **S200**.

timo				b] _t (M), where:						
(min)	wher	re [9b] ₀ = ´	1.2 M	wher	e [9b] ₀ = '	1.6 M	wher	e [9b] ₀ = ().8 M	
((()))	trial i	trial ii	avg	trial i	trial ii	avg.	trial i	trial ii	avg.	
10	0.901	0.944	0.922	0.884	0.933	0.908	0.901	0.969	0.935	
20	0.896	0.931	0.913	0.880	0.920	0.900	0.899	0.940	0.919	
30	0.899	0.910	0.905	0.870	0.900	0.885	0.882	0.905	0.893	
45	0.886	0.888	0.887	0.842	0.900	0.871	0.873	0.913	0.893	
60	0.863	0.849	0.856	0.833	0.853	0.843	0.838	0.924	0.881	
80	0.852	0.846	0.849	0.810	0.850	0.830	0.825	0.845	0.835	
100	0.828	0.826	0.827	0.801	0.823	0.812	0.811	0.858	0.834	
120	0.799	0.812	0.805	0.761	0.806	0.784	0.793	0.819	0.806	
150	0.785	0.795	0.790	0.734	0.787	0.761	0.766	0.810	0.788	
180	0.757	0.753	0.755	0.713	0.748	0.731	0.748	0.780	0.764	
210	0.733	0.740	0.736	0.695	0.718	0.706	0.727	0.740	0.733	
240	0.700	0.704	0.702	0.704	0.697	0.701	0.704	0.752	0.728	
270	0.676	0.697	0.687	0.629	0.681	0.655	0.682	0.698	0.690	
300	0.678	0.685	0.682	0.642	0.666	0.654	0.678	0.707	0.693	
330	0.661	0.674	0.667	0.630	0.640	0.635	0.668	0.686	0.677	
360	0.633	0.641	0.637	0.597	0.620	0.608	0.660	0.680	0.670	
420	0.582	0.585	0.583	0.549	0.561	0.555	0.608	0.614	0.611	
1040	0.300	0.256	0.278	0.197	0.212	0.204	0.344	0.356	0.350	
2880	0.137	0.084	0.110	0.071	0.036	0.053	0.264	0.248	0.256	
				Initial I	Rate					
<i>v</i> ₀ (10 ⁻³	0.84	1 26	1 10	1 01	1 22	1 1 1	1 10	1 26	1 07	
M min ^{−1})	0.04	1.50	1.10	1.01	1.22	1.11	1.10	1.30	1.27	
[5b] ₀ (M)	0.92	0.95	0.93	0.89	0.94	0.92	0.92	0.97	0.94	
R^2	0.95	0.95	0.98	0.97	0.95	0.98	0.96	0.73	0.93	
				First-Ore	der Fit					
$\frac{k_{obs}}{min^{-1}}$	1.01(5)	1.12(4)	1.07(4)	1.22(5)	1.26(3)	1.24(4)	1.49(8)	1.5(1)	1.51(8)	
[5b]₀ (M)	0.91(1)	0.94(1)	0.92(1)	0.89(1)	0.95(1)	0.92(1)	0.91(2)	0.96(2)	0.94(2)	
excess (M)							0.24(2)	0.23(2)	0.24(2)	

Table S5. Concentration [5b] vs. time data with varied [9b]₀.^a

^a For all experiments, [**5b**]₀ = 1.0 M, [Fe]_{tot} = 0.010 M. Reactions conducted in benzene at 25 °C. See Figures **\$200**.

Figure S202. Concentration vs. time data, monitoring [**5b**]_t, for trials initiated with varied [**9b**]₀ where [**5b**]₀ = 1.0 M and [Fe]_{tot} = 0.010 M. Open markers represent data points obtained from individual trials; closed markers represent average values obtained from duplicate trials. (**A**.) Full reaction time course fit to a first-order rate law (solid lines). (**B**.) Initial rate profiles obtained from linear regression (dotted lines) to data obtained where conversion $\leq 10\%$. (**C**.). Initial rate vs. initial concentration [**9b**]₀ with the average effective rate constant (*k*_{obs}, dotted line). See Table S5 for tabulated data and fit parameters.

£				[9 b] _t (M), who	ere:			
time (min)	wher	re [9b] ₀ = [•]	1.2 M	wher	e [9b] ₀ = ·	1.6 M	wher	e [9b] ₀ = (D.8 M
(11111)	trial i	trial ii	avg	trial i	trial ii	avg.	trial i	trial ii	avg.
10	1.041	1.128	1.084	1.445	1.478	1.461	0.724	0.752	0.738
20	1.027	1.110	1.069	1.425	1.461	1.443	0.715	0.738	0.726
30	1.034	1.091	1.062	1.414	1.451	1.433	0.703	0.719	0.711
45	1.008	1.061	1.034	1.396	1.446	1.421	0.702	0.717	0.710
60	0.997	1.036	1.017	1.386	1.374	1.380	0.671	0.718	0.694
80	0.972	1.026	0.999	1.371	1.382	1.377	0.655	0.655	0.655
100	0.963	0.994	0.979	1.361	1.363	1.362	0.654	0.660	0.657
120	0.931	0.972	0.951	1.312	1.327	1.319	0.618	0.621	0.619
150	0.914	0.970	0.942	1.285	1.308	1.297	0.592	0.615	0.603
180	0.883	0.929	0.906	1.264	1.254	1.259	0.576	0.590	0.583
210	0.861	0.902	0.882	1.247	1.250	1.248	0.546	0.559	0.552
240	0.828	0.865	0.846	1.236	1.206	1.221	0.528	0.588	0.558
270	0.799	0.866	0.832	1.179	1.208	1.194	0.506	0.518	0.512
300	0.795	0.848	0.821	1.185	1.191	1.188	0.495	0.504	0.500
330	0.783	0.842	0.812	1.176	1.165	1.170	0.484	0.488	0.486
360	0.750	0.815	0.782	1.149	1.136	1.142	0.465	0.478	0.472
420	0.707	0.749	0.728	1.066	1.079	1.073	0.425	0.422	0.424
1040	0.393	0.406	0.400	0.691	0.686	0.689	0.170	0.173	0.171
2880	0.231	0.213	0.222	0.540	0.483	0.511	0.094	0.075	0.085
				Initial I	Rate				
<i>v</i> ₀ (10 ⁻³	0.01	1 46	1 10	0.00	1 24	1 1 2	1.00	1 16	1 00
M min ^{−1})	0.91	1.40	1.19	0.90	1.34	1.13	1.00	1.10	1.00
[9b] ₀ (M)	1.05	1.14	1.09	1.44	1.49	1.47	0.74	0.76	0.75
R^2	0.97	0.97	0.99	0.96	0.88	0.94	0.96	0.83	0.94
				First-Ord	der Fit				
<i>k_{obs}</i> (10 ⁻³ min ⁻¹)	1.28(5)	1.20(7)	1.24(5)	1.22(8)	1.21(9)	1.21(7)	1.30(6)	1.33(6)	1.32(6)
[9b] ₀ (M)	1.06(1)	1.12(2)	1.19(2)	1.46(3)	1.49(3)	1.47(3)	0.73(1)	0.75(1)	0.74(1)
excess (M)	0.20(1)	0.17(2)	0.19(2)	0.49(3)	0.44(3)	0.46(3)			

Table S6. Concentration [9b] vs. time data with varied [9b]₀.^a

^a For all experiments, $[5b]_0 = 1.0 \text{ M}$, $[Fe]_{tot} = 0.010 \text{ M}$. Reactions conducted in benzene at 25 °C. See Figures **S201**.

Figure S203. Concentration vs. time data, monitoring $[9b]_t$, for trials initiated with varied $[9b]_0$ where $[5b]_0 = 1.0$ M and $[Fe]_{tot} = 0.010$ M. Open markers represent data points obtained from individual trials; closed markers represent average values obtained from duplicate trials. (A.) Full reaction time course fit to a first-order rate law (solid lines). (B.) Initial rate profiles obtained from linear regression (dotted lines) to data obtained where conversion $\leq 10\%$. (C.). Initial rate vs. initial concentration $[9b]_0$ with the average effective rate constant (k_{obs} , dotted line). See Table S6 for tabulated data and fit parameters.

£				[14b	b] _t (M), w	here:			
time (min)	wher	e [9b] ₀ = '	1.2 M	wher	e [9b] ₀ = ·	1.6 M	wher	e [9b] ₀ = ().8 M
(11111)	trial i	trial ii	avg	trial i	trial ii	avg.	trial i	trial ii	avg.
10	0.002	0.003	0.003	0.003	0.004	0.003	0.002	0.001	0.001
20	0.015	0.018	0.016	0.017	0.018	0.017	0.013	0.016	0.015
30	0.028	0.029	0.029	0.030	0.029	0.030	0.026	0.027	0.026
45	0.045	0.047	0.046	0.047	0.047	0.047	0.041	0.045	0.043
60	0.065	0.065	0.065	0.067	0.071	0.069	0.059	0.068	0.063
80	0.085	0.086	0.085	0.086	0.088	0.087	0.075	0.079	0.077
100	0.104	0.105	0.105	0.106	0.110	0.108	0.094	0.099	0.096
120	0.119	0.123	0.121	0.126	0.128	0.127	0.113	0.114	0.113
150	0.148	0.153	0.150	0.155	0.160	0.157	0.138	0.140	0.139
180	0.169	0.172	0.171	0.177	0.183	0.180	0.163	0.161	0.162
210	0.197	0.207	0.202	0.209	0.212	0.211	0.192	0.186	0.189
240	0.226	0.234	0.230	0.215	0.247	0.231	0.215	0.226	0.221
270	0.254	0.259	0.256	0.270	0.274	0.272	0.234	0.230	0.232
300	0.284	0.296	0.290	0.305	0.306	0.306	0.259	0.265	0.262
330	0.306	0.325	0.316	0.330	0.327	0.328	0.281	0.289	0.285
360	0.330	0.338	0.334	0.363	0.362	0.363	0.316	0.316	0.316
420	0.370	0.375	0.373	0.396	0.390	0.393	0.334	0.337	0.336
1040	0.894	0.764	0.829	0.813	0.818	0.815	0.635	0.629	0.632
2880	0.974	1.014	0.994	0.979	1.056	1.017	0.732	0.806	0.769
				Initial F	Rate				
<i>v</i> ₀ (10 ⁻³	1 15	1 1 2	1 1 /	1 15	1 10	1 17	1.06	1 15	1 1 1
M min ^{−1})	1.15	1.15	1.14	1.15	1.19	1.17	1.00	1.15	1.11
[14bb] ₀	_0.007	_0.005	_0.006	_0.006	_0.006	_0.006	_0.007	_0.007	_0 008
(M)	0.007	0.000	0.000	0.000	0.000	0.000	0.007	0.007	0.000
R^2	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.98	0.99
				First-Ord	der Fit				
<i>k_{obs}</i> (10 ^{−3} min ^{−1})	1.2(1)	1.06(3)	1.09(7)	1.17(6)	1.07(4)	1.08(3)	1.42(5)	1.27(3)	1.34(3)
[14bb]∞ (M)	1.06(6)	1.08(2)	1.07(4)	1.04(3)	1.13(2)	1.12(5)	0.76(1)	0.83(1)	0.80(1)

Table S7. Concentration [14bb] vs. time data with varied [9b]0. a	
---	--

^a For all experiments, $[5b]_0 = 1.0 \text{ M}$, $[Fe]_{tot} = 0.010 \text{ M}$. Reactions conducted in benzene at 25 °C. See Figures **S202**.

Figure S204. Concentration vs. time data, monitoring [**15bb**]_t, for trials initiated with varied [**9b**]₀ where [**5b**]₀ = 1.0 M and [Fe]_{tot} = 0.010 M. Open markers represent data points obtained from individual trials; closed markers represent average values obtained from duplicate trials. (**A**.) Full reaction time course fit to a first-order rate law (solid lines). (**B**.) Initial rate profiles obtained from linear regression (dotted lines) to data obtained where conversion $\leq 10\%$. (**C**.). Initial rate vs. initial concentration [**9b**]₀ with the average effective rate constant (k_{obs} , dotted line). See Table S7 for tabulated data and fit parameters.

5.4 Determination of Kinetic Order in Vinyl Silane 5b

Figure S205. Determination of order in vinyl silane 5b.

To determine the order in myrcene, initial rate measurements and full reaction time courses were monitored for trials conducted with the same [Fe]_{tot} and [**9b**]₀ but differing [**5b**]₀. Under all of the conditions examined, the reaction exhibited clean exponential decay of substrate concentration and exponential growth of product concentration, indicative of a net first-order rate law (at constant [Fe]_{tot}). Given the zero-order dependence on diene [**9b**], this observation was most consistent with the first-order dependence arising from the changing vinyl silane [**5b**]. This conclusion was corroborated by the observation of a linear relationship between [**5b**]₀ and the initial rate, *v*₀. at low [**5b**]₀ and saturation at high [**5b**]₀. The concentration and rate data are presented in Tables S8–10 and plotted in **Figures S204–206**.

ť		[5b] _{<i>t</i>} (M), where:										
time (min)	whei	re [5b] ₀ = 1	.4 M	whei	re [5b] 0 = 1	.0 M	where [5b] ₀ = 0.54 M				
((()))	trial i	trial ii	avg.	trial i	trial ii	avg	trial i	trial ii				
10	1.324	1.341	1.333	0.917	0.928	0.922	0.487	0.492				
20	1.314	1.301	1.308	0.905	0.910	0.908	0.489	0.482				
30	1.297	1.295	1.296	0.879	0.934	0.906	0.463	0.467				
45	1.284	1.273	1.279	0.858	0.871	0.865	0.453	0.453				
60	1.266	1.253	1.260	0.852	0.860	0.856	0.438	0.444				
80	1.227	1.255	1.241	0.829	0.831	0.830	0.447	0.427				
100	1.189	1.199	1.194	0.815	0.814	0.815	0.418	0.415				
120	1.166	1.175	1.170	0.783	0.777	0.780	0.407	0.410				
150	1.135	1.143	1.139	0.759	0.762	0.761	0.392	0.391				
180	1.112	1.100	1.106	0.721	0.728	0.725	0.377	0.367				
240	1.022	1.054	1.038	0.669	0.675	0.672	0.346	0.341				
300	0.976	0.981	0.978	0.628	0.642	0.635	0.314	0.310				
360	0.911	0.918	0.914	0.584	0.576	0.580	0.287	0.286				
420	0.859	0.872	0.866	0.539	0.535	0.537	0.261	0.254				
480	0.808	0.808	0.808	0.495	0.495	0.495	0.243	0.229				
540	0.750	0.749	0.750	0.459	0.475	0.467	0.208	0.212				
600	0.709	0.710	0.710	0.420	0.417	0.418	0.189	0.189				
720	0.613	0.618	0.616	0.358	0.354	0.356	0.155	0.156				
1255	0.373	0.367	0.370	0.166	0.179	0.172	0.078	0.067				
1440	0.330	0.340	0.335	0.137	0.147	0.142	0.057	0.052				
1620	0.322	0.321	0.321	0.114	0.119	0.117	0.056	0.056				
1800	0.300	0.301	0.301	0.103	0.106	0.105	0.053	0.000				
1980	0.294	0.293	0.294	0.093	0.096	0.094	0.000	0.000				
				Initial Rate								
<i>v</i> ₀ (10 ⁻³ M	1 2/	1 17	1 1 2	1 25	1 /7	1 26	1.07	1.00				
min⁻¹)	1.54	1.17	1.15	1.25	1.47	1.50	1.07	1.00				
[5b] ₀ (M)	1.34	1.33	1.34	0.92	0.95	0.94	0.50	0.50				
R^2	0.98	0.85	0.98	0.96	0.87	0.97	0.93	0.98				
				First-Order Fi	it							
k_{obs} (10 ⁻³	1.34(4)	1.31(5)	1.34(4)	1.29(1)	1.30(2)	1.30(1)	1.52(4)	1.59(4)				
[56] (M)	1 35(1)	1 35(2)	1 35(1)	0 02(1)	0.03(1)	0.03(1)	0 40(1)	0.49(1)				
	0.10(1)	1.33(Z) 0.18/2)	0.18(1)	0.92(1)	0.83(1)	0.85(1)	0.49(1)	0.49(1)				
	0.19(1)	0.10(2)	0.10(1)									

Table S8. Concentration [5b] vs. time data with varied [5b]₀.^a

^a For all experiments, $[9b]_0 = 1.2$ M, $[Fe]_{tot} = 0.010$ M. Reactions conducted in benzene at 25 °C. See Figure **S204**. Continued in Table S9.

				[5b]] _t (M), whe	ere:			
time	where	e [5b] ₀ = 0.	54 M,	whore	o [Eb], - 0	20 M	where	e [5b] ₀ = 0	.22 M
(min)		continued		where	e [30]0 – 0	.39 101			
	trial iii	trial iv	avg				trial i	trial ii	avg.
10	0.471	0.495	0.486	0.362	0.415	0.389	0.221	0.208	0.215
20	0.460	0.485	0.479	0.349	0.407	0.378	0.214	0.202	0.208
30	0.452	0.475	0.464	0.341	0.394	0.367	0.212	0.193	0.203
45	0.443	0.462	0.453	0.330	0.384	0.357	0.200	0.187	0.194
60	0.427	0.444	0.438	0.324	0.376	0.350	0.194	0.182	0.188
80	0.417	0.427	0.430	0.315	0.353	0.334	0.196	0.182	0.189
100	0.397	0.417	0.412	0.299	0.348	0.323	0.179	0.168	0.173
120	0.383	0.397	0.399	0.289	0.327	0.308	0.172	0.159	0.166
150	0.366	0.392	0.385	0.272	0.318	0.295	0.169	0.156	0.163
180	0.350	0.365	0.365	0.261	0.305	0.283	0.161	0.157	0.159
240	0.321	0.338	0.337	0.236	0.275	0.255	0.135	0.146	0.140
300	0.294	0.308	0.307	0.219	0.250	0.234	0.128	0.121	0.125
360	0.265	0.279	0.279	0.194	0.220	0.207	0.112	0.106	0.109
420			0.258						
480			0.236						
540	0.195	0.206	0.205	0.143	0.163	0.153	0.088	0.081	0.085
600			0.189						
720	0.143	0.146	0.150	0.103	0.115	0.109	0.060	0.063	0.062
1255	0.061	0.067	0.068	0.048	0.055	0.052	0.036	0.036	0.036
1440	0.054	0.054	0.054	0.045	0.046	0.045	0.033	0.031	0.032
1620			0.056						
1800			0.026						
1980			0.000						
				Initial	Rate				
V ₀									
(10 ⁻³	0.04	1 00	0.00	0.70	0.00	0.70	0.47	0.70	0.00
M min⁻	0.84	1.00	0.98	0.76	0.80	0.78	0.47	0.76	0.62
¹)									
[5b]₀	0.40	0 51	0.50	0.07	0.40	0.20	0.00	0.00	0.00
(M)	0.40	0.51	0.50	0.37	0.42	0.39	0.23	0.22	0.22
R^2	0.99	0.99	0.99	0.96	0.97	0.97	0.89	0.99	0.99
				First-O	rder Fit				
Kobs									
(10 ^{–3}	1.63(2)	1.63(2)	1.57(3)	1.69(4)	1.72(3)	1.71(3)	1.72(8)	1.60(7)	1.66(7)
min⁻¹)									
[5b]₀ (M)	0.47(1)	0.50(1)	0.49(1)	0.36(2)	0.41(1)	0.39(1)	0.22(1)	0.20(1)	0.21(1)

Table S9. Concentration [5b] vs. time data with varied [5b]0, continued.^a

^a For all experiments, $[9b]_0 = 1.2 \text{ M}$, $[Fe]_{tot} = 0.010 \text{ M}$. Reactions conducted in benzene at 25 °C. See Figures **S204**. Continued from Table S8.

Figure S206. Concentration vs. time data, monitoring $[5b]_t$, for trials initiated with varied $[5b]_0$ where $[9b]_0 = 1.2$ M and $[Fe]_{tot} = 0.010$ M. Open markers represent data points obtained from individual trials; closed markers represent average values obtained from duplicate trials. (A.) Full reaction time course fit to a first-order rate law (solid lines). (B.) Initial rate profiles obtained from linear regression (dotted lines) to data obtained where conversion $\leq 10\%$. (C.). Initial rate vs. initial concentration [5b]_0. See Tables S8 and S9 for tabulated data and fit parameters.
				[9b] _t (N	I), where:			
time (min)	whe	re [5b]₀ = 1	.4 M	whe	re [5b] ₀ = 1	.0 M	where [5]	b] ₀ = 0.54
. ,	trial i	trial ii	avg	trial i	trial ii	avg	trial i	trial ii
10	1.126	1.123	1.124	1.112	1.137	1.125	1.085	1.108
20	1.114	1.099	1.106	1.103	1.121	1.112	1.076	1.088
30	1.089	1.093	1.091	1.067	1.098	1.082	1.030	1.073
45	1.078	1.067	1.072	1.051	1.076	1.063	1.042	1.069
60	1.047	1.049	1.048	1.044	1.067	1.055	1.025	1.058
80	1.020	1.038	1.029	1.019	1.032	1.025	0.996	1.038
100	0.988	0.992	0.990	0.999	1.005	1.002	0.987	1.011
120	0.963	0.967	0.965	0.970	0.980	0.975	0.975	1.012
150	0.923	0.935	0.929	0.933	0.949	0.941	0.958	0.972
180	0.896	0.889	0.892	0.898	0.920	0.909	0.935	0.965
240	0.826	0.823	0.825	0.841	0.859	0.850	0.905	0.921
300	0.768	0.771	0.769	0.791	0.813	0.802	0.871	0.891
360	0.704	0.711	0.708	0.755	0.757	0.756	0.836	0.861
420	0.652	0.657	0.655	0.709	0.712	0.711	0.808	0.835
480	0.591	0.599	0.595	0.660	0.669	0.665	0.773	0.806
540	0.537	0.539	0.538	0.610	0.605	0.607	0.739	0.771
600	0.479	0.490	0.485	0.564	0.571	0.568	0.707	0.737
720	0.396	0.403	0.399	0.496	0.499	0.498	0.674	0.700
1255	0.167	0.168	0.167	0.298	0.305	0.301	0.558	0.591
1440	0.130	0.139	0.135	0.277	0.281	0.279	0.551	0.584
1620	0.115	0.114	0.115	0.254	0.262	0.258	0.549	0.561
1800	0.100	0.108	0.104	0.237	0.249	0.243	0.528	0.531
1980	0.098	0.097	0.097	0.236	0.245	0.241	0.526	0.550
				Initial Rate				
<i>v</i> ₀ (10 ⁻³	1 53	1 22	1 37	1 32	1 46	1 39	1 18	0 93
M min⁻¹)	1.00	1.22	1.07	1.02	1.40	1.00	1.10	0.00
[9b] ₀ (M)	1.14	1.13	1.13	1.12	1.15	1.13	1.09	1.11
R^2	0.99	0.96	0.99	0.94	0.98	0.96	0.73	0.89
				First-Order F	it			
<i>k_{obs}</i> (10 ^{−3} min ^{−1})	1.41(2)	1.39(2)	1.40(2)	1.40(4)	1.47(4)	1.44(4)	1.58(6)	1.53(5)
[9b] ₀ (M)	1.15(1)	1.14(1)	1.14(1)	1.12(1)	1.14(1)	1.13(1)	1.08(1)	1.11(1)
excess (M)				0.16(1)	0.17(1)	0.16(1)	0.49(1)	0.51(1)

Table S10. Concentration [9b] vs. time data with varied [5b]₀. ^a

^a For all experiments, $[9b]_0 = 1.2$ M, $[Fe]_{tot} = 0.010$ M. Reactions conducted in benzene at 25 °C. See Figures **S205**. Continued in Table S11.

	$[\mathbf{9b}]_t$ (M), where:										
time	where	e [5b] ₀ = 0.	.54 M,	whore	556] ₀ = 0	20 M	whore	o [5b]o = 0	22 M		
(min)		continued		wiere	e [30]0 – 0	.59 101	wileit	e [30]0 – 0	.22 101		
	trial iii	trial iv	avg	trial i	trial ii	avg.	trial i	trial ii	avg.		
10	1.098	1.113	1.101	1.126	1.323	1.225	1.110	1.095	1.103		
20	1.077	1.100	1.085	1.098	1.312	1.205	1.086	1.083	1.085		
30	1.069	1.080	1.063	1.097	1.302	1.200	1.096	1.084	1.090		
45	1.040	1.065	1.054	1.078	1.276	1.177	1.084	1.058	1.071		
60	1.037	1.049	1.042	1.073	1.267	1.170	1.074	1.062	1.068		
80	0.998	1.035	1.017	1.055	1.243	1.149	1.056	1.028	1.042		
100	0.989	1.021	1.002	1.035	1.205	1.120	1.043	1.036	1.040		
120	0.977	0.979	0.986	1.008	1.209	1.109	1.031	1.022	1.026		
150	0.958	0.982	0.967	1.000	1.184	1.092	1.028	1.013	1.020		
180	0.940	0.954	0.949	0.989	1.167	1.078	1.020	1.044	1.032		
240	0.902	0.916	0.911	0.946	1.126	1.036	0.979	0.996	0.987		
300	0.871	0.881	0.878	0.924	1.104	1.014	0.984	0.966	0.975		
360	0.839	0.850	0.846	0.909	1.070	0.989	0.963	0.954	0.959		
420			0.821								
480			0.790								
540	0.756	0.757	0.756	0.835	0.992	0.913	0.913	0.931	0.922		
600			0.722								
720	0.680	0.695	0.688	0.779	0.921	0.850	0.883	0.864	0.873		
1255	0.588	0.587	0.581	0.705	0.842	0.773	0.829	0.826	0.828		
1440	0.573	0.571	0.570	0.689	0.827	0.758	0.832	0.817	0.824		
1620			0.555								
1800			0.529								
1980			0.538								
				Initial	Rate						
V0	4.00	4.00	4 4 7	0.00	4.40	4.00	0.70	0.57	0.05		
(10 ⁻³ M	1.26	1.30	1.17	0.98	1.12	1.08	0.73	0.57	0.65		
min ⁻ ')											
[5b] ₀	1.11	1.12	1.11	1.13	1.33	1.23	1.11	1.10	1.11		
(M)				-					o 40		
R²	0.94	0.98	0.94	0.87	0.98	0.95	0.36	0.68	0.48		
				First-Or	der Fit						
K_{obs}	4 74/4)	4 00/7)	4 50(0)	1 0(1)	1 0(1)	1 0(1)	0.0(0)	1.0(0)	1.0(0)		
(10°	1.71(1)	1.68(7)	1.58(6)	1.9(1)	1.9(1)	1.9(1)	2.0(2)	1.6(2)	1.8(2)		
(1)(n')											
0[DC]	1.09(2)	1.11(1)	1.10(1)	1.12(1)	1.22(1)	1.22(1)	1.10(1)	1.09(2)	1.10(1)		
(IVI)				. ,			. ,				
excess (M)	0.52(1)	0.52(1)	0.51(1)	0.66(1)	0.79(1)	0.73(1)	0.81(1)	0.79(2)	0.80(1)		

Table S11. Concentration [9b] vs. time data with varied [5b]₀, continued. ^a

^a For all experiments, $[9b]_0 = 1.2 \text{ M}$, $[Fe]_{tot} = 0.010 \text{ M}$. Reactions conducted in benzene at 25 °C. See Figures **S205**. Continued from Table S10.

Figure S207. Concentration vs. time data, monitoring $[9b]_t$, for trials initiated with varied $[5b]_0$ where $[9b]_0 = 1.2$ M and $[Fe]_{tot} = 0.010$ M. Open markers represent data points obtained from individual trials; closed markers represent average values obtained from duplicate trials. (A.) Full reaction time course fit to a first-order rate law (solid lines). (B.) Initial rate profiles obtained from linear regression (dotted lines) to data obtained where conversion $\leq 10\%$. (C.) Initial rate vs. initial concentration [5b]_0. See Table S9 for tabulated data and fit parameters.

time e				[14bb] _t (N	M), where:			
ume (min)	whei	re [5b] ₀ = 1	.4 M	whei	re [5b] ₀ = 1	I.0 M	where [5b] ₀ = 0.5 M
((()))	trial i	trial ii	avg	trial i	trial ii	avg.	trial i	trial ii
10	0.009	0.010	0.009	0.006	0.009	0.008	0.006	0.006
20	0.028	0.028	0.028	0.023	0.025	0.024	0.018	0.018
30	0.048	0.047	0.047	0.039	0.045	0.042	0.030	0.031
45	0.072	0.071	0.071	0.061	0.062	0.061	0.046	0.044
60	0.094	0.089	0.091	0.078	0.080	0.079	0.055	0.056
80	0.121	0.123	0.122	0.100	0.104	0.102	0.073	0.071
100	0.148	0.148	0.148	0.124	0.130	0.127	0.088	0.088
120	0.172	0.170	0.171	0.144	0.143	0.143	0.100	0.100
150	0.212	0.205	0.209	0.174	0.178	0.176	0.120	0.119
180	0.247	0.244	0.246	0.203	0.207	0.205	0.138	0.137
240	0.318	0.323	0.320	0.256	0.268	0.262	0.176	0.175
300	0.396	0.385	0.391	0.322	0.333	0.328	0.220	0.210
360	0.453	0.447	0.450	0.377	0.391	0.384	0.249	0.252
420	0.526	0.529	0.527	0.429	0.435	0.432	0.283	0.281
480	0.608	0.589	0.599	0.476	0.491	0.483	0.318	0.309
540	0.653	0.640	0.647	0.537	0.537	0.537	0.349	0.339
600	0.715	0.731	0.723	0.575	0.608	0.592	0.372	0.365
720	0.831	0.823	0.827	0.662	0.667	0.664	0.426	0.422
1255	1.141	1.135	1.138	0.861	0.928	0.895	0.541	0.531
1440	1.180	1.198	1.189	0.931	0.950	0.941	0.552	0.560
1620	1.242	1.202	1.222	0.938	0.965	0.952	0.609	0.546
1800	1.226	1.243	1.234	0.965	0.948	0.956	0.553	0.559
1980	1.238	1.243	1.241	0.987	0.996	0.991	0.576	0.574
				Initial Rate				
<i>v</i> ₀ (10 ⁻³	1.60	1 59	1 50	1 24	1 2/	1 2/	1.00	0.00
M min⁻¹)	1.00	1.00	1.59	1.34	1.34	1.34	1.00	0.99
[14b] ₀ (M)	-0.003	-0.003	-0.003	-0.003	0.001	-0.002	-0.002	-0.002
R^2	0.99	0.99	0.99	0.99	0.99	0.99	0.98	0.99
				First-Order Fi	it			
<i>k_{obs}</i> (10 ^{−3} min ^{−1})	1.12(4)	1.10(4)	1.11(4)	1.20(3)	1.24(5)	1.22(3)	1.48(6)	1.49(4)
[14b] ₀ (M)	1.45(3)	1.45(3)	1.45(3)	1.10(1)	1.11(2)	1.11(1)	0.63(1)	0.61(1)

ble S12. Concentration [14bb] vs. time data with varied [5b] ₀ . ^a
ble S12. Concentration [14bb] vs. time data with varied [5b] ₀ . ^a

^{*a*} For all experiments, [**9b**]₀ = 1.2 M, [Fe]_{tot} = 0.010 M. Reactions conducted in benzene at 25 °C. See Figure S206. Continued in Table S13.

[14bb] _t (M), where:									
time	where	e [5b] ₀ = 0.	54 M,	whore	$[5\mathbf{b}]_{\mathbf{b}} = 0$	20 M	whore	o [Eb], - 0	22 M
(min)		continued		where	e [30]0 – 0	.39 10	where	e [30]0 – 0	.22 101
	trial iii	trial iv	avg	trial i	trial ii	avg.	trial i	trial ii	avg.
10	0.004	0.004	0.005	0.004	0.006	0.005	0.001	0.001	0.001
20	0.017	0.016	0.017	0.013	0.017	0.015	0.008	0.008	0.008
30	0.026	0.028	0.029	0.023	0.028	0.025	0.016	0.014	0.015
45	0.042	0.042	0.044	0.035	0.042	0.038	0.021	0.021	0.021
60	0.053	0.054	0.054	0.043	0.054	0.048	0.027	0.026	0.027
80	0.069	0.068	0.070	0.054	0.063	0.058	0.035	0.031	0.033
100	0.081	0.083	0.085	0.062	0.076	0.069	0.039	0.037	0.038
120	0.085	0.092	0.094	0.069	0.083	0.076	0.043	0.040	0.042
150	0.102	0.110	0.113	0.083	0.102	0.093	0.056	0.051	0.054
180	0.127	0.130	0.133	0.101	0.118	0.109	0.063	0.064	0.064
240	0.159	0.164	0.169	0.124	0.151	0.138	0.075	0.077	0.076
300	0.189	0.196	0.203	0.150	0.187	0.169	0.094	0.090	0.092
360	0.224	0.231	0.239	0.179	0.216	0.197	0.110	0.109	0.109
420			0.282						
480			0.313						
540	0.309	0.326	0.331	0.255	0.301	0.278	0.157	0.153	0.155
600			0.369						
720	0.384	0.403	0.409	0.298	0.351	0.324	0.177	0.164	0.170
1255	0.505	0.534	0.528	0.390	0.458	0.424	0.218	0.211	0.214
1440	0.515	0.549	0.544	0.398	0.465	0.431	0.232	0.213	0.222
1620			0.578						
1800			0.556						
1980			0.575						
				Initial	Rate				
<i>v</i> ₀ (10 ⁻³									
M min⁻	0.97	1.00	0.99	0.78	0.96	0.87	0.72	0.65	0.68
¹)									
[14b]₀									o oo-
(M)	-0.004	-0.004	-0.003	-0.002	-0.002	-0.002	-0.006	-0.006	-0.005
R^2	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
				First-Or	der Fit				
k obs									
(10 ⁻³	1.27(5)	1.20(4)	1.42(4)	1.36(5)	1.45(5)	1.41(5)	1.61(7)	1.73(7)	1.67(6)
min ^{−1})		-	-						-
[14b] 0	0 62(1)	0 69/1)	0 62(1)	0 47(1)	0 54(1)	0.50(1)	0.25(1)	0.24(4)	0.25(1)
(M)	0.02(1)	0.00(1)	0.02(1)	0.47(1)	0.54(1)	0.50(1)	0.25(1)	0.24(1)	0.23(1)
^a For all e	vnorimont	$[0h]_{0} = 1$		-0.010 M	I Reactio	ne conduct	od in bonzo	no at 25°	

Table S13. Concentration [14bb] vs. time data with varied [5b]₀.^a

^a For all experiments, [**9b**]₀ = 1.2 M, [Fe]_{tot} = 0.010 M. Reactions conducted in benzene at 25 °C. See Figures **S206**. Continued from Table S12.

Figure S208. Concentration vs. time data, monitoring [**14bb**]_t, for trials initiated with varied [**5b**]₀ where [**9b**]₀ = 1.2 M and [Fe]_{tot} = 0.010 M. Open markers represent data points obtained from individual trials; closed markers represent average values obtained from duplicate trials. (**A**.) Full reaction time course fit to a first-order rate law (solid lines). (**B**.) Initial rate profiles obtained from linear regression (dotted lines) to data obtained where conversion $\leq 10\%$. (**C**.) Initial rate vs. initial concentration [**5b**]₀. See Table S10 for tabulated data and fit parameters.

5.5 Determination of Order in [Fe]tot

Figure S209. Determination of kinetic order in [Fe]tot.

Experiments to determine the kinetic order in iron catalyst were performed by varying precatalyst concentration, ranging from $[Fe]_{tot} = 0.5 [[(^{Me}PDI)Fe(N_2)]_2(\mu_2-N_2)]_0 = 5 \text{ mM} (0.5 \text{ mol}\%)$ to 30 mM (3.0 mol%), with constant $[5b]_0 = 1.0 \text{ M}$ and $[9b]_0 = 1.2 \text{ M}$. Initial rates were determined from linear regression of the concentration vs. time data where conversion of the limiting substrate (5b) was $\leq 10\%$. The initial rate data were examined as a function of $[Fe]_{tot}$ where the linear dependence of reaction rate on $[Fe]_{tot}$ was indicative of a first-order dependence on $[Fe]_{tot}$ over the concentration range examined. While a slight deviation from linearity was observed, this was attributed to the high degree of sensitivity of the iron precatalyst to water or other trace impurities (e.g. chlorosilane) in the substrate. While attempts to minimize these effects were taken (*vida supra*), any trace remaining impurities that could result in immediate catalyst death would have a proportionally greater effect at low catalyst loading. The raw data and fit parameters are summarized in Tables S14–16 and plotted in Figures S208–S210.

product (14bb)

20

time (min)

10

30

0.1

0

0

Figure S210. Concentration vs. time data for trials initiated with varied [Fe]_{tot} where $[5b]_0 = 0.5$ M and $[9b]_0 = 0.6$ M. (**A**.) 2.5 mM [Fe]_{tot}. (**B**.) 5.0 mM [Fe]_{tot}. (**C**.) 10. mM [Fe]_{tot}. (**D**.) 20. mM [Fe]_{tot}. (**E**.) 30. mM [Fe]_{tot}. Open markers represent data points obtained from individual trials; closed markers represent average values obtained from duplicate trials. Dotted lines represent linear regression to the data where conversion $\leq 10\%$. See Tables S14–16 for tabulated concentration data.

40

Figure S211. Concentration vs. time data for trials initiated with varied $[Fe]_{tot}$ where $[5b]_0 = 0.5$ M and $[9b]_0 = 0.6$ M monitored as (A.) $[5b]_t$. (B.) $[9b]_t$ (C.) $[14bb]_t$ Open markers represent data points obtained from individual trials; closed markers represent average values obtained from duplicate trials. See Tables S14–16 for tabulated data and fit parameters.

							[5 b]	t (M) wh	ere:						
time (min)	[Fe]	_{tot} = 2.5	mМ	[Fe]	_{tot} = 5.0	mМ	[Fe]	_{tot} = 10.	mΜ	[Fe]	_{tot} = 20.	mМ	[Fe]	_{tot} = 30.	mМ
	trial i	trial ii	avg	trial i	trial ii	avg	trial i	trial ii	avg	trial i	trial ii	avg	trial i	trial ii	avg
10	0.473	0.471	0.472	0.450	0.484	0.467	0.464	0.466	0.465	0.469	0.455	0.462	0.470	0.445	0.458
20	0.464	0.467	0.465	0.449	0.468	0.459	0.450	0.454	0.452	0.451	0.435	0.443	0.441	0.430	0.435
30	0.470	0.456	0.463	0.443	0.468	0.456	0.449	0.450	0.449		0.431	0.450	0.431	0.415	0.423
40	0.462	0.459	0.461	0.433	0.460	0.447	0.436	0.435	0.436	0.432	0.420	0.426	0.414	0.405	0.409
50	0.463	0.461	0.462	0.432	0.464	0.448	0.438	0.441	0.439	0.427	0.415	0.421	0.407	0.386	0.397
60	0.467	0.458	0.462	0.434	0.458	0.446	0.429	0.428	0.428	0.419	0.403	0.411	0.393	0.378	0.386
75	0.459	0.461	0.460	0.433	0.462	0.447	0.423	0.422	0.423	0.403	0.398	0.400	0.379	0.369	0.374
90	0.462	0.459	0.461	0.428	0.451	0.439	0.420	0.418	0.419	0.397	0.382	0.389	0.371	0.352	0.361
105	0.461	0.456	0.459	0.428	0.446	0.437	0.413	0.408	0.410	0.388	0.376	0.382	0.360	0.349	0.354
120	0.460	0.458	0.459	0.424	0.447	0.436	0.408	0.398	0.403	0.379	0.369	0.374	0.349	0.338	0.343
180	0.448	0.448	0.448	0.400	0.444	0.422	0.381	0.373	0.377	0.345	0.324	0.335	0.303	0.295	0.299
240	0.444	0.439	0.441	0.386	0.412	0.399	0.359	0.355	0.357	0.320	0.309	0.314	0.276	0.268	0.272
360	0.433	0.424	0.428	0.365	0.383	0.374	0.333	0.313	0.323	0.265	0.259	0.262	0.218	0.211	0.214
480	0.417	0.407	0.412	0.341	0.352	0.347	0.277	0.282	0.280	0.232	0.213	0.223	0.179	0.173	0.176
							Initial Rat	te							
<i>v</i> ₀ (10 ⁻⁴ M min ⁻¹)	1.1	1.2	1.1	2.2	2.8	2.5	6.2	6.5	6.6	11.9	10.6	11.9	19.5	15.3	17.4
b (M)	0.47	0.47	0.47	0.45	0.48	0.46	0.47	0.47	0.47	0.48	0.46	0.47	0.47	0.46	0.47
R^2	0.93	0.92	0.96	0.82	0.84	0.87	0.92	0.93	0.91	0.97	0.92	0.93	0.92	0.99	0.97

|--|

^a For all experiments, [**5b**]₀ = 0.5 M, [**9b**]₀ = 0.6 M. Reactions conducted in benzene at 25 °C. See Figure S209.

							[9b]	t (M) wh	ere:							
time (min)	[Fe]	_{tot} = 2.5	mМ	[Fe]	_{tot} = 5.0	mМ	[Fe]	_{tot} = 10.	mМ	[Fe]	_{tot} = 20.	mМ	[Fe]	[Fe] _{tot} = 30. mM		
()	trial i	trial ii	avg	trial i	trial ii	avg	trial i	trial ii	avg	trial i	trial ii	avg	trial i	trial ii	avg	
10	0.569	0.573	0.571	0.563	0.545	0.554	0.559	0.554	0.557	0.539	0.543	0.541	0.562	0.523	0.543	
20	0.564	0.569	0.566	0.564	0.528	0.546	0.542	0.544	0.543	0.519	0.526	0.522	0.526	0.506	0.516	
30	0.567	0.563	0.565	0.559	0.525	0.542	0.536	0.538	0.537		0.513	0.525	0.514	0.498	0.506	
40	0.560	0.562	0.561	0.544	0.522	0.533	0.529	0.524	0.527	0.501	0.504	0.502	0.500	0.486	0.493	
50	0.562	0.565	0.563	0.548	0.520	0.534	0.528	0.519	0.524	0.493	0.487	0.490	0.491	0.460	0.476	
60	0.563	0.562	0.563	0.546	0.514	0.530	0.518	0.516	0.517	0.487	0.488	0.488	0.472	0.452	0.462	
75	0.552	0.559	0.556	0.544	0.511	0.528	0.506	0.505	0.506	0.465	0.470	0.468	0.455	0.435	0.445	
90	0.556	0.557	0.557	0.533	0.506	0.520	0.504	0.498	0.501	0.460	0.461	0.460	0.448	0.428	0.438	
105	0.554	0.553	0.553	0.537	0.501	0.519	0.490	0.491	0.490	0.453	0.453	0.453	0.437	0.417	0.427	
120	0.550	0.559	0.554	0.532	0.503	0.518	0.491	0.482	0.487	0.443	0.444	0.443	0.425	0.408	0.417	
180	0.542	0.547	0.545	0.516	0.477	0.496	0.462	0.451	0.456	0.404	0.401	0.403	0.372	0.362	0.367	
240	0.534	0.539	0.536	0.497	0.462	0.480	0.440	0.426	0.433	0.375	0.372	0.374	0.345	0.329	0.337	
360	0.518	0.522	0.520	0.470	0.432	0.451	0.399	0.382	0.391	0.312	0.317	0.315	0.271	0.266	0.268	
480	0.508	0.499	0.504	0.448	0.405	0.427	0.352	0.351	0.352	0.280	0.275	0.277	0.233	0.225	0.229	
							Initial Ra	te								
(10 ⁻⁴ ^V 0 min⁻ ¹)	1.4	1.3	1.4	2.9	3.4	3.2	7.3	7.4	7.6	12.0	13.0	12.5	24.0	12.4	18.2	
b (M)	0.57	0.57	0.57	0.56	0.54	0.55	0.56	0.56	0.56	0.55	0.55	0.55	0.58	0.53	0.56	
R^2	0.97	0.97	0.98	0.86	0.88	0.92	0.92	0.97	0.96	0.96	0.98	0.97	0.92	0.97	0.94	

Table S15. Concentration [9b] vs. time data with varied [Fe]tot. ^a

^a For all experiments, [**5b**]₀ = 0.5 M, [**9b**]₀ = 0.6 M. Reactions conducted in benzene at 25 °C. See Figure **S209**.

							[14bl	b] t (M) w	here:						
time (min)	[Fe]	_{tot} = 2.5	mM	[Fe]	_{tot} = 5.0	mМ	[Fe]	_{tot} = 10.	mМ	[Fe]	_{tot} = 20.	mМ	[Fe]	_{tot} = 30.	mМ
	trial i	trial ii	avg	trial i	trial ii	avg	trial i	trial ii	avg	trial i	trial ii	avg	trial i	trial ii	avg
10	- 0.002	- 0.002	- 0.002	0.001	0.001	0.001	0.004	0.005	0.005	0.007	0.010	0.008	0.012	0.015	0.013
20	0.001	0.002	0.001	0.007	0.008	0.007	0.014	0.016	0.015	0.023	0.024	0.023	0.030	0.032	0.031
30	0.004	0.003	0.004	0.013	0.013	0.013	0.023	0.025	0.024		0.036	0.036	0.045	0.046	0.045
40	0.005	0.007	0.006	0.016	0.018	0.017	0.031	0.032	0.032	0.046	0.048	0.047	0.059	0.063	0.061
50	0.008	0.009	0.008	0.020	0.023	0.022	0.039	0.041	0.040	0.058	0.059	0.058	0.074	0.072	0.073
60	0.010	0.010	0.010	0.025	0.027	0.026	0.046	0.047	0.046	0.066	0.068	0.067	0.084	0.083	0.084
75	0.013	0.014	0.013	0.031	0.034	0.032	0.055	0.055	0.055	0.078	0.080	0.079	0.100	0.102	0.101
90	0.015	0.016	0.015	0.036	0.040	0.038	0.061	0.066	0.063	0.090	0.086	0.088	0.116	0.111	0.114
105	0.018	0.019	0.018	0.040	0.044	0.042	0.070	0.070	0.070	0.099	0.099	0.099	0.128	0.128	0.128
120	0.020	0.021	0.020	0.045	0.048	0.047	0.080	0.077	0.079	0.110	0.109	0.109	0.138	0.138	0.138
180	0.028	0.029	0.028	0.059	0.072	0.066	0.108	0.106	0.107	0.146	0.136	0.141	0.183	0.177	0.180
240	0.036	0.037	0.037	0.074	0.081	0.078	0.131	0.132	0.131	0.178	0.175	0.177	0.220	0.211	0.216
360	0.052	0.054	0.053	0.110	0.116	0.113	0.192	0.178	0.185	0.242	0.232	0.237	0.289	0.275	0.282
480	0.066	0.069	0.067	0.137	0.141	0.139	0.221	0.220	0.221	0.294	0.282	0.288	0.336	0.330	0.333
							Initial Rat	te							
(10 ⁻⁴ M min ⁻ ¹)	1.5	1.5	1.5	3.9	4.2	4.1	8.4	7.7	8.3	12.8	12.7	12.8	16.6	15.5	16.0
<i>b</i> (10 ⁻⁴ M)	-0.3	3.0	1.3	-1.9	1.7	-0.1	-31	2.7	-23	-47	-22	-35	-42	-12	-21
R^2	0.99	0.99	0.99	0.99	0.98	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99

Table S16. Concentration [14bb] vs. time data with varied [Fe]tot. ^a

^a For all experiments, [**5b**]₀ = 0.5 M, [**9b**]₀ = 0.6 M. Reactions conducted in benzene at 25 °C. See Figure **S209**.

Figure S212. Initial rate as a function of catalyst concentration, $[Fe]_{tot}$, for trials initiated where $[5b]_0 = 0.5$ M and $[9b]_0 = 0.6$ M. Open markers represent data points obtained from individual trials; closed markers represent average values obtained from duplicate trials. See Table S17 for tabulated data and fit parameters.

[Fe] _{tot}	$v_0 (10^{-4} \text{ M min}^{-1}) =$												
(mivi)		-d[5b]	/dt			-d[9b]/dt				d[14bb]/dt			
-		trial i	trial ii	avg		trial i	trial ii	avg		trial i	trial ii	avg	
2.5		1.1	1.2	1.1		1.4	1.3	1.4		1.5	1.5	1.5	
5.0		2.2	2.8	2.5		3.9	4.2	4.1		3.9	4.2	4.1	
10.		6.2	6.5	6.6		8.4	7.7	8.3		8.4	7.7	8.3	
20.		11.9	10.6	11.9		12.0	13.0	12.5		12.8	12.7	12.8	
30.		19.5	15.3	17.4		24.0	12.4	18.2		16.6	15.5	16.0	

 Table S17. Initial rate, v0, vs. [Fe]tot. a

6. Supplemental Figures

6.1 The α -Silicon Effect

Me Me

Scheme S1. The α -Silicon effect.⁶³⁻⁷⁴

H H

β-agostic

Me₃Si

Me₃Si

Me₃Si

Me₃Si

. Si**–**Me

SiMe₃

β-agostic

6.2 Lewis Acid Screen

^a Anhydrous salts were used. ^b Oligomer formation observed.

Figure 214: Summary of Lewis acids evaluated for the proposed rearrangement of 17bi.

7. Computational Analyses

7.1 Sample Input File for Geometry Optimization & Mössbauer Parameter Calculation

(MePDI)Fe(myrcene)

#MePDIFemyrcene

! RKS B3LYP RIJCOSX def2-SVP def2/J Normalprint SlowConv TightSCF Opt Pal8 UCO

%basis NewGTO 26 "def2-TZVP(-f)" end

NewGTO 7 "def2-TZVP(-f)" end

NewAuxGTO 26 "def2/J" end

NewAuxGTO 7 "def2/J" end

end

%SCF MaxIter 1000

ToIE 1e-7

TolErr 1e-6

end

* xyz 0 1

Fe	0.00000	0.00000	0.00000
Ν	0.38762	-1.89798	-0.51684
Ν	1.84117	0.00000	-0.00000
Ν	0.36924	1.93066	0.00001
С	2.23272	-3.58137	-0.86195
Н	1.52450	-4.23922	-1.09273
Н	2.80688	-3.54779	-1.61092
Н	2.72977	-3.93812	-0.15622
С	1.67533	-2.23968	-0.50635
С	2.54519	-1.16363	-0.17899

С	3.93055	-1.19033	-0.07084
Н	4.38464	-2.06492	-0.21127
С	4.61660	-0.02435	0.24684
Н	5.57485	-0.01418	0.32299
С	3.91158	1.16082	0.39731
Н	4.39731	1.97364	0.58197
С	2.52365	1.17146	0.23966
С	1.64845	2.28092	0.20755
С	2.14629	3.68583	0.34734
Н	1.55606	4.27936	-0.06129
Н	2.99160	3.78949	-0.05131
Н	2.30143	3.95372	1.31669
С	-0.55822	-2.92615	-0.88269
С	-0.97744	-3.01972	-2.22346
С	-1.95411	-3.95805	-2.54654
Н	-2.23678	-4.03054	-3.45671
С	-2.48256	-4.79649	-1.58848
Н	-3.16838	-5.42186	-1.85051
С	-2.03466	-4.72668	-0.28892
Н	-2.42824	-5.31512	0.37741
С	-1.07250	-3.79550	0.10042
С	-0.34645	-2.20208	-3.33328
С	-0.60442	-3.79760	1.54402
С	-0.55707	2.97393	-0.33710
С	-1.20974	3.73372	0.65244
С	-2.18025	4.65524	0.25204
н	-2.64012	5.18966	0.94477
С	-2.49625	4.83091	-1.06998

Н	-3.18821	5.44547	-1.27764
С	-1.82821	4.10454	-2.03832
Н	-2.02840	4.25999	-2.96899
С	-0.84173	3.17906	-1.70436
С	-0.90337	3.60005	2.13176
С	-0.06623	2.46033	-2.79579
С	-0.56965	-0.21578	2.09163 NewGTO "def2-TZVP(-f)" end
Н	-0.50618	0.70229	2.39380
Н	-0.11883	-0.90169	2.63791
С	-1.56302	-0.59135	1.19854 NewGTO "def2-TZVP(-f)" end
С	-1.84594	-1.83204	0.94869
С	-2.00120	0.37304	0.23873 NewGTO "def2-TZVP(-f)" end
Н	-2.14515	1.29870	0.55507
С	-1.89325	0.05189	-1.11100 NewGTO "def2-TZVP(-f)" end
н	-1.98858	-0.80584	-1.39216
Н	-2.10589	0.69614	-1.78558
Н	-0.14429	2.85933	2.27327
Н	-1.78975	3.30678	2.65448
Н	-0.55994	4.53972	2.51120
Н	-0.43985	2.75735	-3.75344
Н	-0.18340	1.40314	-2.67946
н	0.97061	2.71441	-2.72300
н	-1.14163	-4.54322	2.09207
н	-0.78438	-2.83659	1.97873
н	0.44279	-4.01448	1.57910
н	-0.82173	-2.43590	-4.26297
н	0.69633	-2.43306	-3.39778
Н	-0.46860	-1.16021	-3.12237

С	-3.25209	-1.80459	0.84750
Н	-1.40796	-2.17732	1.81272
Н	-1.28441	-1.79441	0.08791
С	-4.29287	-3.21045	0.82135
Н	-3.46549	-1.34337	-0.09428
Н	-3.48970	-1.54879	1.85903
С	-6.15360	-3.76052	0.63307
С	-6.11693	-5.57545	0.76836
Н	-5.47586	-5.97664	0.01140
Н	-7.10609	-5.96273	0.64006
Н	-5.74727	-5.85380	1.73312
С	-7.61996	-2.73142	0.37930
н	-8.48719	-3.35517	0.31802
н	-7.51399	-2.17759	-0.53006
Н	-7.72588	-2.05292	1.19986
Н	-3.71178	-4.05305	0.95325
*			

%eprnmr nuclei = all Fe {rho, fgrad}

end

7.2 Sample Input File for Natural Bond Order (NBO) Analysis

Vinyl TMS

%chk=checkpoint.chk

%nprocshared=8

%mem=3GB

#p opt freq=noraman rb3lyp/6-31+g(d,p) pop=nbo geom=connectivity

vinyITMS.gjf

01

С	-4.08308936	0.12612518	0.51998710
С	-2.89153970	0.12167108	-0.12557978
Н	-4.69396663	1.00454362	0.50949839
Н	-4.41300123	-0.74877614	1.04018498
Н	-2.56162695	0.99657304	-0.64577603
С	-2.08783650	-2.45033465	1.54028766
Н	-3.11826891	-2.73172273	1.60297576
Н	-1.47695960	-3.32875335	1.55077571
Н	-1.83587830	-1.83068965	2.37542666
С	0.08429214	-0.96079564	-0.22022288
Н	0.69516904	-1.83921434	-0.20973484
Н	0.25188945	-0.42063386	-1.12853802
Н	0.33625034	-0.34115065	0.61491612
С	-2.24078990	-2.59444440	-1.62074133
Н	-2.07319259	-2.05428261	-2.52905647
Н	-1.62991299	-3.47286310	-1.61025329
Н	-3.27122231	-2.87583248	-1.55805323
Si	-1.78396849	-1.47097590	-0.10656408

1 2 2.0 3 1.0 4 1.0 2 5 1.0 18 1.0 3

4

5

8. References

1. Burger, B. J.; Bercaw, J. E. Vacuum Line Techniques for Handling Air-Sensitive Organometallic Compounds. In *Experimental Organometallic Chemistry*. ACS Symposium Series, Vol. 357; American Chemical Society, 1987; pp 79–115. DOI: 10.1021/bk-1987-0357.ch004

2.Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Safe and Convenient Procedure for Solvent Purification. *Organometallics*, **1996**, *15*, 1518–1520. DOI: 10.1021/om9503712

3.Sargent, B. T.; Alexanian, E. J. Cobalt-Catalyzed Carbonylative Cross-Coupling of Alkyl Tosylates and Dienes: Stereospecific Synthesis of Dienones at Low Pressure. *J. Am. Chem. Soc.* **2017**, *139*, 12438–12440. DOI: 10.1021/jacs.7b07983

4. Adamson, N. J.; Hull, E.; Malcolmson, S. J. Enantioselective Intermolecular Addition of Aliphatic Amines to Acyclic Dienes with a Pd-PHOX Catalyst. *J. Am. Chem. Soc.* **2017**, *139*, 7180–7183. DOI: 10.1021/jacs.7b03480

5. Constantino, M. G.; de Oliveira, K. T.; Polo, E. C.; da Silva, G. V. J.; Brocksom, T. J. Core Structure of Eremophilanes and Bakkanes through Niobium Catalyzed Diels-Alder Reaction: Synthesis of (±)-Bakkenolide A. *J. Org. Chem.* **2006**, *71*, 9880–9883. DOI: 10.1021/jo061722x

6. Burks, H. E.; Kliman, L. T.; Morken, J. P. Asymmetric 1,4-Dihydroxylation of 1,3-Dienes by Catalytic Enantioselective Diboration. *J. Am. Chem. Soc.* **2009**, *131*, 9134–9135. DOI: 10.1021/ja809610h

7.Ueda, Y.; Damas, C. E.; Belleau, B. Nuclear analogs of (β-lactam antibiotics. XVIII. A short synthesis of 2-alkylthiocarbapen-2-em-3-carboxylate. *Can. J. Chem.* **1983**, *611*, 1996–2000. DOI: 10.1139/v83-334

8. Fiorito, D.; Folliet, S.; Liu, Y.; Mazet, C. A General Nickel-Catalyzed Kumada Vinylation for the Preparation of 2-Substituted 1,3-Dienes. *ACS Catal.* **2018**, *8*, 1392–1398. DOI: 10.1021/acscatal.7b04030

9. Wu, J. Y.; Moreau, B.; Ritter, T. Iron-Catalyzed 1,4-Hydroboration of 1,3-Dienes. *J. Am. Chem. Soc.* **2009**, *131*, 12915–12917. DOI: 10.1021/ja9048493

10. Kennedy, C. R.; Zhong, H.; Macaulay, R. L.; Chirik, P. J. Regio- and Diastereoselective Iron-Catalyzed [4+4]-Cycloaddition of 1,3-Dienes. *J. Am. Chem. Soc.* **2019**, *141*, 8557–8573. DOI: 10.1021/jacs.9b02443

11. Russell, S. K.; Darmon, J. M.; Lobkovsky, E.; Chirik, P. J. Synthesis of Aryl-Substituted Bis(imino)pyridine Iron Dinitrogen Complexes. *Inorg. Chem.* **2010**, *49*, 2782–2792. DOI: 10.1021/ic902162z

12. Russell, S. K.; Hoyt, J. M.; Bart, S. C.; Milsmann, C.; Stieber, S. C. E.; Semproni, S. P.; DeBeer, S.; Chirik, P. J. Synthesis, electronic structure and reactivity of bis(imino)pyridine iron carbene complexes: evidence for a carbene radical. *Chem. Sci.* **2014**, *5*, 1168–1174. DOI: 10.1039/C3SC52450G

13. Russell, S. K.; Lobkovsky, E.; Chirik. P. J. Iron-Catalyzed Intermolecular $[2\pi + 2\pi]$ Cycloaddition. *J. Am. Chem. Soc.* **2011**, *133*, 8858–8861. DOI: 10.1021/ja202992p

14. Wreford, S. S.; Whitney, J. F. Magnesium butadiene as a reagent for the preparation of transitionmetal butadiene complexes: molecular structure of $bis(\eta$ -butadiene)[1,2bis(dimethylphosphino)ethane]hafnium. *Inorg. Chem.* **1981**, *20*, 3918–3942. DOI: 10.1021/ic50225a063

15. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. *J. Org. Chem.* **1997**, 62, 7512–7515. DOI: 10.1021/jo971176v

16. Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics*, **2010**, *29*, 2176–2179. DOI: 10.1021/om100106e

17. MestReNova Version 11.0.3-18688 Mestrelab Research S.L.: 2017. https://mestrelab.com

18. Prisecaru, I. WMOSS4 Mössbauer Spectral Analysis Software: 2009-2016. www.wmoss.org

19. Evans, D. F. 400. The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. *J. Chem. Soc.* **1959**, 2003–2005. DOI: 10.1039/JR9590002003

20. Sur, S. K. Measurement of magnetic susceptibility and magnetic moment of paramagnetic molecules in solution by high-field fourier transform NMR spectroscopy. *J. Magn. Reson.* **1989**, *82*, 169–173. DOI: 10.1016/0022-2364(89)90178-9

21. Hunter, J. D. Matplotlib: A 2D Graphics Environment. *Comput. Sci. Eng.* **2007**, *9*, 90–95. DOI: 10.1109/MCSE.2007.55

22. Pérez, F.; Granger, B. E. iPython: A System for Interactive Scientific Computing. *Comput. Sci. Eng.* **2007**, *9*, 21–29. DOI: 10.1109/MCSE.2007.53

23. Kluyver, T.; Ragan-Kelley, B.; Pèrez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.; Grout, J.; Corlay, S.; Ivanov, P. Avila, D.; Abdalla, S.; Willing, C.; Jupyter Development Team. Jupyter Notebooks – a publishing format for reproducible computational workflows. In *Positioning and Powers in Academic Publishing: Players, Agents, and Agendas*; Loizides, F., Schmidt, B., Eds.; IOS Press: 2016; pp 87–90. DOI: 10.3233/978-1-61499-649-1-87

24. Hoops, S.; Sahle, S.; Gauges, R.; Lee, C.; Pahle, J.; Simus, N.; Singhal, M.; Xu, L.; Mendes, P.; Kummer, U. COPASI: a COmplex PAthway SImulator. *Bioinformatics*, **2006**, *22*, 3067–3074. DOI: 10.1093/bioinformatics/btl485

25. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16, Revision A.03*; Gaussian, Inc.: Wallingford CT, 2016. https://gaussian.com

26. Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **2008**, *120*, 215–241. DOI: 10.1007/s00214-007-0310-x

27. Raghavachari, K.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-Consistent Molecular Orbital Methods. 20. Basis set for correlated wave-functions. *J. Chem. Phys.* **1980**, 72, 650-654. DOI: 10.1063/1.438955

28. McLean, A. D.; Chandler, G. S. Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18. *J. Chem. Phys.* **1980**, 72, 5639–5648. DOI: 10.1063/1.438980

29. Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. *Chem. Rev.* **2005**, *105*, 2999–3093. DOI: 10.1021/cr9904009

30. Barone, V.; Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. *J. Phys. Chem. A*, **1998**, *102*, 1995–2001. DOI: 10.1021/jp9716997

31. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. *J. Comp. Chem.* **2003**, *24*, 669–681. DOI: 10.1002/jcc.10189

32. Neese, F. The ORCA program system. *WIREs Comput. Mol. Sci.* **2012**, *2*, 73–78. DOI: 10.1002/wcms.81

33. Neese, F. ORCA: An ab initio, DFT and semiempirical SCF-MO package, Version 4.0.1; Max-Planck Institute for Chemical Energy Conversion: Müllheim, Germany, 2017. https://orcaforum.kofo.mpg.de/

34. Zhao, Y.; Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. *J. Chem. Phys.* **2006**, *125*, 1–18. DOI: 10.1063/1.2370993

35. Valeev, E. F. Libint: A library for the evaluation of molecular integrals of many-body operators over Gaussian functions, Version 2.3.1, <u>http://libint.valeyev.net/</u>

36. Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. *Phys. Rev. B*, **1986**, *33*, 8822–8824. DOI: 10.1103/PhysRevB.33.8822

37. Perdew, J. P. Erratum: Density-functional approximation for the correlation energy of the inhomogeneous electron gas. *Phys. Rev. B*, **1986**, *34*, 7406. DOI: 10.1103/PhysRevB.34.7406

38. Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B*, **1988**, *37*, 785–789. DOI: 10.1103/PhysRevB.37.785

39. F. Neese, E. I. Solomon In *Magnetism: From Molecules to Materials*; J. S. Miller, M. Drillon, Eds.; Wiley: New York, 2002; Vol. *4*, p 345.

40. Schäfer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. *J. Chem. Phys.* **1992**, 97, 2571–2577. DOI: 10.1063/1.463096

41. Schäfer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. *J. Chem. Phys.* **1994**, *100*, 5829–5835. DOI: 10.1063/1.467146

42. Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **2005**, 7, 3297–3305. DOI: 10.1039/B508541A

43. Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. *Theor. Chem. Acc.* **1997**, *97*, 119–124. DOI: 10.1007/s002140050244

44. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. *Phys. Chem. Chem. Phys.* **2006**, *8*, 1057–1065. DOI: 10.1039/B515623H

45. Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A 'chain-of-spheres' algorithm for the Hartree–Fock exchange. *Chem. Phys.* **2009**, *356*, 98–109. DOI: 10.1016/j.chemphys.2008.10.036

46. Kossmann, S.; Neese, F. Comparison of two efficient approximate Hartee–Fock approaches. *Chem. Phys. Lett.* **2009**, *481*, 240–243. DOI: 10.1016/j.cplett.2009.09.073

47. Ekstrom, U.; Visscher, L.; Bast, R.; Thorvaldsen, A. J.; Ruud, K. Arbitrary-Order Density Functional Response Theory from Automatic Differentiation. *J. Chem. Theory Comput.* **2010**, *6*, 1971–1980. DOI: 10.1021/ct100117s

48. Neese, F. An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix. *J. Comput. Chem.* **2003**, *24*, 1740–1747. DOI: 10.1002/jcc.10318

49. van Wüllen, C. Molecular Density Functional Calculations in the Regular Relativistic Approximation: Method, Application to Coinage Metal Diatomics, Hydrides, Fluorides and Chlorides, and Comparison with First-Order Relativistic Calculations. *J. Chem. Phys.* **1998**, *109*, 392–399. DOI: 10.1063/1.476576

50. Pantazis, D. A.; Chen, X.-Y.; Landis, C. R.; Neese, F. All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms. *J. Chem. Theory Comput.* **2008**, *4*, 908–919. DOI: 10.1021/ct800047t

51. McWilliams, S. F.; Brennan-Wydra, E.; MacLeod, K. C.; Holland, P. L. Density Functional Calculations for Prediction of ⁵⁷Fe Mössbauer Isomer Shifts and Quadrupole Splittings in β-Diketiminate Complexes. *ACS Omega* **2017**, *2*, 2594–2606, DOI: 10.1021/acsomega.7b00595

52. Ginsberg, A. P. Magnetic exchange in transition metal complexes. 12. Calculation of cluster exchange coupling constants with the X α -scattered wave method *J. Am. Chem. Soc.* **1980**, 102, 111–117. DOI: 10.1021/ja00521a020

53. Noodleman, L.; Peng, C. Y.; Case, D. A.; Mouesca, J. M. Orbital interactions, electron delocalization and spin coupling in iron-sulfur clusters. *Coord. Chem. Rev.* **1995**, *144*, 199–244. DOI: 10.1016/0010-8545(95)07011-L

54. Kirchner, B.; Wennmohs, F.; Ye, S.; Neese, F. Theoretical bioinorganic chemistry: the electronic structure makes a difference. *Curr. Opin. Chem. Biol.* **2007**, *11*, 134–141. DOI: 10.1016/j.cbpa.2007.02.026

55. Neese, F. Definition of corresponding orbitals and the diradical character in broken symmetry DFT calculations on spin coupled systems. *J. Phys. Chem. Solids*, **2004**, *65*, 781–785. DOI: 10.1016/j.jpcs.2003.11.015

56. Legault, C. Y. *CYLview 1.0b*; Université de Sherbrooke: Sherbrooke, QC, 2009. http://www.cylview.org

57. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera—A visualization system for exploratory research and analysis. *J. Comput. Chem.* **2004**, *25*, 1605–1612. DOI: 10.1002/jcc.20084

58. Kennedy, C. R.; Zhong, H.; Joannou, M. V.; Chirik, P. J. Pyridine(diimine) Iron Diene Complexes Relevant to Catalytic [2+2]-Cycloaddition Reactions. *Adv. Synth. Catal.* **2019**, *362*, 404–416. DOI: 10.1002/adsc.2019011289

59. Hoyt, J. M.; Schmidt, V. A.; Tondreau, A. M.; Chirik, P. J. Iron-catalyzed intermolecular [2+2] cycloadditions of unactivated alkenes. *Science*, **2015**, *349*, 960–963. DOI: 10.1126/science.aac7440

60. Fleming, I.; Terrett, N. K. Stereospecific syntheses and reactions of allyl- and allenyl-silanes. *J. Organomet. Chem.* **1984**, 264, 99–118. DOI: 10.1016/0022-328X(84)85136-0

61. Chen; T.-G.; Barton, L. M.; Lin, Y.; Tsien, J.; Kossler, D.; Bastida, I.; Asai, S.; Bi, C.; Chen, J. S.; Shan, M.; Fang, H.; Fang, F. G.; Choi, H.-w.; Hawkins, L.; Qin, T.; Baran, P.S. Building C(*sp*³)-rich complexity by combining cycloaddition and C–C cross-coupling reactions. *Nature*, **2018**, *560*, 350–354. DOI: 10.1038/s41586-018-0391-9

62. Blackmond, D. G. Reaction progress kinetic analysis: a powerful methodology for mechanistic studies of complex catalytic reactions. *Angew. Chem. Int. Ed.* **2005**, *44*, 4302–4320. DOI: 10.1002/anie.200462544

63. Sadow, D. A.; Tilley, D. T. Activation of Arene C–H Bonds by a Cationic Hafnium Silyl Complex Possessing an α-Agostic Si–H Interaction. *J. Am. Chem. Soc.* **2002**, 124, 24, 6814–6815. DOI: 10.1021/ja025940t

64. Sadow, D. A.; Tilley, D. T. Enhanced Reactivity of Cationic Hafnocene Complexes toward σ-Bond Metathesis Reactions. Si–H and Si–C Bond Activations in Stoichiometric and Catalytic Organosilane Conversions. *Organometallics* **2003**, *22*, 3577-3585. DOI: 10.1021/om0210107

65. Sadow, D. A.; Tilley, D. T. Cationic Hafnium Silyl Complexes and Their Enhanced Reactivity in σ-Bond Metathesis Processes with Si-H and C-H Bonds. *J. Am. Chem. Soc.* **2003**, *125*, 9462-9475. DOI: 10.1021/ja030024g

66. Lamač, M.; Spannenberg, A.; Baumann, W.; Jiao, H.; Fischer, C.; Hansen, S.; Arndt, P.; Rosenthal, U. Si-H Bond Activation of Alkynylsilanes by Group 4 Metallocene Complexes. *J. Am. Chem. Soc.* **2010**, *132*, 4369-4380. DOI: 10.1021/ja910527w

67. Peulecke, N.; Ohff, A.I; Kosse, P.; Tillack, A.; Spannenberg, A.; Kempe, R.; Baumann, W.; Burlakov, V. V; Rosenthal, U. Si–H Activation in Titanocene and Zirconocene Complexes of Alkynylsilanes RC=CSiMe2H (R=tBu, Ph, SiMe3, SiMe2H): A Model To Understand Catalytic Reactions of Hydrosilanes.

Chem. Eur. J. **1998**, *4*, 1852-1861. DOI:10.1002/(SICI)1521-3765(19980904)4:9<1852::AID-CHEM1852>3.0.CO;2-E

68. Ohff, A.; Kosse, P.; Baumann, W.; Tillack, A.; Kempe, R.; Goerls, H., Burlakov, V.V.; Rosenthal, U. Novel trans-. eta. 2-Alkyne Complexes of Titanocene with Strong Si-H-Ti Interactions. Synthesis, Spectral Characteristics, and x-ray Crystal Structure. *J. Am. Chem. Soc.* **1995**, *117*, 10399-10400. DOI: 10.1021/ja00146a032

69. Procopio, L.J.; Carroll, P.J.; Berry, D.H. Agostic. beta.-silicon-hydrogen interactions in silylamido complexes of zirconocene. *J. Am. Chem. Soc.* **1994**, *116*, 177-185. DOI: 10.1021/ja00080a020

70. Herrmann, W.A.; Eppinger, J.; Spiegler, M.; Runte, O.; Anwander, R., β-Si– H Agostic Rigidity in a Solvent-Free Indenyl-Derived ansa-Yttrocene Silylamide. *Organometallics*, **1997**, *16*, 1813-1815. DOI: 10.1021/ja00080a020

71. Hieringer, W., Eppinger, J., Anwander, R. and Herrmann, W.A., C2-Symmetric Ansa-Lanthanidocene Complexes. Theoretical Evidence for a Symmetric Ln…(SiH) β -Diagostic Interaction. *J. Am. Chem. Soc.* **2000**, *122*, 11983-11994. DOI: 10.1021/ja993421t

72. Andersen, R.A.; Faegri Jr, K.; Green, J.C.; Haaland, A.; Lappert, M.F.; Leung, W.P.; Rypdal, K. Synthesis of bis [bis (trimethylsilyl) amido] iron (II). Structure and bonding in M [N (SiMe3) 2] 2 (M= manganese, iron, cobalt): two-coordinate transition-metal amides. *Inorg. Chem.* **1998**, *27*, 1782-1786. DOI: 10.1021/ic00283a022

73. Perrin, L., Maron, L.; Eisenstein, O.; Lappert, M.F. γ Agostic C–H or β agostic Si–C bonds in La{CH (SiMe₃)₂}₃? A DFT study of the role of the ligand. *New J. Chem.* **2003**, *27*, 121-127. DOI: 10.1039/B206120C

74. Clark, D.L.; Gordon, J.C.; Hay, P.J;, Martin; R.L.; Poli, R. DFT Study of Tris (bis (trimethylsilyl) methyl) lanthanum and-samarium. *Organometallics* **2002**, *21*, 5000-5006. DOI: 10.1021/om020506I