SUPPORTING INFORMATION

Methylene Oxidation of Alkyl Sulfates by Cytochrome P450_{BM-3} and a Role for Conformational Selection in Substrate Recognition

F. Peter Guengerich^{1,*} and Mostafa I. Fekry^{1,2}

¹ Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 U.S.A. and ² Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt

<u>*f.guengerich@vanderbilt.edu</u> (corresponding author)

TABLE OF CONTENTS

Supporting Figure S1.	UV-visible spectra and second derivative spectra of $P450_{BM-3}$ without and with tetradecyl sulfate.
Supporting Figure S2.	Identification of lauric acid oxidation products formed by P450 $_{\rm BM-3}$ by GC-MS.
Supporting Figure S3.	LC-HRMS of $P450_{BM-3}$ reaction products of dodecyl sulfate following Baeyer-Villiger derivatization to esters.
Supporting Figure S4.	LC-HRMS of P450 $_{BM-3}$ reaction products of dodecyl sulfate following Baeyer-Villiger derivatization to esters and base hydrolysis.
Supporting Figure S5.	Purity of $P450_{BM-3}$ preparation determined using SDS-polyacrylamide gel electrophoresis.
Supporting Figure S6.	Fe ²⁺ ·CO complex <i>vs.</i> Fe ²⁺ difference spectrum of P450 _{BM-3} preparation (1.25 μ M) used for this study.

Supporting Figure S1. UV-visible spectra and second derivative spectra of $P450_{BM-3}$ without and with tetradecyl sulfate (C₁₄SO₄). All spectra were recorded with 5 μ M P450_{BM-3} in 50 mM potassium MOPS buffer (pH 7.4). **A.** Without (blue line) or with (red line) 50 μ M tetradecyl sulfate (C₁₄SO₄). **B.** Part A expanded in the visible region. **C.** Second derivative spectra¹ of Part A (without substrate, blue line, filter 5 used for smoothing; with tetradecyl sulfate, red line, filter 19 used for smoothing).

Supporting Figure S2. Identification of lauric acid oxidation products formed by P450_{BM-3} by GC-MS. A. Ion chromatogram resulting from incubation of lauric acid with P450_{BM-3} and NADPH, following derivatization to trimethylsilyl products. The GC-MS traces (m/z 345, vide infra) are shown for the reaction in the presence (black trace) and absence (red trace) of NADPH. B. Ion chromatogram for authentic standard 11-hydroxy lauric acid, following derivatization to trimethylsilyl derivative. C-E. mass fragmentation spectra of reaction products (from Part A). C, ω -3 product; D, ω -2 product; E, ω -1 product.

Supporting Figure S3. LC-HRMS of P450_{BM-3} reaction products of dodecyl sulfate following Baeyer-Villiger derivatization to esters. **A.** Dodecyl sulfate incubated with NADPH but without P450_{BM-3} for 2 minutes. **B.** Dodecyl sulfate incubated with NADPH and P450_{BM-3}. Both reactions were followed by oxidation of alcohol products using Jones reagent² and then Baeyer-Villiger ketone oxidation³ to form esters (Scheme 2). Extracted ion chromatograms for *m*/*z* 295.1221 are shown in Parts A and B, corresponding to product ester derivatives. **C.** HRMS (ESI⁻) mass fragmentation spectrum of the ester formed from incubation of dodecyl sulfate with P450_{BM-3} and NADPH followed by the chemical oxidation steps.

Supporting Figure S4. LC-HRMS of P450_{BM-3} reaction products of dodecyl sulfate following Baeyer-Villiger derivatization to esters and base hydrolysis. **A.** Dodecyl sulfate incubated with NADPH and P450_{BM-3} for 2 minutes. **B.** Dodecyl sulfate incubated with P450_{BM-3} in the absence of NADPH. Both reactions were followed by oxidation of alcohol products using Jones reagent,² Baeyer-Villiger ketone oxidation³ to form esters, and then NaOH treatment (Scheme 2). Extracted ion chromatograms for *m/z* 253.1115 and 239.0959 (combined) are shown in both Parts A and B, corresponding to the alcohol products detected after base hydrolysis. **C, D.** HRMS (ESI⁻) mass fragmentation spectra of the alcohols formed from incubation of tetradecyl sulfate with P450_{BM-3} and NADPH followed by the two chemical oxidation steps and base hydrolysis: **C**, fragmentation spectrum of the peak eluted at *t*_R 1.83 min peak; **D**, fragmentation spectrum of the peak eluted at *t*_R 1.65 min peak..

Supporting Figure S5. Purity of $P450_{BM-3}$ preparation determined using SDS-polyacrylamide gel electrophoresis (7.5%, w/v). The molecular weight standard markers (labeled as kDa) are on the left and the $P450_{BM-3}$ sample (10 pmol) is in the right lane. The higher band in the $P450_{BM-3}$ sample (~ 260 kDa) is presumed to be a dimer of the enzyme.

Supporting Figure S6. Fe²⁺ CO complex *vs*. Fe²⁺ difference spectrum of P450_{BM-3} preparation (1.25 μ M) used for this study.

References

1. O'Haver, T. C.; Green, G. L., Numerical Error Analysis of Derivative Spectrometry for the Quantitative Analysis of Mixtures, *Anal. Chem.* **1976**, *48*, 312-318.

2. Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B. C. L., 13. Researches on Acetylenic compounds. Part I. The Preparation of Acetylenic Ketones by Oxidation of Acetylenic Carbinols and Glycols, *J. Chem. Soc.* **1946**, 39-45.

3. Olah, G. A.; Wang, Q.; Trivedi, N. J.; Prakash, G. K. S., Baeyer-Villiger Oxidation of Ketones to Esters with Sodium Percarbonate/Trifluoroacetic Acid, *Synthesis-Stuttgart* **1991**, 739-740.