REVIEWER COMMENTS
Reviewer #1 (Remarks to the Author):

In this work the authors test the hypothesis that peripheral vision relies on a summary statistics (SS)
representation. This long-standing hypothesis has received much support in past work (duly cited)
including by the authors. However most evidence supporting this hypothesis is in some way indirect,
using stimuli and experimental designs that may not be ideally suited to probe SS representations,
leading to considerable uncertainty. This manuscript presents what is, in our opinion, the most direct
and convincing experimental test of the SS hypothesis for peripheral visual perception to date.
Specifically, the authors use discrimination tasks with naturalistic synthetic textures. They derive the
novel prediction that discrimination between textures with different SS (family discrimination) should
improve with image size, whereas, somewhat surprisingly, discrimination between textures with the
same SS but different pixel realizations (sample discrimination) should become worse for large
images. The experiments provide strong and detailed support for the prediction. The manuscript is
mostly clear and technically sound. We suggest below some points that could potentially be improved.

We enjoyed reading this manuscript, and believe this is a valuable and much needed contribution to
the field.

NORMALIZATION: The authors mention that cross-receptive field normalization was required to
match human performance (line 294). This seems an important methodological point that is not much
discussed in the manuscript. How does the model output change without cross-receptive field
normalization?

A related technical point is the choice of normalization for the summary statistics in the observer
model. As described in Methods (line 379 and following), each statistic is normalized to a standard
deviation of 1 in the Van Hateren database. But besides the scale of the standard deviation, the PS
statistics can vary substantially in the magnitude of their mean values across natural images. It seems
like not centering the statistics at 0 could lead a small subset of statistics to dominate the posterior
normalization across all statistics described in the paragraph of line 384. What is the motivation for
the particular choice used in the manuscript?

BOUNDARY EFFECTS: The section on line 191 and following emphasizes the relevance of the
pooling regions at the boundaries of the stimulus for sample discrimination. The authors argue that
this result can explain the failure of Wallis et.al. 2016 to find metamerism between images that are
presented within small apertures. But in Wallis 2016, discrimination performance improves as the
target size increases (their Figure 8) in a task analogous to the sample discrimination task described
here. This would seem to run counter to the analysis made by the authors in this work. This seeming
discrepancy with previous results could be acknowledged and discussed.

“COUNTERINTUITIVE” EFFECT OF IMAGE SIZE: Several parts of the text, including the abstract,
emphasize that the reduced sample-discrimination performance for larger sizes is counterintuitive or
paradoxical, and that one should expect performance to increase with stimulus size. Why one should
expect this, however, is not entirely clear from the text. For instance, the introduction discusses the
crowding literature, where spatial context impairs performance. Past work also showed that larger
moving stimuli impair motion direction discrimination at high contrast (Tadin et al 2003 Nature). Line
87 and following make the point that “subjects could focus their attention on a small spatial portion of
the larger stimuli, which would allow them to maintain high levels of performance *regardless of patch
size*”, rather than improve performance for larger sizes. Perhaps the expectation of improved
performance is related to neural noise. Implementing and simulating alternative models may be too
much, but it would be useful to explain more clearly which models in the literature would predict that
larger size equals better sample-discrimination performance.

COMPULSORY POOLING: A related point is whether the compulsory pooling, proposed here to
explain the experimental observations (lines 94-97 and 270-273), is really compulsory, or whether
instead it could be mitigated. For instance, could sample-discrimination performance at large sizes be



rescued by cueing a small portion of the larger images? What is the prediction of the model of fig 3a
in that case? We're not suggesting that these experiments/simulations should necessarily be
performed as part of this paper, but it seems a point worth considering, particularly in the discussion
of the literature by the Herzog group, Wallis et al 2018, and our own (lines 293-295), given that the
possibility of flexible pooling arising from segmentation or grouping cues is a major active area of
peripheral vision research. A related, relevant reference is the recent review by Rosenholtz (JOV
2019) arguing in favor of the fixed windows pooling model.

Minor comments:

1) In the paragraph of line 27 the authors say “Here, we show that these peripheral losses are
accompanied by a gain”, but it is not clear exactly what this “gain” is, and how their experiments show
this gain. Specifically, does the gain refer simply to the improvement of family-discrimination with
image size? Or, for any given size, to the comparison against a model that does not use a summary
statistics representation?

2) In line 75 the authors say that “The effect is consistent across stimuli and observers (Fig. 2f, red
line)”, but the referenced figure only shows mean performance across stimuli and observers, thus not
really showing the mentioned consistency.

3) In the line of argument starting in line 228, it would seem that the authors suggest that the
receptive fields straddling the boundary are required to solve the sample discrimination task. Is this
correct? Should we expect performance to drop to chance if stimulus size is increased to infinity? If
so, this could be explicitly stated. Nonetheless, it would seem like even without boundary straddling
receptive fields there is variability in the fully-covered receptive fields that would allow to solve the
task, making the straddling regions not strictly required to solve the sample discrimination task.

4) The size/scaling of the single-pooling-region model is not specified in the text.

5) Line 291 and following suggest deep NNs as a potential basis for probing SS representations of
other visual features. The recent observation that deep NN feature activations are well described by
elliptical distributions, and hence are well summarized by means and covariances at each layer
(Vacher, Davila, Kohn, Coen-Cagli NeurlPS 2020), could be relevant from that perspective.

6) Typos:

line 33 “we show. through”

lines 39-40 open parenthesis

line 227. “overlapped receptive fields ...”

line 230. “(Fig. (Fig. 2f,3b).”

line 302 “...area should should engender...”

line 365 “Specifically, statistics are averages weighted a set of P...’

Reviewer #2 (Remarks to the Author):
First things first: Great paper; | have no serious concerns.

That being said, when | first read the manuscript (and skipped directly from the Introduction to the
Methods, because that’s the way | read), | was under the impression that the number of pooling
regions (the variable P) was, in fact, a variable, which scaled with stimulus area. Since each of the N
statistics within each pooling region is perturbed by (what is, | still assume to be an independent



sample of Gaussian) noise, that meant the Euclidean distance between response matrices would be
expected to increase with stimulus area, and performance in the sample-discrimination task would
have to fall.

| didn't find out that my impression was wrong until | got to Fig. 5. (So, here’s one suggestion: when
you introduce the variable P, make it clear that it doesn't vary with stimulus area.) Fig. 5 seems to
suggest that all response matrices are the same size. | have to say that seems kind of strange to me.
It seems as though you have effectively assumed that observers ignore noise that is generated in
pooling regions that fall wholly outside only your largest stimuli, i.e. even on (blocked) trials that only
contain small stimuli (and thus also contain wholly unstimulated pooling regions).

Regardless whether the inverse relationship between sample-discrimination accuracy with stimulus
size is due to different samples looking more similar or identical samples looking more different, |
don’t see how this model could explain repulsion and assimilation associated with crowding in less
naturalistic stimuli (e.g. doi:10.1167/10.8.13). Of course, | concede that no model can account for
everything, and | am happy to concede those contextual effects as "beyond the scope" of the current
manuscript.

Reviewer #3 (Remarks to the Author):

The manuscript by Ziemba & Simoncelli presents a set of fascinating findings to address the question
of why our peripheral vision operates the way that it does. A great deal of recent work has examined
the limitations of peripheral vision, including phenomena like crowding, as reviewed by the authors.
Although suggestions have been made as to the potential usefulness of these operations, empirical
demonstrations of these apparent benefits have proven elusive.

Following recent work suggesting that the periphery may represent the visual scene via summary
statistics, here the authors demonstrate distinct patterns of performance for the discrimination of
texture ‘families’ (whether synthetic texture images derive from a common image with matched
statistics) vs. ‘sample discrimination’ (whether synthetic texture images are the very same image). As
image size increases, sample discrimination performance declines, whereas family discrimination
improves. The crossover between these abilities shifts to larger sizes as stimuli are presented further
into the peripheral field. The authors replicate this with a texture-discrimination model that directly
encodes summary statistics from these textures within localised receptive fields that increase in size
with eccentricity. The implication is that our peripheral field, subserved by these large receptive fields,
is optimised for discriminating between distinct texture patterns, at the expense of fine detail. Although
the latter limitation has been extensively studied, the former benefits have received less
demonstration. The argument here is compelling.

| very much enjoyed reading this manuscript. It is bristling with ideas and addresses a fundamental
issue — why peripheral vision seems to limit information. Here we have a task where peripheral vision
excels, showing a benefit for these operations. These kinds of demonstrations have been a kind of
holy grail for many fields (e.g. the benefits of adaptation), so to see a task like this with clear data is
fascinating. The behavioural experiments are carefully conducted and seamlessly integrated with
computational modelling that together provides a range of insights. Both behavioural and modelling
results are linked with prior findings in psychophysics and physiology to provide a firm foundation.

| do however have some issues with the manuscript as it stands, though these are mainly issues of
clarification and points where conclusions are overstated.

1. The basis of sample vs family discrimination and their variation with image size
As the authors discuss, the finding that sample discrimination abilities (matching 2/3 images) decline

with image size is somewhat counterintuitive. The manuscript mentions this, but focusses its
explanation primarily on the family-discrimination task, which increases with size. | struggled to



understand the proposed basis for sample discrimination as a result and suggest that greater focus
need be given here.

There seem to me to be two levels of explanation for these results. One relies solely on the statistics
of the images themselves. As presented in Figure 1C, texture statistics are more variable between
images when those images are small than when they are large. It makes sense then that sample
discrimination should be successful with small images — there is a high likelihood that the oddball
sample in the three-interval ABX task will be very different. This variability decreases with size (as Fig
1C shows), and so the statistics of the oddball are less likely to differ, making performance more
difficult. For the family discrimination, the increased variability with small images is problematic since
observers might erroneously take this difference as an indication of distinct family membership for the
matched images (which match only in their broad statistics and are not the same image, as they are
in the sample task). Is this a fair interpretation? If so then a greater link between the explanation and
these image statistics in Fig 1C would help understand the basis for these abilities.

The second level to the interpretation here is the “observer model” that computes these statistics and
uses them to make the same judgements, which performs similarly to the observers with the right
parameters in place (particularly with respect to parameters for the scaling of receptive-field size with
eccentricity and noise). The success of the model is used to argue for the “strong hypothesis” that
observers perform this way because they have access only to this statistical information and not the
fine details, as with the model. Confusingly however, the explanation in this section (p6) focusses on
the effect of the overlap between the stimulus and receptive field boundaries. | find it hard to
determine the model-based explanation of the sensitivity patterns as a result.

The description on lines 203-204 suggests to me that the model replicates the data for the same
reason as above (the relationship between image size and variability in the images themselves). But
this link could be made more explicitly. As it is, the explanation with partial overlap seems problematic
in several ways.

First, this same process seems unlikely to be true for other visual judgements — with judgements of
direction or orientation for instance, more information should lead to better discriminability. This is true
for orientation judgements for instance (Mékeld, Whitaker, & Rovamo, 1993), though there are of
course exceptions e.g. with motion at high contrast when surround suppression becomes an issue
(Tadin, Lappin, Gilroy, & Blake, 2003). What separates the current abilities is the nature of the stimuli
themselves — as above, the statistical properties of the images become less variable as size
increases. In other words, it seems to me that the explanation here needs both region of analysis
(either image size or RF size), as is currently discussed, plus the statistical nature of these texture
images. | do not think that partial overlap would be an issue for other visual judgements in the same
way without this.

Second, the analysis of overlap is interesting but also confounds the size of the images — increasing
size decreases their statistical variability, as above. Would the same result be found if an image of a
fixed size were analysed by RFs of varying size (which would also alter ‘proportion covered of the
pooling region’ as on the Fig 5a x-axis)? An analysis of this nature also seems closer to me to the
situation in peripheral vision — given that images in the experiment expanded away from the fovea
when their size increased, their representation also shifts towards neurons with larger receptive fields.
This change in RF size with eccentricity also seems important to the success of the model — in Figure
3b, when shallow slopes for the change in RF size are used (akin to V1), model performance on the
sample-discrimination task in particular lies flat at ceiling. Presumably this relates to the lack of
change in size with eccentricity. Again this suggests to me that the issue is not one of partial overlap
per se but rather a mismatch between the stimulus and RF size.

Along these lines, | note that there is also little consideration of alternative explanations for these
patterns of performance. One relates to the above potential confound with eccentricity — that as size
increases, so too does the eccentricity of the images. If the failure of sample-matching were not
related to statistics but rather to the observer’s inability to compare features across the two images



(selected line elements or configurations of light/dark regions etc) then this would presumably
decrease with eccentricity as acuity declined. Would the same result be obtained if patches were
centred on the same eccentricity as they grew? The centroid location of elements has found to be
most important to crowding effects (Levi & Carney, 2009); the same may be true here given that the
centroid of these images shifts outwards with increasing size. Some consideration of this would also
help to increase the generality of these findings.

Altogether, the manuscript would benefit from clarification on the proposed mechanisms underlying
these abilities, a clearer distinction between the image-based and model-based levels of explanation,
and some consideration of alternatives.

2. Image statistics and metamerism

The authors make a distinction between a strong variant of their hypothesis (that we ourselves
perform these texture calculations and discard the fine detail), and a weaker version (that we perform
some kind of texture calculation). The authors argue for the strong version on the basis of the match
between the model and performance. But the circumstances here are rather limited for testing the
model. In particular, | am sure that the model would do well to replicate crowding effects (where target
recognition is disrupted by surrounding clutter), as with recent texture-based models of this process
(Freeman & Simoncelli, 2011; Rosenholtz, Yu, & Keshvari, 2019), but | doubt that it could replicate
performance without crowding. The striking thing about these effects is that observers can typically
recognise an isolated letter or object with high accuracy, which drops markedly when surrounding
flankers/clutter is added. Because these models discard positional information, they need various
constraints in order to replicate this uncrowded baseline, e.g. that the output is restricted to specific
locations (Balas, Nakano, & Rosenholtz, 2009). If we truly discard all fine details and have access
only to statistical summaries, can we therefore read a single isolated letter in our peripheral vision?

Some caution is also required given that the experiments here compare only synthesised images
against one another. Without testing a comparison to natural scenes, can the strong variant of the
hypothesis really be asserted? This is discussed to some extent in the manuscript, with particular
criticism reserved for a recent study (Wallis, Bethge, & Wichmann, 2016) which is argued to have
reached “erroneous conclusions” about metamerism (line 258). Quite what the error is remains
unclear to me however. Their argument is that observers can more readily discriminate natural
scenes from texturised versions than they can discriminate two texturised images. | don't see how the
present results invalidate that finding given that natural scenes are not tested here. This seems to me
a particular problem for the strong variant of the hypothesis.

The authors also discuss at several points the fact that their model never predicts chance-level
performance, and argue that their participants behave similarly. This seems problematic to me given
the fact that observers do fall to chance in this study — as in Figure 2 with the simultaneous matching
task. It may be that the paragraph in the discussion on p7 is only referring to these model predictions
and not to human data, but this could be more clear if so (on line 253 especially).

To be clear, | do think the data overall provide a compelling case for the authors arguments, but
suggest that broader context be considered critically against these ideas.

3. Links to physiology

Claims are made at various points that the findings here directly relate to the physiology of the visual
system, which at times are over-stated given the qualitative nature of these matches between data
and model, the various assumptions required (e.g. averaging RF size across the population of
neurons), and the relation to prior work. The results are described as indicating V2 and V4 neurons as
a 'likely candidate’ for these computations (line 156), which seems fair to me, but to then say directly
that these findings provide direct evidence that these neurons represent these specific statistical
representations of texture (line 158) seems a step too far. This is also true in the discussion where it
is stated that “the current paper demonstrates this for visual areas V2 and V4" (line 303).



Although the similarities between the abilities observed herein and recordings from single neurons in
these cortical regions is intriguing, it is problematic to then say that these behavioural and modelling
results provide evidence for neural sensitivity in specific cortical regions. This is particularly so given
that prior work (Freeman & Simoncelli, 2011) was most consistent with area V2, that others find
scaling factors more consistent with area V1 (Wallis et al., 2019), and that there is evidence for the
involvement of area V3 (Kohler et al., 2016). The locus of these texture processes therefore seems
quite unclear to me, and although the results here can certainly constrain the potential processes
performed by these neurons, they do not definitively determine the operation of specific neurons, as
these statements suggest.

4. The nature of the texture images

It would be useful in evaluating the nature of “family discrimination” to see exactly the images that
these samples derived from. The authors state that these images were specifically selected to be
difficult to discriminate (line 331) in a prior study, suggesting that the precise images chosen are likely
to matter. It is important therefore that we know what these were, ideally with the images themselves
included in an appendix, for instance.

5. Methodological details

The methods report that 10 observers were tested, but each data figure reports only n=4. | assume
the 10 are therefore spread over multiple experiments, but quite how this worked (and which were
naive) requires some explanation.

The sizes of stimuli are reported in pixels, but it would be useful to have their diameter in degrees (as
plotted on Figure 4) for comparison to other visual processes.

Each condition was separated into distinct blocks of trials, the length of which is stated to be 20-40
trials at a time (line 346). Why the variation in range? Were some blocks combined?

In the model predictions section, the computation of image statistics involves a step in which the
“response of each statistic” was divided by the standard deviation of these values. It's not clear to me
what the “response of each statistic” would represent here.

As above the arguments regarding the dependence of family vs sample discrimination on object size
refer back to the variability in these statistics (Figure 1C). | cannot find however how these estimates
of variability were calculated, nor the meaning of the “coefficient of variation” that is plotted. Some
description in the methods would help.

6. Minor issues

The abstract describes the two tasks (family and sample discrimination) but without naming the latter
in the brief methodological description. It would help to more quickly understand the results were this
named prior to the description of the results.

The caption for Figure 3 describes the ‘observer’ as computing the Euclidean distance in statistical
texture space (near the middle) which is somewhat confusing given that it refers to the ‘observer
model’.

A few typos: ‘edge’ on line 66 is misspelt, as is ‘stimuli’ on line 193.
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We thank all the reviewers for comments that have helped us to improve and refine our
manuscript. Those sections with extensive revision have been highlighted in red, and we have
added two supplementary figures, one breaking out detailed results by texture family and
individual subject, and the other showing simulations from an observer model with normalization
removed. Detailed responses to all comments are below.

REVIEWER #1

In this work the authors test the hypothesis that peripheral vision relies on a summary statistics
(SS) representation. This long-standing hypothesis has received much support in past work
(duly cited) including by the authors. However most evidence supporting this hypothesis is in
some way indirect, using stimuli and experimental designs that may not be ideally suited to
probe SS representations, leading to considerable uncertainty. This manuscript presents what
is, in our opinion, the most direct and convincing experimental test of the SS hypothesis for
peripheral visual perception to date. Specifically, the authors use discrimination tasks with
naturalistic synthetic textures. They derive the novel prediction that discrimination between
textures with different SS (family discrimination) should improve with image size, whereas,
somewhat surprisingly, discrimination between textures with the same SS but different pixel
realizations (sample discrimination) should become worse for

large images. The experiments provide strong and detailed support for the prediction. The
manuscript is mostly clear and technically sound. We suggest below some points that could
potentially be improved.

We enjoyed reading this manuscript, and believe this is a valuable and much needed
contribution to the field.

NORMALIZATION: The authors mention that cross-receptive field normalization was required to
match human performance (line 294). This seems an important methodological point that is not
much discussed in the manuscript. How does the model output change without cross-receptive

field normalization?

Without normalization, discrimination performance generally increases with size in both tasks,
but at different rates. This is expected: increasing stimulus size means that more receptive fields
are driven, providing more information for either task. Normalization, a ubiquitous property of
sensory neural responses, effectively reduces the gain, and thus the SNR, as the number of
driven neurons increases. We have elaborated this in the manuscript, in both the Results and
Methods sections, in addition to a supplementary figure showing model performance with
normalization removed.

A related technical point is the choice of normalization for the summary statistics in the observer
model. As described in Methods (line 379 and following), each statistic is normalized to a
standard deviation of 1 in the Van Hateren database. But besides the scale of the standard
deviation, the PS statistics can vary substantially in the magnitude of their mean values across
natural images. It seems like not centering the statistics at 0 could lead a small subset of



statistics to dominate the posterior normalization across all statistics described in the paragraph
of line 384. What is the motivation for the particular choice used in the manuscript?

Thanks for prompting us to clarify this. We now refer to this pre-processing step as “rescaling”
(rather than “normalization”) in the methods to distinguish it from the physiologically-motivated
cross-receptive field normalization. The rescaling of each statistic by its standard deviation over
a large natural dataset is meant to reconcile the ranges of the different statistics. The mean and
variance are highly correlated across the different statistics (r = 0.97), so the rescaling step
brings both the mean and variance into similar ranges for each statistic. We have added
language to the methods describing the motivations for our choice (and noting that z-scoring
responses across experimental stimuli yields similar results).

BOUNDARY EFFECTS: The section on line 191 and following emphasizes the relevance of the
pooling regions at the boundaries of the stimulus for sample discrimination. The authors argue
that this result can explain the failure of Wallis et.al. 2016 to find metamerism between images
that are presented within small apertures. But in Wallis 2016, discrimination performance
improves as the target size increases (their Figure 8) in a task analogous to the sample
discrimination task described here. This would seem to run counter to the analysis made by the
authors in this work. This seeming discrepancy with previous results could be acknowledged
and discussed.

We appreciate you pointing this out. Comparing to the results of Wallis et. al. 2016 is difficult,
largely because of differences in stimulus generation. We synthesize large images with
converged statistics, and the variability of statistics in our stimuli with stimulus size comes only
from the windowing. The Wallis stimuli are synthesized independently for each window size,
using statistics that are gathered (from natural images) at that window size, and thus vary much
more substantially as size changes. As a result, their observers exhibit more variable
behaviors: some show improvement in synthetic sample discrimination as window size
increases from the smallest size, while others do not (see their Figure 8, first column, “synth vs
synth” condition). More importantly, note that all of their subjects exhibit a decrease in sample
discrimination performance at larger sizes, consistent with our results (again, see their Figure 8).

Ultimately, we thought it was not worth dragging readers through the technical differences
between the papers. The important difference is not in methods or data, but interpretation: we
have shown that the summary statistics hypothesis, and its instantiation in the full-field metamer
model of Freeman & Simoncelli (2011), is consistent with the failure to achieve metamerism
with localized texture patches seen in both data sets. Our model simulations, and
accompanying explanation (in the renamed “Multiple factors underlie opposing effects” section)
demonstrate why this is the case. We have refined our language in both the results section
where the boundary effects are described and in the discussion.

“COUNTERINTUITIVE” EFFECT OF IMAGE SIZE: Several parts of the text, including the
abstract, emphasize that the reduced sample-discrimination performance for larger sizes is
counterintuitive or paradoxical, and that one should expect performance to increase with
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stimulus size. Why one should expect this, however, is not entirely clear from the text. For
instance, the introduction discusses the crowding literature, where spatial context impairs
performance. Past work also showed that larger moving stimuli impair motion direction
discrimination at high contrast (Tadin et al 2003 Nature). Line 87 and following make the point
that “subjects could focus their attention on a small spatial portion of the larger stimuli, which
would allow them to maintain high levels of performance *regardless of patch size™”, rather than
improve performance for larger sizes. Perhaps the expectation of improved performance is
related to neural noise. Implementing and simulating alternative models

may be too much, but it would be useful to explain more clearly which models in the literature

would predict that larger size equals better sample-discrimination performance.

Thank you for pointing this out. We intended to say that the result is “counterintuitive” because
performance worsens as more stimulus information becomes available. An ideal observer
would improve (and indeed, without normalization, our observer model does show improvement
- this is now in a Supplementary figure). And even if humans are incapable of optimal spatial
integration over the larger patches, one might expect that their performance would at least
remain the same (eg., that they continue to integrate over a sub-region of the stimulus).
Importantly, our task is quite different from those typically used in the crowding literature,
because the surrounding stimulus information is relevant for the task, and not a masking or
distracting “spatial context.” As such, we don’t see that the phenomenon of crowding could
provide an explicit prediction of our results. We have updated the manuscript to be more explicit
about this, see highlighted text in the Introduction and Results sections. Also, thank you for
pointing us to Tadin et al, 2003, which we cite as providing a precedent for our results (albeit
under quite different conditions).

COMPULSORY POOLING: A related point is whether the compulsory pooling, proposed here to
explain the experimental observations (lines 94-97 and 270-273), is really compulsory, or
whether instead it could be mitigated. For instance, could sample-discrimination performance at
large sizes be rescued by cueing a small portion of the larger images? What is the prediction of
the model of fig 3a in that case? We're not suggesting that these experiments/simulations
should necessarily be performed as part of this paper, but it seems a point worth considering,
particularly in the discussion of the literature by the Herzog group, Wallis et al 2018, and our
own (lines 293-295), given that the possibility of flexible pooling arising from segmentation or
grouping cues is a major active area of peripheral vision research. A related, relevant reference
is the recent review by Rosenholtz (JOV 2019) arquing in favor of the fixed windows pooling
model.

Thank you for this suggestion. We’ve added a new (highlighted) paragraph to the Discussion on
the issues surrounding the fixed pooling assumption.

Minor comments:

1) In the paragraph of line 27 the authors say “Here, we show that these peripheral losses are
accompanied by a gain”, but it is not clear exactly what this “gain” is, and how their experiments



show this gain. Specifically, does the gain refer simply to the improvement of
family-discrimination with image size? Or, for any given size, to the comparison against a model
that does not use a summary statistics representation?

The “gain” is meant to refer to the improved family discrimination (i.e., improved sample
invariance). We've refined the description.

2) In line 75 the authors say that “The effect is consistent across stimuli and observers (Fig. 2f,
red line)”, but the referenced figure only shows mean performance across stimuli and observers,
thus not really showing the mentioned consistency.

We have added a supplementary figure (Supp Fig. 1) breaking out performance across subjects
and stimuli.

3) In the line of argument starting in line 228, it would seem that the authors suggest that the
receptive fields straddling the boundary are required to solve the sample discrimination task. Is
this correct? Should we expect performance to drop to chance if stimulus size is increased to
infinity? If so, this could be explicitly stated. Nonetheless, it would seem like even without
boundary straddling receptive fields there is variability in the fully-covered receptive fields that
would allow to solve the task, making the straddling regions not strictly required to solve the
sample discrimination task.

Your interpretation is correct, boundary straddling neurons are not required but they do provide
additional information supporting discrimination in our task. We have revised this section to lay
out the full set of factors that lead to the observed influence of window size on discriminability.
These include: the degree of convergence of the statistics within pooling regions, the number of
pooling regions that are covered, the surround suppression arising from divisive normalization,
and the noise level.

4) The size/scaling of the single-pooling-region model is not specified in the text.

Thanks - we have added this to the methods section.

5) Line 291 and following suggest deep NNs as a potential basis for probing SS representations
of other visual features. The recent observation that deep NN feature activations are well
described by elliptical distributions, and hence are well summarized by means and covariances
at each layer (Vacher, Davila, Kohn, Coen-Cagli NeurlPS 2020), could be relevant from that
perspective.

Thank you for the suggestion, we have modified the sentence and added references.

6) Typos:

line 33 “we show. through”



lines 39-40 open parenthesis

line 227. “overlapped receptive fields ...”

line 230. “(Fig. (Fig. 2f,3b).”

line 302 “...area should should engender...”

line 365 “Specifically, statistics are averages weighted a set of P..

”

Thanks - all fixed.



REVIEWER #2
First things first: Great paper; | have no serious concerns.

That being said, when | first read the manuscript (and skipped directly from the Introduction to
the Methods, because that’s the way | read), | was under the impression that the number of
pooling regions (the variable P) was, in fact, a variable, which scaled with stimulus area. Since
each of the N statistics within each pooling region is perturbed by (what is, | still assume to be
an independent sample of Gaussian) noise, that meant the Euclidean distance between
response matrices would be expected to increase with stimulus area, and performance in the
sample-discrimination task would have to fall. | didn’t find out that my impression was wrong
until I got to Fig. 5. (So, here’s one suggestion: when you introduce the variable P, make it clear
that it doesn’t vary with stimulus area.)

We apologize for the confusion. The first paragraph of the “Observer model predictions” section
states that P is determined by the scaling factor s, and is independent of stimulus window size.
Note that this means some pooling regions are empty (for small stimuli). We have added a
sentence near the end of the methods section making clear that all model parameters are held
fixed for all experimental conditions except for the scaling factor (s), and the noise level (o).

Regarding the conceptual aspect of the question: Effectively, P does increase with stimulus area
(because pooling regions are fixed, and a larger stimulus will cover more of them, proportional
to area), but this has little effect on performance. Our observer model uses relative Euclidean
distance between stimuli of the same size, and so is unaffected by the dependence of Euclidean
distance on stimulus area.

Fig. 5 seems to suggest that all response matrices are the same size. | have to say that seems
kind of strange to me. It seems as though you have effectively assumed that observers ignore
noise that is generated in pooling regions that fall wholly outside only your largest stimuli, i.e.
even on (blocked) trials that only contain small stimuli (and thus also contain wholly
unstimulated pooling regions).

We thought the simplest approach was to use the same of pooling regions for all conditions,
regardless of whether they are stimulated or not (since presumably this must also be true of the
visual system). So the pooling regions beyond the stimulus window are included in the observer
model, but have minimial impact on average performance. We have run simulations using only
those pooling regions that are significantly overlapped with the stimulus, and results were nearly
identical.

Regardless whether the inverse relationship between sample-discrimination accuracy with
stimulus size is due to different samples looking more similar or identical samples looking more
different, | don’t see how this model could explain repulsion and assimilation associated with
crowding in less naturalistic stimuli (e.g. doi:10.1167/10.8.13). Of course, | concede that no



model can account for everything, and | am happy to concede those contextual effects as
"beyond the scope"” of the current manuscript.

Indeed we do not immediately see how our results and model can explain many phenomena in
the literature associated with crowding, such as the Mareschal et. al. 2010 paper. Specifically,
the model as currently implemented makes no distinction between target stimuli and task
irrelevant distractors, and does not read out a stimulus estimate like an orientation judgment.
Adding such features to this model is indeed “beyond the scope” here but could be an
interesting future line of research.



REVIEWER #3

The manuscript by Ziemba & Simoncelli presents a set of fascinating findings to address the
question of why our peripheral vision operates the way that it does. A great deal of recent work
has examined the limitations of peripheral vision, including phenomena like crowding, as
reviewed by the authors. Although suggestions have been made as to the potential usefulness
of these operations, empirical demonstrations of these apparent benefits have proven elusive.

Following recent work suggesting that the periphery may represent the visual scene via
summary statistics, here the authors demonstrate distinct patterns of performance for the
discrimination of texture ‘families’ (whether synthetic texture images derive from a common
image with matched statistics) vs. ‘sample discrimination’ (whether synthetic texture images are
the very same image). As image size increases, sample discrimination performance declines,
whereas family discrimination improves. The crossover between these abilities shifts to larger
sizes as stimuli are presented further into the peripheral field. The authors replicate this with a
texture-discrimination model that directly encodes summary statistics from these textures within
localised receptive fields that increase in size with eccentricity. The implication is that our
peripheral field, subserved by these large receptive fields, is optimised for discriminating
between distinct texture patterns, at the expense

of fine detail. Although the latter limitation has been extensively studied, the former benefits
have received less demonstration. The argument here is compelling.

I very much enjoyed reading this manuscript. It is bristling with ideas and addresses a
fundamental issue — why peripheral vision seems to limit information. Here we have a task
where peripheral vision excels, showing a benefit for these operations. These kinds of
demonstrations have been a kind of holy grail for many fields (e.g. the benefits of adaptation),
so to see a task like this with clear data is fascinating. The behavioural experiments are
carefully conducted and seamlessly integrated with computational modelling that together
provides a range of insights. Both behavioural and modelling results are linked with prior
findings in psychophysics and physiology to provide a firm foundation.

| do however have some issues with the manuscript as it stands, though these are mainly
issues of clarification and points where conclusions are overstated.

1. The basis of sample vs family discrimination and their variation with image size

As the authors discuss, the finding that sample discrimination abilities (matching 2/3 images)
decline with image size is somewhat counterintuitive. The manuscript mentions this, but
focusses its explanation primarily on the family-discrimination task, which increases with size. |
struggled to understand the proposed basis for sample discrimination as a result and suggest
that greater focus need be given here.

There seem to me to be two levels of explanation for these results. One relies solely on the
statistics of the images themselves. As presented in Figure 1C, texture statistics are more



variable between images when those images are small than when they are large. It makes
sense then that sample discrimination should be successful with small images — there is a high
likelihood that the oddball sample in the three-interval ABX task will be very different. This
variability decreases with size (as Fig 1C shows), and so the statistics of the oddball are less
likely to differ, making performance more difficult. For the family discrimination, the increased
variability with small images is problematic since observers might erroneously take this
difference as an indication of distinct family membership for the matched images (which match
only in their broad statistics and are not the same image, as they are in the sample task). Is this
a fair interpretation? If so then a greater link

between the explanation and these image statistics in Fig 1C would help understand the basis
for these abilities.

This is a nice statement of the overall effect, and is the primary conceptual message of our
paper. But there is a subtle but important aspect missing from this explanation, that arises from
a more mechanistic level of explanation. Your statement assumes that human performance
reflects statistics computed across the entire stimulus. As we elaborate in the renamed section
“Multiple factors underlie opposing effects” and in the Discussion, our observer model computes
statistics within fixed pooling regions (corresponding to receptive fields of neurons in some
visual area). This means that the statistics may (or may not) have reached convergence,
depending on pooling region size and how much of the pooling region overlaps the stimulus.
These factors do contribute to the discrimination performance, as shown in Results. We thought
it important to spell out all of the factors in our model (and, we believe, in the human observers)
that lead to the net performance. We have modified sections of the results to try to better explain
our thinking.

The second level to the interpretation here is the “observer model” that computes these
statistics and uses them to make the same judgements, which performs similarly to the
observers with the right parameters in place (particularly with respect to parameters for the
scaling of receptive-field size with eccentricity and noise). The success of the model is used to
argue for the “strong hypothesis” that observers perform this way because they have access
only to this statistical information and not the fine details, as with the model. Confusingly
however, the explanation in this section (p6) focusses on the effect of the overlap between the
stimulus and receptive field boundaries. | find it hard to determine the model-based explanation
of the sensitivity patterns as a result.

The description on lines 203-204 suggests to me that the model replicates the data for the same
reason as above (the relationship between image size and variability in the images themselves).
But this link could be made more explicitly.

These comments were very helpful and we have attempted to clarify our reasoning throughout
the manuscript to make clear which aspects of the model are necessary to reproduce
performance. We have modified the observer model section of the Results, as well as
completely rewritten/added a new section “Multiple factors underlie opposing effects” to try to
better explain what we consider the key components of the model that allow it to replicate the



data. A major reason the model works stems from the explanation you gave above: the
increasing convergence of the statistics with image size. However, the interaction between this
effect and pooling regions of fixed size is somewhat complex, and this is what we explore with
this second level of interpretation. Indeed, we find that gain control, in addition to pooling, is
required for the full model to replicate human perceptual behavior.

As it is, the explanation with partial overlap seems problematic in several ways.

First, this same process seems unlikely to be true for other visual judgements — with judgements
of direction or orientation for instance, more information should lead to better discriminability.
This is true for orientation judgements for instance (Mékeld, Whitaker, & Rovamo, 1993), though
there are of course exceptions e.g. with motion at high contrast when surround suppression
becomes an issue (Tadin, Lappin, Gilroy, & Blake, 2003). What separates the current abilities is
the nature of the stimuli themselves — as above, the statistical properties of the images become
less variable as size increases. In other words, it seems to me that the explanation here needs
both region of analysis (either image size or RF size), as is currently discussed, plus the
statistical nature of these texture images. | do not think that partial overlap would be an issue for
other visual judgements in the same way without this.

These are good points, and we are mostly in agreement with your interpretation. We believe the
core mechanisms of pooling and normalization are likely to affect many visual judgments. In
many cases increasing stimulus size or information will not decrease discriminability, as you
point out for orientation discrimination. We suggest this may be because with some stimuli,
pooling mechanisms will not lead to the loss of much information. However, the statistical
properties of the texture images we use here are to some extent general properties of
naturalistic images. Smaller samples of sensory evidence will lead to more variability in
summary statistics, while larger samples will lead to more stable statistics. So we would argue
the opposing effects we demonstrate here may represent a general phenomena for
discrimination of many complex, naturalistic stimuli.

However, we do think that aperture effects could contribute to other visual phenomena, as has
been pointed out in the context of decoding orientation tuning (Carlson, 2014; Roth, Heeger,
Merriam, 2018).

Second, the analysis of overlap is interesting but also confounds the size of the images —
increasing size decreases their statistical variability, as above. Would the same result be found if
an image of a fixed size were analysed by RFs of varying size (which would also alter
‘proportion covered of the pooling region’ as on the Fig 5a x-axis)? An analysis of this nature
also seems closer to me to the situation in peripheral vision — given that images in the
experiment expanded away from the fovea when their size increased, their representation also
shifts towards neurons with larger receptive fields.

Yes, in fact this is partly the analysis we perform. The RFs were not all the same size (although
they are depicted schematically that way in Fig. 5bc - we have added a note to the caption



emphasizing that the diagram is idealized). We used our observer model with
eccentricity-dependent pooling region size to simulate this analysis, meaning pooling regions of
multiple different sizes are included. Additionally we presented the same stimuli at multiple
eccentricities to increase variation in pooling region size relative to the stimulus. This is now
noted in the methods.

The same result of opposing effects of pooling region overlap holds for stimuli of a fixed size.
However, given our analysis, the trend is somewhat noisier given the limited number of
conditions and pooling regions. We averaged across different stimulus sizes to make the
opposing effects clearer, and don’t believe this detracts from the broader point.

This change in RF size with eccentricity also seems important to the success of the model — in
Figure 3b, when shallow slopes for the change in RF size are used (akin to V1), model
performance on the sample-discrimination task in particular lies flat at ceiling. Presumably this
relates to the lack of change in size with eccentricity. Again this suggests to me that the issue
is not one of partial overlap per se but rather a mismatch between the stimulus and RF size.

In fact, the V1 model shows opposing effects as well, and the sample discrimination
performance appearing “flat” is, as you say, purely a product of being at ceiling because of SNR.
You can see at an SNR of 0.125 that in fact performance is decreasing with size for the sample
discrimination task, and decreases more dramatically for even lower SNR. We have added a
sentence about ceiling effects in results.

But your larger point is correct: the reason V1 is not a good match to the human perceptual data
is because the receptive fields are too small relative to the pooling regions that humans appear
to be using. Even when a V1 sized pooling region is fully covered with our stimuli, it is taking a
relatively small sample of the stimulus, yielding strongly variable responses across samples
within a pooling region which provide too much sample discrimination information relative to
family discrimination order to match the human data. We have added this explanation to the
Results section.

Along these lines, | note that there is also little consideration of alternative explanations for
these patterns of performance. One relates to the above potential confound with eccentricity —
that as size increases, so too does the eccentricity of the images. If the failure of
sample-matching were not related to statistics but rather to the observer’s inability to compare
features across the two images (selected line elements or configurations of light/dark regions
etc) then this would presumably decrease with eccentricity as acuity declined. Would the same
result be obtained if patches were centred on the same eccentricity as they grew? The centroid
location of elements has found to be most important to crowding effects (Levi & Carney, 2009);
the same may be true here given that the centroid of these images shifts outwards with
increasing size. Some consideration of this would also help to increase the generality of these
findings.

We do not consider what you describe an experimental confound.



(1) The distinction between computing statistical summaries and discarding the details and an
“observer’s inability to compare features across images” is not clear to us. Subjects clearly have
access to the statistics (as demonstrated by their family discrimination performance), but lose
access to details allowing them to perform the sample discrimination well. We only add
information at further eccentricities, so this extra information interfering with stimulus information
at the nearest eccentricity is a striking effect that we do not believe can be explained by acuity.

(2) We believe the same result would be obtained if patches were centered at the same
eccentricity as they grew. We did not do this because increasing size from the center moves
relevant stimulus information closer to the fovea, eventually extending beyond it, and making it
difficult to quantify effects of eccentricity. To lend credence to this, we can see evidence in the
psychometric performance results of Wallis et al. (2016). Their Figure 8, left column shows 4
observers performing a sample discrimination task between synthetic images where images
grow in size centered on the same eccentricity. While their stimulus construction differs from
what we do here (see above reply to Rev 1), all observers exhibit performance decrements
when the stimulus size increases beyond a diameter of roughly 4 degrees.

(3) We find the connection to findings from crowding paradigms such as Levi & Carney, (2009)
somewhat difficult to reason about with respect to our results without actually performing a
simulation. The fact that centroids of elements are important when relevant and irrelevant
stimulus content is adjacent and interacting does not suggest an obvious connection to our task
where the entire stimulus is a task relevant target. We absolutely agree these questions are
crucial and interesting, but consider them to be in the “future work” category. We have modified
portions of the Discussion to express this.

Altogether, the manuscript would benefit from clarification on the proposed mechanisms
underlying these abilities, a clearer distinction between the image-based and model-based
levels of explanation, and some consideration of alternatives.

These comments were immensely helpful - we have revised our manuscript so as to explain and
distinguish these different issues, and hope you will find it improved.

2. Image statistics and metamerism

The authors make a distinction between a strong variant of their hypothesis (that we ourselves
perform these texture calculations and discard the fine detail), and a weaker version (that we
perform some kind of texture calculation). The authors argue for the strong version on the basis
of the match between the model and performance. But the circumstances here are rather limited
for testing the model. In particular, | am sure that the model would do well to replicate crowding
effects (where target recognition is disrupted by surrounding clutter), as with recent
texture-based models of this process (Freeman & Simoncelli, 2011; Rosenholtz, Yu, & Keshvari,
2019), but | doubt that it could replicate performance without crowding. The striking thing about



these effects is that observers can typically recognise an isolated letter or object with high
accuracy, which drops markedly when surrounding flankers/clutter is added. Because these
models discard positional information, they need

various constraints in order to replicate this uncrowded baseline, e.g. that the output is restricted
to specific locations (Balas, Nakano, & Rosenholtz, 2009). If we truly discard all fine details and
have access only to statistical summaries, can we therefore read a single isolated letter in our
peripheral vision?

It is an interesting question. The Freeman & Simoncelli 2011 and Rosenholtz et al 2019
simulations used the same basic observer model to demonstrate that the statistics are sufficient
to synthesize recognizable isolated letters, implying that the information is retained. The
underlying reason is closely related to our analysis of the boundaries of our stimuli, which
provide information for sample discrimination. An isolated letter, which would be “seen” by
many pooling regions, would be recognizable from the combined statistics of those pooling
regions. This concept also underlies the substantial improvements in object recognition
performance of artificial neural networks in recent years. The convolution and pooling
architecture of those systems discards information through summarization, which provides
invariances over spatial location and size (amongst other things) while preserving selectivity for
object identity.

Some caution is also required given that the experiments here compare only synthesised
images against one another. Without testing a comparison to natural scenes, can the strong
variant of the hypothesis really be asserted? This is discussed to some extent in the manuscript,
with particular criticism reserved for a recent study (Wallis, Bethge, & Wichmann, 2016) which is
argued to have reached “erroneous conclusions” about metamerism (line 258). Quite what the
error is remains unclear to me however. Their argument is that observers can more readily
discriminate natural scenes from texturised versions than they can discriminate two texturised
images. | don’t see how the present results invalidate that finding given that natural scenes are
not tested here. This seems to me a particular problem for the strong variant of the hypothesis.

As we acknowledge in our response to Reviewer 1, we don’t take issue with the experimental
results in Wallis et al. (2016), but we do disagree with some of the interpretation. In particular,
we argue that the failure to achieve metamerism with windowed homogeneous texture patches
is expected, and is completely consistent with a summary statistics pooling model of peripheral
vision. We have clarified these arguments in the rewritten discussion.

That said, we do find their results comparing natural to synthetic images interesting, and view
them as clear indicators that our current statistical model is missing features that are
perceptually relevant. We believe this is also true physiologically: the texture properties captured
by our model do drive V2 neurons well, on average, but the effect is weak in some cells. We've
elaborated on this in the Discussion.

It's worth noting that, unlike the global metamer paradigm of Freeman & Simoncelli 2011,
extending our patch discrimination experiment to include natural photographs is not



straightfoward. We use synthetic stimuli designed to be spatially homogeneous, and we rely on
this property to interpret the results. In particular, the opposing effects can be understood to
arise from a common set of statistics that underlie both tasks. Running the same experiment
with inhomogeneous natural image patches would require careful re-evaluation of procedures
for synthesizing samples, as well as more complex interpretive reasoning. We feel our current
results stand on their own, and benefit from the focus of the experimental design.

The authors also discuss at several points the fact that their model never predicts chance-level
performance, and argue that their participants behave similarly. This seems problematic to me
given the fact that observers do fall to chance in this study — as in Figure 2 with the
simultaneous matching task. It may be that the paragraph in the discussion on p7 is only
referring to these model predictions and not to human data, but this could be more clear if so
(on line 253 especially).

These are good points which we have attempted to clarify in the manuscript. We believe the
simultaneous task presents extra challenges for discrimination that drive performance close to
chance, and intended to mainly refer to model performance.

To be clear, | do think the data overall provide a compelling case for the authors arguments, but
suggest that broader context be considered critically against these ideas.

3. Links to physiology

Claims are made at various points that the findings here directly relate to the physiology of the
visual system, which at times are over-stated given the qualitative nature of these matches
between data and model, the various assumptions required (e.g. averaging RF size across the
population of neurons), and the relation to prior work. The results are described as indicating V2
and V4 neurons as a ‘likely candidate’ for these computations (line 156), which seems fair to
me, but to then say directly that these findings provide direct evidence that these neurons
represent these specific statistical representations of texture (line 158) seems a step too far.
This is also true in the discussion where it is stated that “the current paper demonstrates this for
visual areas V2 and V4’ (line 303).

We have softened the wording of our claims, but we do think that the connection to a plausible
underlying implementation is a strength of our approach. As such, we think it's important to
describe recent findings relating these particular statistics to physiological responses (there
have been over half a dozen physiological studies).

Although the similarities between the abilities observed herein and recordings from single
neurons in these cortical regions is intriguing, it is problematic to then say that these behavioural
and modelling results provide evidence for neural sensitivity in specific cortical regions. This is
particularly so given that prior work (Freeman & Simoncelli, 2011) was most consistent with area



V2, that others find scaling factors more consistent with area V1 (Wallis et al., 2019), and that
there is evidence for the involvement of area V3 (Kohler et al., 2016). The locus of these texture
processes therefore seems quite unclear to me, and although the results here can certainly
constrain the potential processes performed by these neurons, they do not definitively
determine the operation of specific neurons, as these statements suggest.

The current paper does not attempt to provide a precise statement regarding physiological locus
for the opposing effects (we only say that they are qualitatively consistent with V2 and/or V4).
But more generally, we do agree that perceptual scaling estimates do not provide definitive
evidence for physiological locus of representation. We think the primary impediment stems from
the difficulty of correctly and completely defining the relevant feature set from which statistics
are computed. Specifically:

(1) The association of particular texture statistics with area V2 in Freeman & Simoncelli (2011)
led directly to a physiologically followup study (Freeman, Ziemba et al. 2013) that confirmed
that V2 (but not V1) was sensitive to those particular statistics. This explicit confirmation
demonstrates that these connections can be made given the right stimuli, experimental
measurements, and interpretive logic.

(2) In Walllis et al. (2019), scaling appeared to be closer to V1 when comparing synthetic images
with natural ones that had extensive or isolated features, such as long contours. We found this
interesting, and interpret it as an indication that some perceptually-relevant features (e.g.,
combinations of collinear V1 responses) have been left out of the synthesis model. These
missing features are only captured when the scaling parameter is set smaller than that required
for the other features, and as a result, the scaling parameter used to fit the perceptual data is an
under-estimate. This is a somewhat intricate argument, and tangential to the current paper, so
we allude to it only indirectly in the Discussion paragraph about the choice of statistical
features.

(3) Kohler et al. (2016) uses a texture model with more complex parameters that capture visual
symmetries not constrained by the Portilla-Simoncelli statistics. As the authors note, it is
fascinating (but unsurprising), that fMRI responses implicate areas beyond V2 in the
representation of these particular statistics.

4. The nature of the texture images

It would be useful in evaluating the nature of “family discrimination” to see exactly the images
that these samples derived from. The authors state that these images were specifically selected
to be difficult to discriminate (line 331) in a prior study, suggesting that the precise images
chosen are likely to matter. It is important therefore that we know what these were, ideally with
the images themselves included in an appendix, for instance.

Thank you for suggesting this - we agree, and have added a supplementary figure showing an
example of all of the texture families that samples are drawn from for each task. We also show



how different sample or family discrimination stimuli are easier or harder to discriminate. But
note that all cases clearly exhibit the opposing effects of decreasing sample performance and
increasing family performance with patch size. We chose families that were difficult to
discriminate so as to avoid ceiling effects for moderate to large stimuli - most of the texture
families we’ve worked with are relatively easy to discriminate. We have noted this in the
methods to clarify our choices.

5. Methodological details

The methods report that 10 observers were tested, but each data figure reports only n=4. |
assume the 10 are therefore spread over multiple experiments, but quite how this worked (and
which were naive) requires some explanation.

We agree this should have been better presented, and have clarified the details of this methods
section. Additionally, we now show the individual performance of every subject in the new
supplementary figure 1.

The sizes of stimuli are reported in pixels, but it would be useful to have their diameter in
degrees (as plotted on Figure 4) for comparison to other visual processes.

We have added the diameter in degrees used in our standard stimulus configuration to the
stimulus generation section, and added a sentence in the following section and paragraph to
make clear that the same stimuli were shown at different sizes when presented further out in the

periphery.

Each condition was separated into distinct blocks of trials, the length of which is stated to be
20-40 trials at a time (line 346). Why the variation in range? Were some blocks combined?

The blocking was different for each of the 3 main experiments, and this has now been explained
in this section.

In the model predictions section, the computation of image statistics involves a step in which the
‘response of each statistic” was divided by the standard deviation of these values. It’s not clear
to me what the “response of each statistic” would represent here.

We attempt to consistently refer to each individual type of value computed by the model as a
“statistic” or “summary statistic,” to the value measured from an individual image as the
“response” of that statistic, and to the value of all statistics in the model as the “response” of the
entire model to that image. Perhaps in this sentence this is not fully clear so we have modified it
to read “value of each statistic in response to our experimental images.”

As above the arguments regarding the dependence of family vs sample discrimination on object
size refer back to the variability in these statistics (Figure 1C). | cannot find however how these



estimates of variability were calculated, nor the meaning of the “coefficient of variation” that is
plotted. Some description in the methods would help.

Thank you for pointing this out. We have added a description to the methods and explain the
coefficient of variation in the figure caption.

6. Minor issues

The abstract describes the two tasks (family and sample discrimination) but without naming the
latter in the brief methodological description. It would help to more quickly understand the
results were this named prior to the description of the results.

We now specifically refer to samples as well as families when describing the tasks.

The caption for Figure 3 describes the ‘observer’ as computing the Euclidean distance in
statistical texture space (near the middle) which is somewhat confusing given that it refers to the
‘observer mode!’.

We modified this sentence to read “The model computes...”

A few typos: ‘edge’ on line 66 is misspelt, as is ‘stimuli’ on line 193.

Fixed.
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REVIEWER COMMENTS
Reviewer #1 (Remarks to the Author):

The authors addressed all our concerns to satisfaction. We find the new manuscript improved, in
particular the new simulations and discussion of the requirement of normalization and surround
suppression to observe the effects.

Reviewer #2 (Remarks to the Author):

this is a very nice paper

Reviewer #3 (Remarks to the Author):

The revised manuscript by Ziemba & Simoncelli presents a set of improvements to what was already
a fascinating manuscript. The clarifications on model details have greatly improved the clarity of its
operation, the new supplementary figures add details to help better understand both the data and the
model, and revised text clarifies the position of these findings in the broader literature. | have no
further major issues with the manuscript as it stands, though there are a few very minor details the
authors may wish to clarify.

In the response to reviews the authors say that “As such, we don't see that the phenomenon of
crowding could provide an explicit prediction of our results”. However, line 169 of the revised
manuscript states that “...populations of neurons in areas V2 and V4 are likely candidates for the
locus of compulsory pooling giving rise to the opposing effects of stimulus size”. | take it that
compulsory pooling is an apt description of the model processes here, but given the wide usage of
this term to refer to models of crowding (following Parkes et al, 2001), a slightly different term would
be ideal here, unless that equivalence is the authors’ intention.

Regarding the relation to Wallis et al (2019), the authors’ response states that “This is a somewhat
intricate argument, and tangential to the current paper, so we allude to it only indirectly in the
Discussion paragraph about the choice of statistical features”. This is generally fine, though the
phrasing in the discussion is a little too indirect to be clear. Line 243 states “In contrast, metamers
indistinguishable to human observers can be achieved when samples are statistically matched within
all V2-sized pooling regions covering a large stimulus, mitigating the effect of the stimulus aperture”. It
took a while for me to parse this sentence — if | understand correctly, the argument is that these
metamers arise when statistics are matched within each aperture, rather than across an image which
is then cropped to fill an aperture. If so, something like “when samples are statistically matched within
each of the V2-sized pooling regions covering a large stimulus” might be more clear.

Finally, the revised methods state on line 397 that “Stimuli presented at 8 and 16 degrees eccentricity
were shown at 40 and 20 pixels/degree”. | would suspect differences in viewing distance to achieve
this, though line 394 states this was a constant 46cm. Was this achieved then through changes in
monitor resolution? A touch more detail is required for this to be clear.



Reviewer #1

The authors addressed all our concerns to satisfaction. We find the new manuscript improved,
in particular the new simulations and discussion of the requirement of normalization and
surround suppression to observe the effects.

Thank you for your comments, and your suggestions for improving discussion of the issues you
mention.

Reviewer #2
this is a very nice paper

Thank you.

Reviewer #3

The revised manuscript by Ziemba & Simoncelli presents a set of improvements to what was
already a fascinating manuscript. The clarifications on model details have greatly improved the
clarity of its operation, the new supplementary figures add details to help better understand both
the data and the model, and revised text clarifies the position of these findings in the broader
literature. | have no further major issues with the manuscript as it stands, though there are a few
very minor details the authors may wish to clarify.

Thank you very much for your comments. We agree your suggestions helped us to significantly
improve the manuscript and its clarity.

In the response to reviews the authors say that “As such, we don’t see that the phenomenon of
crowding could provide an explicit prediction of our results”. However, line 169 of the revised
manuscript states that “...populations of neurons in areas V2 and V4 are likely candidates for
the locus of compulsory pooling giving rise to the opposing effects of stimulus size”. | take it that
compulsory pooling is an apt description of the model processes here, but given the wide usage
of this term to refer to models of crowding (following Parkes et al, 2001), a slightly different term
would be ideal here, unless that equivalence is the authors’ intention.

This is a good point, and we have changed the text to read: “...populations of neurons in areas
V2 and V4 are likely candidates for the locus of neural selectivity and invariance giving rise to
the opposing effects of stimulus size”.



Regarding the relation to Wallis et al (2019), the authors’ response states that “This is a
somewhat intricate argument, and tangential to the current paper, so we allude to it only
indirectly in the Discussion paragraph about the choice of statistical features”. This is generally
fine, though the phrasing in the discussion is a little too indirect to be clear. Line 243 states “In
contrast, metamers indistinguishable to human observers can be achieved when samples are
statistically matched within all V2-sized pooling regions covering a large stimulus, mitigating the
effect of the stimulus aperture”. It took a while for me to parse this sentence — if | understand
correctly, the argument is that these metamers arise when statistics are matched within each
aperture, rather than across an image which is then cropped to fill an aperture. If so, something
like “when samples are statistically matched within each of the V2-sized pooling regions
covering a large stimulus”

might be more clear.

We have modified the sentence as suggested and agree it makes the point more clearly.

Finally, the revised methods state on line 397 that “Stimuli presented at 8 and 16 degrees
eccentricity were shown at 40 and 20 pixels/degree”. | would suspect differences in viewing
distance to achieve this, though line 394 states this was a constant 46cm. Was this achieved
then through changes in monitor resolution? A touch more detail is required for this to be clear.

We have added a note here specifying that we presented the images at a larger size by
upsampling by factors of 2 and 4. Viewing distance and monitor resolution were the same for all
experiments.



