Supplementary information for "Heatstroke predictions by machine learning, weather information, and an all-population registry for 12-hour heatstroke alerts"

Contents

Supplementary Figure 1 to 7

Supplementary Table 1 to 3

Supplementary Figure 1. Mean values of daily maximum temperature across 16 participating cities between 2015 and 2018

Supplementary Figure 2. Location of the participating 16 cities in Japan

Supplementary Figure 3. Plots between observed and predicted numbers of all heatstroke cases in 2015, 2016, and 2017 (i.e., training dataset, upper row), and 2018 (i.e., testing dataset, lower row) by GLMs and GAM

Blue lines indicate regression lines between the observed and predicted values. Abbreviations: GLM, generalized linear model; WBGT, wet bulb globe temperature; GAM, generalized additive model; r, correlation coefficient; CI, confidence interval.

Supplementary Figure 4. Plots between observed and predicted numbers of all heatstroke cases in 2015, 2016, and 2017 (i.e., training dataset, upper row), and 2018 (i.e., testing dataset, lower row) by XGBoost models and hybrid model

Blue lines indicate regression lines between the observed and predicted values. Abbreviations: GAM, generalized additive model; XGBoost, extreme gradient boosting decision tree; r, correlation coefficient; CI, confidence interval.

Supplementary Figure 5. Heat map for observed and predicted (by the best model) numbers of all heatstroke cases summed up across the entire period in 2018 (i.e., the testing dataset)

The low to high intensity of red color show low to high values of the number of heatstroke in the best prediction models (i.e., the hybrid model consisting of the GAM and the under-sampling XGBoost model) in a map for the 16 participating cities. The x and y-axis show latitude and longitude, respectively. Abbreviations: GAM, generalized additive model; XGBoost, extreme gradient boosting decision tree.

Supplementary Figure 6. Plots between observed and predicted numbers of heatstrokes of hospital admission and death cases in 2015, 2016, and 2017 (i.e., training dataset, upper row), and 2018 (i.e., testing dataset, lower row) by GLMs and GAM Blue lines indicate regression lines between the observed and predicted values. Abbreviations: GLM, generalized linear model; WBGT, wet bulb globe temperature; GAM, generalized additive model; r, correlation coefficient; CI, confidence interval.

The low to high intensity of red color show low to high values of the number of heatstrokes in the best prediction models (i.e., the GAM using multivariable predictors) in a map for the 16 participating cities. The x and y-axis show latitude and longitude, respectively. Abbreviations: GAM, generalized additive model.

	2015-2017 in the training dataset			2018 in the testing dataset			
	Temperature, °C	Relative humidity, %	WBGT, °C	Temperature, °C	Relative humidity, %	WBGT, °C	
Kobe	24.93 (3.16)	75.7 (11.28)	23.47 (3.44)	25.36 (3.48)	75.3 (11.11)	23.76 (3.48)	
Ashiya	25.12 (3.24)	73.53 (11.53)	23.38 (3.43)	25.74 (3.62)	72.34 (11.54)	23.78 (3.48)	
Nishinomiya	25.32 (3.24)	72.21 (11.77)	23.43 (3.42)	25.94 (3.72)	71.13 (11.87)	23.82 (3.51)	
Amagasaki	25.93 (3.3)	69.87 (12.02)	23.74 (3.4)	26.71 (3.78)	68.84 (12.02)	24.3 (3.49)	
Akashi	25.23 (3.29)	75.33 (10.98)	23.7 (3.49)	25.82 (3.46)	75.74 (10.58)	24.23 (3.48)	
Himeji	24.5 (3.47)	78.24 (11.1)	23.31 (3.62)	25.13 (3.82)	78.5 (11.71)	23.89 (3.72)	
Kyoto	24.44 (3.63)	74.32 (12.55)	22.75 (3.6)	25.45 (4.24)	70.58 (13.31)	23.24 (3.74)	
Uji	25.09 (3.71)	72.27 (12.76)	23.16 (3.6)	26.47 (4.31)	68.56 (13.19)	23.99 (3.73)	
Muko	25.32 (3.66)	71.3 (12.68)	23.3 (3.57)	26.64 (4.33)	67.99 (13.23)	24.1 (3.78)	
Nagaokakyo	25.18 (3.64)	72.09 (12.67)	23.25 (3.57)	26.4 (4.29)	68.64 (13.21)	23.95 (3.75)	
Osaka	25.88 (3.4)	70.05 (11.91)	23.74 (3.44)	26.78 (3.89)	69.53 (12.02)	24.46 (3.55)	
Toyonaka	25.78 (3.35)	69.59 (12.51)	23.56 (3.39)	26.56 (3.93)	67.86 (12.74)	24.03 (3.53)	
Mino	24.9 (3.36)	72.67 (12.64)	23.07 (3.45)	25.51 (4.01)	70.26 (13.12)	23.31 (3.6)	
Ikeda	24.91 (3.28)	70.73 (12.55)	22.88 (3.38)	25.47 (3.99)	69.28 (12.95)	23.17 (3.61)	
Suita	25.74 (3.38)	70.13 (12.33)	23.59 (3.42)	26.67 (4)	68.11 (12.74)	24.16 (3.58)	
Sakai	25.67 (3.4)	71.48 (11.91)	23.71 (3.48)	26.61 (3.87)	70.74 (11.8)	24.43 (3.55)	

Supplementary Table 1. Mean (standard deviation)¹ values of weather information per 12 hours in 16 Japanese cities between June and September from 2015 to 2018

Abbreviations: WBGT, wet bulb globe temperature ¹ Mean (standard deviation) values were based on mean values per city per 12 hours (6:00 am to 5:59 pm, and 6:00 pm to 5:59 am).

		Training	dataset		Testing	dataset
	GAM (common to all cities)	GAMs specific to each city	Hybrid model consisting of GAM and under- sampling XGBoost model (common to all cities)	GAM (common to all cities)	GAMs specific to each city	Hybrid model consisting of GAM and under- sampling XGBoost model (common to all cities)
Kobe	2.00	1.79	1.79	4.16	16.68	4.38
Ashiya	0.45	0.45	0.58	0.6	0.62	0.97
Nishinomiya	0.96	0.93	0.97	1.4	1.5	1.57
Amagasaki	1.28	1.2	1.24	2.28	1.76	2.15
Akashi	0.82	0.77	0.84	1.25	1.16	1.18
Himeji	0.84	0.8	0.8	1.59	1.54	1.57
Kyoto	2.58	2.44	2.27	3.79	4.26	4.83
Uji	0.71	0.7	0.68	1.11	0.98	1.83
Muko	0.52	0.46	0.76	0.98	0.64	2.08
Nagaokakyo	0.67	0.65	0.77	0.88	0.71	2.01
Osaka	3.18	2.91	2.88	6.44	5.97	7.87
Toyonaka	0.89	0.85	0.86	1.29	1.19	1.19
Mino	0.39	0.38	0.58	0.57	0.51	0.99
Ikeda	0.35	0.35	0.64	0.34	0.43	1.25
Suita	0.77	0.71	0.81	1.22	1.23	1.57
Sakai	1.43	1.35	1.35	2.52	9.75	2.52

Supplementary Table 2. City-specific RMSEs of prediction models for the number of all heatstrokes

Abbreviations: RMSE, root-mean-square error; GAM, generalized additive model.

	Training dataset		Testing dataset		
	GAM (common to all cities)	GAMs specific to each city	GAM (common to all cities)	GAMs specific to each city	
Kobe	0.93	0.89	1.14	1.18	
Ashiya	0.31	0.29	0.35	0.39	
Nishinomiya	0.43	0.42	0.58	0.61	
Amagasaki	0.72	0.67	0.89	0.95	
Akashi	0.45	0.45	0.65	0.62	
Himeji	0.44	0.41	0.76	0.79	
Kyoto	0.93	0.97	1.16	1.23	
Uji	0.33	0.33	0.61	0.62	
Muko	0.32	0.30	0.47	0.47	
Nagaokakyo	0.37	0.35	0.51	0.48	
Osaka	1.52	1.47	1.97	2.36	
Toyonaka	0.41	0.41	0.46	0.54	
Mino	0.14	0.13	0.21	0.23	
Ikeda	0.13	0.12	0.18	0.18	
Suita	0.26	0.24	0.40	0.42	
Sakai	0.59	0.58	0.96	4.46	

Supplementary Table 3. City-specific RMSEs of prediction models for the number of heatstrokes of hospital admission and death cases

Abbreviations: RMSE, root-mean-square error; GAM, generalized additive model.

Tables	Models	Hyperparameters	Range	Selected values
Table 2	GAM	Degree of freedom	1 to 3 (by increments of tenths)	3
Table 2	Random forest	mtry	2, and 3 to 19 (by increments of 2)	2
Table 2	XGBoost			
	Before selecting features by RFE	1 st step: nrounds	10 to 90 (by increments of 10) and 100 to 1000 (by increments of 10)	300
		1 st step: max tree depth	3, 5, 7, 9	3
		1 st step: min child weight	1, 2, 3, 4, 5	1
		2 nd step: gamma	0 to 0.4 (by increments of 0.01)	0.28
		3 rd step: col sample by tree	0.6 to 1.0 (by increments of 0.1)	0.8
		3 rd step: subsample	0.6 to 1.0 (by increments of 0.1)	0.9
		4 th step: eta	0.01 to 0.1 (by increments of 0.01)	0.06
	After selecting features by RFE	1 st step: nrounds	10 to 90 (by increments of 10) and 100 to 1000 (by increments of 10)	300
		1 st step: max tree depth	3, 5, 7, 9	3
		1 st step: min child weight	1, 2, 3, 4, 5	5
		2 nd step: gamma	0 to 0.4 (by increments of 0.01)	0.02
		3 rd step: col sample by tree	0.6 to 1.0 (by increments of 0.1)	0.6
		3 rd step: subsample	0.6 to 1.0 (by increments of 0.1)	1
		4 th step: eta	0.01 to 0.1 (by increments of 0.01)	0.1
Table 2	GAM specific to each city			
	Model development when selecting feature variables by RFE in all 16 cities	Degree of freedom	1 to 3 (by increments of tenths)	3

Supplementary Table 4. Space of hyperparameters of GAM, random forest, XGBoost, and under-sampling XGBoost¹

Model specific to each city using the selected features by RFE

Table 3

	Akashi	Degree of freedom	1 to 3 (by increments of tenths)	3
	Amagasaki	Degree of freedom	1 to 3 (by increments of tenths)	1.444
	Ashiya	Degree of freedom	1 to 3 (by increments of tenths)	1.444
	Himeji	Degree of freedom	1 to 3 (by increments of tenths)	2.111
	Ikeda	Degree of freedom	1 to 3 (by increments of tenths)	1
	Kobe	Degree of freedom	1 to 3 (by increments of tenths)	3
	Kyoto	Degree of freedom	1 to 3 (by increments of tenths)	3
	Mino	Degree of freedom	1 to 3 (by increments of tenths)	1.222
	Muko	Degree of freedom	1 to 3 (by increments of tenths)	2.111
	Nagaokakyo	Degree of freedom	1 to 3 (by increments of tenths)	2.111
	Nishinomiya	Degree of freedom	1 to 3 (by increments of tenths)	1.666
	Osaka	Degree of freedom	1 to 3 (by increments of tenths)	3
	Sakai	Degree of freedom	1 to 3 (by increments of tenths)	1.444
	Suita	Degree of freedom	1 to 3 (by increments of tenths)	1
	Toyonaka	Degree of freedom	1 to 3 (by increments of tenths)	1.444
	Uji	Degree of freedom	1 to 3 (by increments of tenths)	1.666
Uı	nder-sampling XGBoost			
	Definition of spike cluster	Percentiles of the number of all heatstroke cases in 5 cities with population size > 500,000	90 to 98 (1 percentile increments)	93
	XGBoost, a classifier to classify the training dataset of the 5 cities into spike cluster or no-spike cluster	nrounds	50, 100, 150	50
		max tree depth	1, 2, 3	2

		min child weight	1	1
		gamma	0	0
		col sample by tree	0.6, 0.8	0.8
		subsample	0.50, 0.75, 1.00	0.5
		eta	0.3, 0.4	0.3
	Under-sampling	Sample size of a resample for under-sampling	100 or 200	200
	XGBoost with under-sampling ²	nrounds	50, 100, 150	50
		max tree depth	1, 2, 3	3
		min child weight	1	1
		gamma	0	0
		col sample by tree	0.6, 0.8	0.8
		subsample	0.50, 0.75, 1.00	1
		eta	0.3, 0.4	0.3
Table 4	GAM	Degree of freedom	1 to 3 (by increments of tenths)	3
Table 4	Random forest	mtry	2, and 3 to 19 (by increments of 2)	3
Table 4	XGBoost			
	Before selecting features by RFE	1 st step: nrounds	10 to 90 (by increments of 10) and 100 to 1000 (by increments of 10)	90
		1 st step: max tree depth	3, 5, 7, 9	5
		1 st step: min child weight	1, 2, 3, 4, 5	4
		2 nd step: gamma	0 to 0.4 (by increments of 0.01)	0.32
		3 rd step: col sample by tree	0.6 to 1.0 (by increments of 0.1)	1
		3 rd step: subsample	0.6 to 1.0 (by increments of 0.1)	0.6
		4 th step: eta	0.01 to 0.1 (by increments of 0.01)	0.08
	After selecting features by RFE	1 st step: nrounds	10 to 90 (by increments of 10) and 100 to 1000 (by increments of 10)	80

		1 st step: max tree depth	3, 5, 7, 9	5
		1 st step: min child weight	1, 2, 3, 4, 5	2
		2 nd step: gamma	0 to 0.4 (by increments of 0.01)	0.11
		3 rd step: col sample by tree	0.6 to 1.0 (by increments of 0.1)	0.9
		3 rd step: subsample	0.6 to 1.0 (by increments of 0.1)	0.8
		4 th step: eta	0.01 to 0.1 (by increments of 0.01)	0.1
Table 4	GAM specific to each city			
	Model development when selecting feature variables by RFE in all 16 cities Model specific to each city using the selected features by RFE	Degree of freedom	1 to 3 (by increments of tenths)	3
	Akashi	Degree of freedom	1 to 3 (by increments of tenths)	1
	Amagasaki	Degree of freedom	1 to 3 (by increments of tenths)	2.111
	Ashiya	Degree of freedom	1 to 3 (by increments of tenths)	1.888
	Himeji	Degree of freedom	1 to 3 (by increments of tenths)	1
	Ikeda	Degree of freedom	1 to 3 (by increments of tenths)	1
	Kobe	Degree of freedom	1 to 3 (by increments of tenths)	3
	Kyoto	Degree of freedom	1 to 3 (by increments of tenths)	1
	Mino	Degree of freedom	1 to 3 (by increments of tenths)	1.444
	Muko	Degree of freedom	1 to 3 (by increments of tenths)	1
	Nagaokakyo	Degree of freedom	1 to 3 (by increments of tenths)	3
	Nishinomiya	Degree of freedom	1 to 3 (by increments of tenths)	1.444
	Osaka	Degree of freedom	1 to 3 (by increments of tenths)	3
	Sakai	Degree of freedom	1 to 3 (by increments of tenths)	1
	Suita	Degree of freedom	1 to 3 (by increments of tenths)	1.888
	Toyonaka	Degree of freedom	1 to 3 (by increments of tenths)	1

Uji	Degree	of freedom 1 to	3 (by increments of t	enths)	2.111
breviations: GAM	generalized additive model: XGBoos	t extreme gradient boosti	ng decision tree. RFF	recursive fea	ture eliminati

Abbreviations: GAM, generalized additive model; XGBoost, extreme gradient boosting decision tree; RFE, recursive feature elimination. ¹We used the following functions in the "caret" R package: "gamSpline" for GAM, "rf" for random forest, and "xgbTree" for XGBoost. We used default values of hyperparameters for the functions, not shown in this table.

² We used a bagging technique with 10 resampling to develop under-sampling XGBoost. Thus, we showed selected hyperparameters of one of these 10 under-sampling XGBoost models.