REVIEWER COMMENTS
Reviewer #1 (Remarks to the Author):

In this paper the authors use a choice task, computational modeling and fMRI to probe the neural
mechanisms of decision making in which agents must explicitly weigh rewards versus effort. Based
on previous work, the authors hypothesize that there are two latent processes that influence the
tradeoff between rewards and effort: the first is short-term fatigue (RF) that can be diminished by
rest; the second a longer-term fatigue (UF) that accumulates over time and that cannot be
diminished by rest. They operationalize this hypothesis in a computational model that they fit to
subjects’ behavior. Further, they use the individual subjects’ trial by trail estimates of these
processes (as well as the resulting subjective value) to form regressors for use in modelling the
fMRI data. They find that the “full” model including both processes fits the subject behavior best
(out of a restricted universe of (almost) nested models), that the two processes have significant
fMRI BOLD correlates in MFG (RCZa, RCZb: rostral cingulate zone, anterior, posterior), while
subjective value has correlates in ventral striatum and superior frontal gyrus. Finally, activity in VS
related to RF covaries with individual subjects’ RF parameter in the full model, and also with the
individual subjects’ “rest” parameter.

General Comments

This is an interesting and mostly well-written paper. By nature, the computational modeling
approach in which a winning model is selected from a universe of models is basically only as good
as the universe of models; this universe is well-motivated theoretically (and the latent processes
time series estimates also predict choices independently of reward and effort) lending weight to
the conclusions. The neural results for RL and UL are persuasive. The neural results for subjective
value, while perhaps not surprising (except for the covariation with behavioral model parameters),
bolster the results.

Concerns

1. There is a general sloppiness in language about effort and motivation. Care should be taken to
be as precise as possible about these and related terms form the beginning. While the authors
operationalize their ideas quite well, there are both heirarchical and contingent ideas presented
and I found myself having to turn back quite a bit to make sure I had their idea clear. More effort
on this front would help the paper.

2. The winning model doesn’t win by "much”. How do you explain that the model leaving out UF
seems to do “almost as well” as the winning model. It would be helpful to quantify these
statements about closeness.

3. Have you considered heterogeneity amongst the subjects with respect to the models? Does the
winning model win for the majority of the subjects considered individually?

4. The notation etc. for the models, including especially the time indices, is confusing. I think it
would be clearer to define F_{t} = RF_{t} + UF_{t}, then give the recursion relations for RF and
UF separately, while taking care to be sure that the time indices are defined correctly. Currently,
looking at t = 1 requires, for example, UF_{-23}, which is not correct. Also, did you consider
defining F_{t} = 14+RF_{t} + UF_{t}? Then fort = 0, F_{0} = 1, which reduces the (for example)
full model to the “bare” no fatigue model, and also means you can make the starting values of the
recursion 0 in all cases (for the full model using your definition you state that UF = RL = 2, but I
don’t think you state the values in the other cases).

Minor Concerns

1. Pg 2, Line 7. "One increases ...” States don't really increase. Consider different word usage.

2. Pg.2, Line 8. “two states were localized...” The states were not localized.



3. Pg. 3, Line 12. “motivation can reduce” Awkward usage - consider “motivation can decrease” or
“motivation can wane”.

4. Pg. 4, Line 15. “ventro-medial prefrontal...” . Did you want to define as (VMPFC)?
5. Pg. 4, Line 24. “hypothesise ...” Consider listing the areas here, up-front.
6. Pg. 6, Figure 2 Legend. Panel D) is not explained very well.

7. Pg. 9, Line 19. “logistic regression ..” was this on pooled data? If so, why not a random effects
model?

8. Pg. 11, Figure 3 Legend. In C) please make it explicit that the model was fitted separately for
each subject.

9. Pg. 12, Line 15. Did every subject see the same sequence of choices? If so, could this introduce
spurious effects?

10. Pg. 14, Figure 4, Legend. Please define RCZ a,b.

11. Page 15, Line 4. Do you mean to say contrast against baseline? This is activation for a
parametric regressor so for each subject the “contrast” taken to the second level should simply be
the betas associated with that regressor — no contrast needed.

12. Page 16, Line 19. " ... influence of fatigue.” Did this not work in MFG?

Reviewer #2 (Remarks to the Author):

The manuscript describes an fMRI study that investigates the neural foundations of fatigue during
a choice task, which involves trading monetary reward against physical effort (handgrip squeeze).
The claims are that 1) computational analysis of choice behavior reveals the existence of two
fatigue states, one recoverable (RF) and the other unrecoverable (UF), 2) that the neural
correlates of these two fatigue states can be dissociated using fMRI and 3) that fatigue modulates
the willingness to work encoded in fronto-striatal circuits.

This is an interesting and timely paper. However, although I like the story, I am not convinced that
there is enough evidence to make any of these claims (see reasons below). However, the dataset
could be exploited to support more reasonable conclusions that would still be worth publishing, in
my opinion, although claims of novelty should then be toned down.

Behavior (claim 1):

1) The concept of *moment-to-moment fluctuations in motivational fatigue” is both vague and
misleading. What could be at play in the task is simply muscular fatigue: pain in the arm muscles
would increase with repeated squeezing and possibly decrease with rest. A participant feeling
squeezing as more painful would naturally be less inclined to do it again. The alternative would be
that the participant is demotivated, in the sense that the marginal value of additional money would
not be worth the effort anymore. Unfortunately, the concept of "motivational fatigue” confounds
the two hypotheses, which could be teased apart by comparing models in which what is
accumulated is money versus effort, and/or models in which what is impacted is the benefit versus
the cost of effort.

2) The evidence in favor of model 5 (with both RF and UF) compared to model 4 (RF only) is weak
(slight difference in AIC or BIC). Besides, it seems that, as they are written in Fig. 3, model 5 and
model 4 are no different. They can both be rewritten as F(t) = param1 x sum(E) + param2 x
sum(T), i.e. some weighted sum of cumulative effort and cumulative resting time. I might have



missed something here, but at the very least this needs clarification.

3) Simpler accounts must be included in the model comparison. The change in the ranges of
reward and effort levels, between pre-task and main task, might by itself induce a change in the
subjective value function. One possibility is for instance regression to the mean: in both cases
participants tend to accept rewards above the mean, or efforts below the mean, which could be
mistaken as a fatigue effect. I am aware that choices denote a shift of preference within the main
task, but the change in the range might still affect conclusions, because it is not accounted for in
model comparison. To fix the issue, an intercept parameter, capturing the difference between
tasks, could be introduced in fatigue models.

4) Besides, instead of cumulative effort, or cumulative reward (as suggested above), a simpler
function of time-on task, like trial number, should be tested. It could simply be that participants
are more and more bored with the task, or willing to go home. A way to show that fatigue is really
about effort cost would be to sum quadratic (not linear) effort levels. Also, instead of an effect on
effort cost (or reward benefit, as suggested above), trial index or fatigue could impact an additive
parameter, which would suggest that they are just less willing to squeeze anymore, irrespective of
reward and effort levels.

Neuroimaging (claims 2 and 3)

5) The finding that left MFG decreases with fatigue (be it RF or UF) is convincing, as the cluster
shows up in a whole-brain analysis, surviving correction for multiple comparisons. However, its
contribution to the shift in preference could be specified. What the analysis shows is that its
activity is decreasing with time on task (or fatigue), but the link to choices is not established.
Could it be that left MFG is simply less active when effort is declined, which becomes more and
more frequent across task trials? Would this be related to shorter deliberation time?

6) On the contrary, the dissociation between RF and UF relates to cingulate zones that do not
appear in activation tables, even at uncorrected threshold. They only survive small-volume
correction within pre-defined regions of interest that seem quite arbitrary (why not other regions,
like the anterior insula?). I think this level of evidence is way too weak to maintain a conclusion
such as neural correlates of RF and UF can be dissociated.

7) There is a double-dipping issue when selecting clusters based on regression against RF or UF
and then comparing regression estimates extracted from the peak of these clusters. The issue is
that the selection is not independent from the comparison, meaning that it is biased towards
voxels in which the noise will favor a significant comparison.

8) Showing that activity in neural regions like the ventral striatum correlates with fatigue-weighted
subjective value is no proof that fatigue does affect value signals in these regions. This is because
subjective value integrates factors (reward and effort levels) that are sufficient to explain the
correlation. In other words, VS activity might correlate with fatigue-weighted SV just because it
responds to rewards. To prove their point, the authors need to show that neural activity in VS or
other regions is better explained by fatigue-weighted SV than by regular SV (without fatigue).

9) There is the same difference between frontal pole and VS as between MFG and cingulate zones:
the former activation is convincing because it survives whole-brain corrected threshold, while the
latter rely on a priori ROI. However, I would question the ‘frontal pole’ label, which usually refers
to BA 10. From the map on Fig. 5 it seems that the cluster is more dorsal and posterior, more like
superior frontal gyrus (sometimes called dorsomedial prefrontal cortex).

Minor issues:
- Introduction and discussion could more focused, at present there are many redundancies, and
the links with cited papers are often loose. Also, the novelty of the computational framework is

clearly oversold: increasing effort cost with cumulative effort is quite a standard solution.

- Fig. 2D is not particularly useful, as I cannot see the fatigue effect (I presume the plot is meant



to show darker choice probability with progress in the task).

- The analysis in Fig. 3C is at odds with the winning computational model, because RF and UF are
now included as additive (significant) regressors, instead of interacting with effort cost. If the idea
is to provide further evidence in favor of the model, this is not helpful. It rather suggests that
choices are more and more biased towards rest with increasing trial number.

- Significance levels could be added above regression estimates on figures, so readers can easily
identify significant factors.

- I did not find any information about how participants were remunerated. This is important to
discard the possibility that they simply trade their payoff against time on task, instead of
squeezes.

- There are a few typos that need correction (e.g., Fig. 3B: “Schematic representation for how F ...
effect value and choices to work or rest”).

Reviewer #3 (Remarks to the Author):

In this interesting manuscript the authors explore the role for trial-wise fatigue in the neural
computations of effort-based decision-making. The authors present evidence for two distinct
fatigue signals that are distributed across various nodes within a fronto-striatal network. Fatigue is
an under-studied and poorly understood construct, and this work therefore has the potential to
make a significant and innovative contribution. The paper is superbly written and the analytical
methods are sophisticated and appropriate. Despite these strengths, I do have some (mostly
minor) concerns with aspects of the analysis and some more significant concerns related to
interpretation. I have the following comments for the authors to consider:

The most significant problem as I see it is that “fatigue” is an under-specified construct both
conceptually and operationally. Specifically, it seems likely that there are likely moderate to high
correlations between the parameters representing recoverable fatigue (RF) and unrecoverable
fatigue (UF) and other decision-variables. As I understand the task design and computational
model, the UF parameter scales the cumulative expenditure of effort. However, it would seem that
cumulative expenditure of effort would also be highly correlated with cumulative rewards, as the
effortful option always yields greater rewards. Therefore, this parameter could capture diminishing
marginal utility of accumulating points over the course of the task. It would also necessarily
correlate at least moderately strongly with the mere passage of time. As such, the strict
interpretation as a measure of “unrecoverable fatigue” seems hard to justify. One could just as
easily think of it as a global “opportunity cost signal” reflecting the additive and/or interactive
effects of fatigue, diminished interest in additional points, a desire to finish up the study and move
on to other activities, etc., etc., Indeed, such global opportunity cost signals have been predicted
in the context of effort (e.g., Kurzban et al., 2014).

Similarly, for the interpretation of the RF parameter as representing “recoverable fatigue”, other
interpretations seem equally plausible. It would seem this value might also correspond with
forgaging values, task switching, etc., all of which could be consistent with the observed results in
terms of both the computational model and the imaging results in the RCZ. The authors
acknowledge this on the one-hand, but still claim that their work shows a unique RF contribution.
But without ruling out the possibility that RF is merely tracking with other decision-variables,
claiming a unique RF component seems to be an over-reach.

Related to the above, it was a bit surprising not to see subjective report of fatigue and its
association with model parameters. While self-reported fatigue has its own measurement
limitations, it would nevertheless provide some additional evidence that the putative fatigue
parameters are tracking with the subjective experience of fatigue. If these data were collected as



part of this study then they should be included. If not, it could potentially be included in a follow-
up behavioral study in a separate sample.

Another potential concern is floor/ceiling effects. It's unclear how much intra-individual variability
there was in choices, which could impact interpretability of fatigue-brain relationships. Based on
figure 2D, it appears that the effortful option was chosen a very high percentage of the time. At
the individual level, if someone chose almost all effortful options, then we might infer that they
simply did not find the task very fatiguing, in which case it become less clear how to interpret an
association between the RF or UF regressor and neural activity. This could significantly influence
power if the effective sample size (subjects contributing meaningful variability in choice behavior)
is much lower than the actual sample size.

I appreciate the authors’ incorporating a control analysis of choice-difficulty analysis. The method
used for estimating choice difficulty is sound, but is susceptible to limitations for participants with
highly stable choice preferences (one may agonize over a decision while still arriving to a choice
consistent with model predictions). This can lead to a dramatically different scaling of trial-wise
difficulty values across subjects. The authors appear to have addressed this issue by averaging
difficulty values across participants, but I'm not sure this makes sense. Neural activity for the
“average” choice difficulty for a particular trial is not necessarily reflective of individual differences.
This may partly explain the null effects for this analysis.

It was unclear if proper control comparisons were performed for imaging results. For example, in
the two RCZ regions associated with UF and RF, it would be useful to include the additional direct
comparisons to confirm a double-dissociation. It could easily be the case that the area of RCZ
showing association with RF is only slightly below SVC threshold for UF, and/or vice-versa, which
would significantly change the interpretation of sub-regional specificity.

In their justification for the UF/RF distinction, the authors note the work of Blain and colleagues,
showing that greater fatigue led to more impulsivity/inconsistency in choice behavior. It might be
interesting to test a similar idea in the current data, e.g., by examining comparing choice behavior
in early and late trials in the current task.

Minor comments:
Please show discounting curves as well as parameter value distributions.

It would be worth noting that the region of left MFG associated with UF appears similar to the
region identified in a task focused on detecting effort aversion (Mcguire et al., PNAS, 2010). That
might be worth discussing in terms of the interpretation of UF.

It would be worth examining different striatal ROIs, including those associated with motor
function. The authors may want to consider using the Choi 2011 parcellation seeds or some other
functional parcellation of the striatum to interrogate its role more thoroughly.

For correlations between neural activity and model parameters, please perform comparisons of
correlation coefficients (e.g., Steiger test or equivalent) to confirm differences.

It is unclear why tables report uncorrected whole-brain values? It seems based on the text that
these values were derived from a whole-brain corrected map.



Reviewer 1

This is an interesting and mostly well-written paper. By nature, the computational
modeling approach in which a winning model is selected from a universe of models is
basically only as good as the universe of models; this universe is well-motivated
theoretically (and the latent processes time series estimates also predict choices
independently of reward and effort) lending weight to the conclusions. The neural
results for RL and UL are persuasive. The neural results for subjective value, while
perhaps not surprising (except for the covariation with behavioral model
parameters), bolster the results.

Response:
We thank the reviewer for their positive evaluation of the work. Their comments have
allowed us to improve the manuscript and address their concerns.

1. There is a general sloppiness in language about effort and motivation. Care should
be taken to be as precise as possible about these and related terms form the
beginning. While the authors operationalize their ideas quite well, there are both
heirarchical and contingent ideas presented and | found myself having to turn back
quite a bit to make sure | had their idea clear. More effort on this front would help

the paper.

Response:

We apologise to the reviewer for lack of clarity in terminology. | am sure the reviewer
appreciates that definitions of effort, incentivisation, motivation and fatigue differ
considerably across and within different sub-fields. In the revised manuscript we have
modified the text in multiple places to ensure greater clarity and ensure consistency in
terminology, especially in the introduction.

2. The winning model doesn’t win by “much”. How do you explain that the model
leaving out UF seems to do “almost as well” as the winning model. It would be
helpful to quantify these statements about closeness.

3. Have you considered heterogeneity amongst the subjects with respect to the
models? Does the winning model win for the majority of the subjects considered
individually?

Response:

We thank the reviewer for raising these points about the extent to which this model
successfully captures behaviour above alternatives — we address points 2 and 3 together
here as they are related. Firstly, from a conceptual point we note that the models all try and
capture a very similar phenomena — that is five of the models try and capture an increase in
fatigue after effort and reduction after rest, and all of the models assume that rewards act



as an incentive, increasing value and the amount of force required serves as a cost
decreasing it. It is therefore expected that the winning model would only show a small
improvement over others. However, we agree with the reviewer that it is important for our
aims that we show that our model comparison is robust, that UF and RF are needed to
explain the effects of fatigue and that our full model is the best characterisation of people’s
behaviour. To address the reviewer’s concerns we have now (i) calculated exceedance
probabilities (EP) on the AIC values for the model comparison. EPs take a random-effects
approach to calculate the probability that a winning model is the most frequent in the
population. We find that the winning model has an EP of 0.72, and has a much higher
probability than the next best model without the UF component which has an EP of 0.16.
These EPs are now plotted in supplementary figure 4. (ii) We have included an additional
behavioural dataset to address this concern and those of other reviewers. In this additional
data, participants performed a very similar experimental setup, except on each trial they
were forced to either work (at the three levels of force in the original experiment) or rest
rather than being able to choose to do so. Rather than make choices, on each trial they then
rated how “tired” they were between zero and 100. As can be seen in Supplementary figure
5,6 and 7 participants ratings of fatigue increased across the experiment and depended on
the effort that had been exerted on each trial. To examine whether our model could explain
changes in fatigue ratings as well as choice behaviour, we fitted the five models used in the
original manuscript to explain changes trial to trial ratings in the new dataset. Replicating
the original modelling results, using Bayesian model comparison we show that the full model
containing independent UF and RF components is the best explanation of fatigue ratings in
this new data. Thus, robustly demonstrating that fatigue may well have distinct UF and RF
components that operate on distinct timelines.

In the revised manuscript we include this additional behavioural experiment and the
analyses of it in the supplementary materials, the corresponding supplementary figures 5-7
as well as including the exceedance probabilities from the original dataset in Supplementary
Figure 4B:

Main Text (page 11)

To test whether the full model was the most frequent in the population we calculated
exceedance probabilities for each model. The full model had the highest probability of
being the most frequently best fitting model to participants’ choice data (Supp. Fig.4)



>

Number of participants

Variability in choices to rest Exceedance probabilities
8 0.8 [ *
71 — 0.7}
&
61 — ‘—% 0.6/
[1+]
S ] 805!
=
4 . ©04|
c
3 go3|
= 3
02|
1 & w
0.1
0 .
0 20 40 60 80 100 120 140 0
Number of choices to rest 1 2 3 M:del s 6 7
Model parameters
02 r 4r 01 -
"4
> 7] -
S £ S 008
®0.15| £3 £
£ c c
7 ™~ 0.06
g 8 8
E 01 £ 2] £
7 s = =
° 2 £ 0.04
L 3 >
@
E005/ g1} £
g © © 0.02
@ & @
o o o
3 K

Supplementary Figure 4. Supplementary results from fMRI study behaviour. (A) Histogram of
proportion of trials on which participants made choices to “rest” out of 210 trials. There is
considerable variability in choices both within and between many participants. (B) Exceedence

probabilities for the models fitted to the choice data. Exceedance probabilities for models
fitted to fMRI behavioural data. Y-axis reflects the probability of being the most frequently
observed model in the population. The full model (5) is the most frequently best fitting model
in the population. (C) Model parameters for each participant (green dot) and average across
participants for the discounting parameter fitted to the pre-task (left), the two recoverable
parameters (middle) and the unrecoverable parameter (right). Error bars represent SEM.
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Supplementary Figure 5. Behavioural study trial structure. Participants were required to exert
force for rewards, with effort levels calibrated to their MVC (A), after training at each of four
effort levels (0%,30,39,48% MVC) they performed 120 forced execution trails. On each trail
they were instructed an effort that would be required (indicated by a pie chart), and then
required to exert that level of force for a total of 3 out of 5s to obtain credits. They were then
told the amount of credits received — 6, 8 or 10 credits if successful or 0 credits if failing to
exert the required force. Following this they rated their level of tiredness from 0-100 on a
continuous scale.
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C) Models tested

Model 1: UF only (no recovery)
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Supplementary Figure 7. Computational modelling results for behavioural rating study. (A)
Model comparison results in AIC for the models predicting changes in fatigue ratings across
the experiment. The full model (5) is the best fit to the data when punishing for the number of
parameters. (B) Exceedance probabilities for the models fitted to the ratings data Y-axis
reflects the probability of being the most frequently observed model in the population. Model
5 is the winning “full” model of fatigue containing separate RF and UF components.(C) Models
compared. All models predicted changes in fatigue ratings. The best fitting model predicted
changes in fatigue that were partially recoverable - increase through effort, decrease through
rest — but also contained a long-term unrecoverable component.



4. The notation etc. for the models, including especially the time indices, is confusing.
| think it would be clearer to define F_{t} = RF_{t} + UF_{t}, then give the recursion
relations for RF and UF separately, while taking care to be sure that the time indices
are defined correctly. Currently, looking at t = 1 requires, for example, UF_{-2}, which
is not correct. Also, did you consider defining F_{t} = 1+RF_{t} + UF_{t}? Then for t =
0, F {0} = 1, which reduces the (for example) full model to the “bare” no fatigue
model, and also means you can make the starting values of the recursion 0 in all
cases (for the full model using your definition you state that UF = RL = %, but | don’t
think you state the values in the other cases).

Response: We apologise to the reviewer for confusion caused by the notation of the models.
We have now considerably revised how the models are described and their notation to
ensure consistency and clarity. The reason for the model being implemented in the manner
we have, rather than in the manner suggested, is that we wanted the model to also be able
to be fitted in the future to other forms of data (e.g. ratings of fatigue, such as those now
included the new data outlined in our previous response). Thus, keeping the “1+” out of the
model itself allowed it to be fitted with only a starting value — which was fixed at F=1 in the
decision-making model, but set to an initial rating by the participant in the model fitted to
the ratings data. Thus, the models were comparable across the ratings data and the choice
data. In the revised manuscript we have also clarified these points and the starting value for
all models to ensure transparency. We thank the reviewer for helping us make these points
clear.

Main Text (page 28)

Computational modelling

Modelling subjective value

Theoretical accounts and existing empirical data have suggested, but largely not
formalised the notion that fatigue can influence motivation on multiple timeframes. Here,
we developed a computational model of fatigue based on theoretical accounts and
integrated it into a parabolic ‘effort-discounting’ model to explain how effort-based
decisions change over-time due to hidden recoverable and unrecoverable components.
This model could be fitted separately to each participant’s behaviour. In line with previous

work on how rewards are parabolically discounted by physical effort >>***

, we fitted a
simple discounting model to the pre-task choice behaviour. The model assumed that the
value of the work offer depends on how rewarding it is, how much effort is required and

how participants subjectively weigh these to guide their choices to work or rest. That is:

SV = Ry — (k* Efy) (1)

where SV, represents the subjective value of the work option on trial t, and k the subject-
specific ‘discount parameter’, scaling the devaluation of a reward (R, reward level 2, 3, 4,
5, or 6) by the effort (E, effort level 2, 3, 4, 5, or 6) required to obtain the reward. The
higher an individual’s k parameter, the steeper an individual’s discount function, i.e. the
more this individual’s valuation of rewards is discounted by the effort required to obtain



the rewards. To fit the model to the data, we used a softmax function, which estimates
the probability P that a participant will choose the work option i that has a subjective
value SV over the rest option that has a value of 1 (1 credit, no effort) defined as:

eSV(i't)*ﬁ'
Py = o181+ VDB (2)

Since the baseline SV was fixed at 1 (one credit, no effort), when the baseline was chosen
Py was calculated according to Py = 1-Piy. Maximum likelihood estimation, using
fminsearch function in Matlab, was used to minimise the difference between each
participant’s actual choices and the model estimates for each trial, i.e. to minimise the
negative log-likelihood. This fitting procedure was used to fit choices in both the pre-task
and main task.

The estimates of the discounting parameter k and the level of stochasticity in the choices
(B) were restricted not to go below 0.0276 (in which case even the combinations of lowest
reward and highest effort are always accepted) and 0, respectively. The model was fitted
50 times using different random starting values (using rand) to ensure that the
optimisation function had not settled on a local minimum. By fitting this model to the pre-
task, we were able to quantify a participant’s typical willingness to exert effort for reward,
and the noisiness in such choices, during a task that would not evoke fatigue. The k and
parameters obtained for each participant in the pre-task were used as fixed parameters in
the models fitted to choices in the main task.

Modelling fatigue-weighted subjective value (full model)

Based on theoretical accounts we hypothesised that fatigue would increase with exerted
effort, would be partially recoverable and decrease with time spent resting, but would
also have a gradually increasing unrecoverable component which did not recover with rest
10111421 This fatigue impacts value, such that when the levels of fatigue were higher,
participants would be less willing to work. Thus, we developed a model including
recoverable and unrecoverable components of fatigue that would fluctuate over the

experiment and integrated them into the value-based model in Equation 1:

SV = Ry — (RFp) + UF ) x k * EZy) (3)

In this full model, rewards (R) are devalued by effort (E), subjectively weighted by the
discount parameter k from the pre-task. In addition, this discounting effect fluctuates trial-
to-trial by levels of recoverable (RF) and unrecoverable (UF) fatigue. RF subjectively
increases if a person exerts effort, i.e. accepts the work offer (Equation 4), with the work
parameter a scaling the amount that effort increases RF, and subjectively recovers by time
resting (T), as captured by the rest parameter 8 (Equation 5). UF subjectively accumulates
depending on the effort exerted across the whole task, scaled by parameter 6, and is not
restored by resting (Equation 6):

RF(t) = RF(t—l) + (a * E(t—l)) (4)



RF(t) = RF(t—l) - (8 * T(t—l)) (5)

UF(t) = UF(t—l) + (0 * E(t—l)) (6)

The subjective value SV and the fatigue levels RF and UF were updated for each trial
(initial RF and UF = 0.5) and fed into the softmax (Equation 2) as above, to estimate P in
each trial. Based on theoretical considerations, only parameter values >= 0 and RF
estimates >= initial RF were allowed. Missed trials, which were very rare (M = 0.57% of all
trials, SD = 1.71), were treated as rest trials. To maximise the chances of finding global
rather than local minima, parameter estimation for the full model and for all alternative
models (see below) was repeated over a grid of initialisation values, with 12 initialisations
(ranging from 0 to 1.1) per parameter. The optimal set of parameters for each model was
used for model comparison and for further analyses.

Model comparison

To verify whether the three parameters used to quantify the effects of fatigue were
necessary, six other models were also fitted to participants’ choices in the main task. The
alternative models either assumed (i) a UF component only (i.e. 0 being fitted), (ii) an RF
component only including one parameter, assuming that the rates of fatigue build-up
during effort and of fatigue decrease during rest are similar, (iii) an RF component
including one parameter as well as a UF component, (iv) an RF component including
separate work and rest parameters (i.e. a and 6 being fitted) but no UF, and (v) a change
in motivation which is not due to fatigue, i.e. a new discount parameter y was fitted and
each individual’s k parameter from the pre-task was disregarded. In the models including a
fatigue term, initial RF and UF were defined such that the initial total fatigue always
equalled 1.

In order to investigate the models’ relative ability to predict the behavioural data, model
fits were compared using the Akaike Information Criterion (AIC)’° and Bayesian
Information Criterion (BIC)”* with lower values indicating better fit. Model fit to a given
data pattern can be improved by simply adding additional parameters, and thereby
models with more parameters may be overfitted. AIC and BIC punish models with more
free parameters and favour the most parsimonious solutions by adding a penalty term to
the log-likelihood (LL) which depends on the number of parameters (d) and in the case of
BIC also on the number of observations, i.e. the number of trials (n):

AIC = -2+LL+2+d (7)

BIC =—-2*LL+d *1In (n) (8)



Minor Concerns

1. Pg 2, Line 7. “One increases ...” States don’t really increase. Consider different
word usage.

2. Pg.2, Line 8. “two states were localized...” The states were not localized.

3. Pg. 3, Line 12. “motivation can reduce” Awkward usage — consider “motivation
can decrease” or “motivation can wane”.

4. Pg. 4, Line 15. “ventro-medial prefrontal...” . Did you want to define as (VMPFC)?

5. Pg. 4, Line 24. “hypothesise ...” Consider listing the areas here, up-front.

6. Pg. 6, Figure 2 Legend. Panel D) is not explained very well.

Response: We thank the reviewer for noting these less than ideal choices of words, we have
now edited each appropriately in the revised manuscript.

7. Pg. 9, Line 19. “logistic regression ..” was this on pooled data? If so, why not a
random effects model?

Response: A logistic regression was performed on each participant’s choice data separately,
beta estimates were carried through to a second-level statistical inference. The data was not
pooled across participants. This has now been clarified in the revised manuscript.

Page 28

Regression models were fitted to each participant’s choice data, and statistical inference
was made at the group level by comparing t-scores across participants against zero. Beta
values for each participant’s regression coefficients were normalised to t-statistics as
B/SE(B) in order to compensate for the possibility of poor estimates of Bs in participants
with low levels of variance. Because the t-scores were not normally distributed, they were
tested for significant deviation from zero using non-parametric Wilcoxon signed-rank
tests.
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8. Pg. 11, Figure 3 Legend. In C) please make it explicit that the model was fitted separately
for each subject.

Response: This has now been clarified in the figure legend as well as in the main text.

Figure 3

This full model was fitted to each participant’s choice data separately and then compared
with the fit of the other models, with a model comparison revealing the full model to be
the best fit to the data.

Page 28
This model could be fitted separately to each participants’ behaviour.

9. Pg. 12, Line 15. Did every subject see the same sequence of choices? If so, could
this introduce spurious effects?

Response: The reviewer is correct that only one sequence of trials was used, this was
because we wanted to examine individual differences between participants in the
fluctuations of fatigue in behavioural and fMRI analyses. Multiple sequences may have
caused participants with higher parameters to not necessarily be those with greater
influences, but occurred due to the sequence of trials they received. However, it is unlikely
that a single sequence could explain our results, as Figure 2 panel d highlights, there is a
strikingly high variability in the trials in which participants chose to rest, and in the model
parameter weights shown in supplementary Figure 4. Such variability is likely to reflect a
different build-up of fatigue across participants, rather than being a result of the sequence
of trials. Moreover, the additional experiment now added to the manuscript used a different
trial structure in a different pool of participants but found corresponding statistical and
modelling results.

10. Pg. 14, Figure 4, Legend. Please define RCZ a,b.
Response: We have now defined the RCZ regions more clearly.

Figure 4 Legend

A) The BOLD signal in two distinct sub-regions of the ACC covaried trial-to-trial with
unrecoverable (UF) and recoverable fatigue (RF) states estimated by the model. Overlay of
clusters in the anterior Rostral Cingulate Zone (RCZa; dark blue) with activity covarying
with UF, and the posterior Rostral Cingulate Zone (RCZp; cyan) with activity covarying with
RF. Inset shows non-overlapping clusters. RCZ regions defined with respect to the
parcellation of Neubert et al.

11. Page 15, Line 4. Do you mean to say contrast against baseline? This is activation
for a parametric regressor so for each subject the “contrast” taken to the second
level should simply be the betas associated with that regressor — no contrast
needed.
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Response: we apologise for any confusion. As is standard in SPM, to extract betas for a
parametric regressor you run a “contrast” of “1” for that regressor. We have clarified the
wording in the revised manuscript.

Page 14
A t-contrast on RF - to extract beta values corresponding to that regressor...

12. Page 16, Line 19. “ .. influence of fatigue.” Did this not work in MFG?

Response: Thank you for raising this interesting point. We did not find such correlations in
any region other than the VS, possibly suggesting the VS has a more important role in
integrating fatigue to influence subjective value. We have now clarified this in the revised
manuscript

Page 16
No such effects were found in any other region, with individual differences in fatigue and

value only reflected in the VS response.

Reviewer #2 (Remarks to the Author):

The manuscript describes an fMRI study that investigates the neural foundations of
fatigue during a choice task, which involves trading monetary reward against
physical effort (handgrip squeeze). The claims are that 1) computational analysis of
choice behavior reveals the existence of two fatigue states, one recoverable (RF) and
the other unrecoverable (UF), 2) that the neural correlates of these two fatigue
states can be dissociated using fMRI and 3) that fatigue modulates the willingness to
work encoded in fronto-striatal circuits.

This is an interesting and timely paper. However, although | like the story, | am not
convinced that there is enough evidence to make any of these claims (see reasons
below). However, the dataset could be exploited to support more reasonable
conclusions that would still be worth publishing, in my opinion, although claims of
novelty should then be toned down.

Response: We thank the reviewer for saying that the work is interesting and timely. We
appreciate their helpful critique of our claims, we have used their comments to refine
definitions of concepts, included additional analyses in line with their suggestion and an
additional behavioural experiment which more directly shows that people’s sensations of
fatigue are reflected in recoverable and unrecoverable components.

Behavior (claim 1):
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1) The concept of “moment-to-moment fluctuations in motivational fatigue” is both
vague and misleading. What could be at play in the task is simply muscular fatigue:
pain in the arm muscles would increase with repeated squeezing and possibly
decrease with rest. A participant feeling squeezing as more painful would naturally
be less inclined to do it again. The alternative would be that the participant is
demotivated, in the sense that the marginal value of additional money would not be
worth the effort anymore. Unfortunately, the concept of “motivational fatigue”
confounds the two hypotheses, which could be teased apart by comparing models in
which what is accumulated is money versus effort, and/or models in which what is
impacted is the benefit versus the cost of effort.

Response: We apologise to the reviewer that our claims regarding fatigue were not fully

clear. There are a number of points to unpack in order to comprehensively reply, so we have

broken our response down to address each of these points separately:

a)

b)

To fully clarify our definition — which also underpins our modelling approach — our claim
is that the motivation to exert effort involves rewards being devalued by effort.
However, theories suggest that sensations of fatigue putatively modulate this, such that
when people are more exhausted they show an increased devaluation effect. We refer
to these fluctuations in motivation driven by momentary changes in fatigue, as
motivational fatigue in order to be concise. Although included in theoretical accounts,
these ideas had not been tested in experiments that examine motivation on a trial-by-
trial basis, with a model that predicted changes in effort discounting from one trial to
the next (i.e. examined momentary changes in motivation that might be under the
influence of fatigue). We suggest that this process is underpinned by long-term effects
(unrecoverable) and short-term recoverable effects. In this decision making task any
fatigue states were hidden, and could only be inferred by examining the changes in
decisions across the experiment, where we indeed identify two different states (which
we call fatigue) that influence choices on different timescales. From our data we cannot
directly claim the source of these two different components of fatigue effect on
motivation, but aim to in future work. In the revised manuscript we clarify this
definition.

There were a number of measures taken to ensure that the effects were not being
driven by pain perception. Firstly, to avoid pain being the main driver of results the grip
force devices were padded to avoid painful sensations in the hand. Secondly, the levels
of force participants were exerting were very low in this experiment, with the highest
force level in the main session only 48% of their maximum grip strength. These findings
do not rule out pain sensations as driving our results, however, previous data examining
muscle physiology and pain perception has shown that pain is not the driver of stopping
behaviours in physical exertion and does not build up to any significant degree at low
levels of force, even when participants continuously squeeze for extended periods of
time (Staiano et al.,2018; Marcora et al., 2009). For these reasons we feel it is unlikely
that sensations of pain are what is driving the results. However, even if it were pain
sensations that were driving the results, our results would still suggest that short-term
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c)

d)

and long-term sensations are leading to fluctuations in the willingness to exert effort for
reward, which would still render the findings novel. In the revised manuscript we have
highlighted these points

To more directly test whether the results are reflecting people’s representations of
sensations of fatigue, we have now also included data from an additional experiment. In
this additional experiment, participants performed a very similar task, except on each
trial they were forced to either work or rest at a level of effort rather than being able to
choose to do so. On each trial after working or resting, they also received a reward. The
effort levels and reward levels were identical to those used in the fMRI experiment.
Crucially on each trial they rated their level of tiredness (described to them as fatigue or
tiredness) between zero and 100. We then fitted the five models used in the original
manuscript to explain changes in trial-to-trial ratings in the new dataset. Replicating the
original choice data, using Bayesian model comparison we show that the full model
containing independent UF and RF components is the best explanation of fatigue ratings
in this new data.

Moreover, in the original dataset participants were required to rate from 0 (not at all) to
10 (extremely) how tired they felt before the start of the main task and after completion
of the main task. We found that ratings of fatigue were increased at the end of the
experiment compared to the beginning (Z = 3.35, p <0.001) and that participants UF
parameters correlated with the change in their fatigue ratings (rs(33) = .3614, p = .0329,
two-tailed). This supports the notion that sensations of fatigue were changing across the
experiment and were linked to changes in their motivation as estimated by the
computational model. These results have now been included in the manuscript

Are the effects driven by accumulated reward reducing the marginal value of rewards?
Theoretically it is unlikely that reward “satiety” in the manner suggested by the reviewer
would be enough to cause people to switch away from working regularly in this
experiment as there is limited evidence that people become hugely sated to financial
rewards in such short time frames. The smallest reward for working in this experiment is
6 times the magnitude of the rest option and thus would require a significant
devaluation effect to cause a change in preference. To test empirically in the existing
data is challenging, as participants choose to work less often when the offered effort is
high and the reward is low. As such, accumulated effort and accumulated reward
become correlated across the course of the experiment. However, in the additional
experiment — where participants rate their fatigue — we can directly test if sensations of
fatigue depend on the effort just exerted and reward that has been received as they are
orthogonal. In the additional data, we find no evidence that ratings of fatigue are
impacted by reward magnitude. Instead fatigue ratings depend largely on the effort
exerted and can be captured effectively by the same computational model that was
fitted to choice data. This provides strong evidence that our model is tracking the effects
of fatigue induced by effort. Moreover, existing research examining the neural
mechanisms consistently finds cumulative reward effects in VMPFC, but not in the
regions we identified in this paper (Juchems et al., 2017; San Galli et al., 2018). Although
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it is possible that accumulated reward also has some influence on choice, our results
provide evidence that our computational model is tracking sensations of fatigue, that
these influence choice and that it thus is likely to be identifying signals related to such
sensations in the fMRI data.

All of these additional data and analyses are included in the revised manuscript in
addition to multiple changes to the methods and results sections.

Page 7

In addition, we required participants to rate their level of “tiredness” — a more commonly
used synonym of fatigue — between 0 and 10 before the start of the main task, and then
again after completion of the experiment. Although participants could freely choose to
rest, and thus prevent a significant build-up of fatigue, ratings of fatigue were higher at
the end of the experiment than at the beginning (t(34) = 4.27, two-tailed p < .001, Cohen’s
d=0.72,95% Cl = [0.54, 1.52]; Supplementary figure. 2).

Page 22

It was beyond the scope of this investigation to examine whether the different
components of motivational fatigue map onto purely psychological changes, physiological
or metabolic changes in the state of the body, or fluctuations in neuromodulatory systems
141859 However, the computational approach taken here was able to best explain changes
in decisions about whether to exert effort for reward, and in self-reported sensations of
fatigue. Although accumulated reward and accumulated effort were correlated in the fMRI
study, rewards did not influence fatigue ratings trial by trial in the behavioural study. Such
findings that sensations of fatigue were fluctuating in the experiment and could be
quantified using the computational model in which effort exerted causes changes in
motivation, rather than the rewards that have been accrued. In line with this, the UF and
RF components fluctuated in regions that have previously been linked to effort processing,
rather than in regions that have been found to signal accumulated reward (Juchems et al.,
2017 & San Galli et al., 2018). Future work will need to identify the source of these
fluctuating, putative fatigue states, and disentangle them from other processes, such as
opportunity cost processing, boredom and time-on-task.

Supplementary Methods page 1
Grip force was measured using an MRI compatible, handheld dynamometer (TSD121B-
MRI; BIOPAC Systems, Inc., USA) with padded “squash” tape to reduce discomfort.

Page 27

The effort levels used in this experiment were chosen as they have been shown not to
cause significant build-up of lactate and muscle pain, and the stopping of exertion is driven
more by the perception of effort and not pain. This ensured that our results are unlikely to
be due to muscle pain, which can be incurred at higher levels of grip force.
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Supplementary materials page 7

These results support the hypothesis that the value ascribed to exerting effort for reward
fluctuates over time as a function of ‘fatigue’ as estimated by the model. However, there
are other factors that may correlate with the effects of fatigue within this model, such as
boredom or the accumulation of reward. To further demonstrate that this model was
capturing sensations of fatigue, we correlated the model parameters for each participant
with the change in their subjective ratings of fatigue before and after the main task. We
found a significant correlation between the UF parameter (0) and the change in rating (r;=
.3614, two-tailed p = .033, 95% Cl = [0.032, 0.620]). Participants showing a greater increase
in ratings of fatigue had a higher parameter weight, suggesting a greater reduction in the
willingness to exert effort for reward due to UF. No significant correlations were identified
between the parameters weights defining RF and the change in ratings, although such a
result is to be expected as RF putatively only has short-term effects but ratings were taken
more than one hour apart.

Main Text page 12

To further examine whether the computational model was able to capture sensations of
fatigue, we performed an additional, similar behavioural experiment (n=40). In this study,
participants performed a task with identical effort (0, 30, 39, 48%) and reward levels (6, 8,
or 10 credits). However, rather than being able to freely choose whether to work or rest
on each trial, instead they were required to exert a level of effort (or take a rest) and then
rate their level of “tiredness” (a synonym for fatigue) on each trial. The computational
model would predict that fatigue ratings would (i) increase as a function of effort exerted,
(ii) would decrease after a trial of rest, (iii) the build-up would be best characterised by
both RF and UF factors and (iv) would change independently of reward. In line with the
predictions of our model, we found a significant effect of effort on trial-by-trial changes in
fatigue ratings, a significant reduction in ratings after a trial of rest, but no significant
effect of reward on ratings. To directly test these claims, we fit the five models that aim to
capture changes in fatigue above to trial-by-trial ratings (Supplementary Methods &
Results). The full model, containing separate RF and UF parameters better explained
ratings than the other models. These results support the notion that our model is able to
capture trial-by-trial changes in fatigue induced by effort, and its effects on the value
ascribed to exerting effort for reward.

Supplementary Methods

Behavioural fatigue rating experiment

40 participants (24 females), mean age of 25.53 years (SD = 5.63; range 18-40) were tested
on behavioural task in which participants exerted effort to receive rewards, and rated
their level of tiredness on each trial. Unlike the fMRI experiment they were not able to
choose whether to exert the effort or not, instead they required to execture (or rest) a
level of force to receive rewards. After execution and receiving the reward they were
required to rate their level of tiredness (supplementary Figure 5).
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The experiment consisted of three parts: i) a Calibration phase to account for individual
differences in strength, which was completed before the experiment was explained in full
to the participants, ii) a Training phase in which participants familiarised themselves with
the effort levels used in this task, and iii) the Main task. In the Main task, participants
were asked on every trial to rest or to exert force for rewards (credits). Effort and reward
levels were identical to the ones used in the main task of the fMRI experiment.
Participants were instructed to collect as many credits as they could throughout the
experiment, with the total number of credits collected throughout the task determining
their payment. That is, participants were paid £8 for their time and received a bonus
payment of up to £4 which was proportional to the credits they had earnt in the task.

During Calibration, each participant’s MVC was measured by squeezing a hand-held
dynamometer on three consecutive trials with their dominant hand. Participants were
required to apply as much force as possible on each trial, and they received strong verbal
encouragement while squeezing. During each attempt, a bar presented on the screen
provided feedback of the force being generated. In the second and third attempts, a
benchmark representing 105% and 110%, respectively, of the previous best attempt was
used to encourage participants to improve on their score. The maximum level of force
generated throughout the three attempts was used as MVC.

In the Training phase participants practiced reaching each of four effort levels (0, 30, 39,
and 48% of each participant’s MVC). The trial was successful only when the force
generated by the participant exceeded the required level for a sum total of at least 3
seconds in a five-second window. Each trial commenced with a cue in the form of a pie
chart, with the number of red segments indicating the upcoming effort level. To make sure
that participants carefully and successfully completed this training, they were awarded
one credit for each successful squeeze, while they received zero credits for a failure. In an
additional four trials, participants practiced manipulating the rating scale before they
completed four full practice trials consisting of the different effort levels and a rating in
order to familiarise themselves with the task.

The Main task (Supplementary Figure 5) consisted of 120 trials, each requiring participants
to either rest or work for credits. Work trials consisted of one of three different effort
levels, represented by two to four filled segments in a pie chart (cue) that corresponded to
30, 39, and 48% of each participant’s MVC. Rest trials were indicated by one filled segment
in a pie chart. The cue only indicated the effort level and not the reward. Rewards were
presented for 1.5 seconds and only shown to the participants after they had worked or
rested on that trial. Effort and reward levels were varied independently and presented in a
pseudo-random order to ensure that 10 repetitions of each effort/reward combination
was distributed evenly across the task, and each participant was presented with the same
sequence to ensure that any potential differences in behaviour could be attributed to
individual characteristics.

After this cue, participants were required to rest or to exert the respective force on the
dynamometer for at least 3 out of 5 seconds in order to receive the credits. For this
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purpose, participants were presented with a vertical bar that provided them with real-
time feedback on their force. The target effort level was indicated by a yellow line
superimposed on the bar. If participants had to rest on that trial, the bar was presented
for the same duration but with the yellow line displayed at the bottom of the bar.
Following this, participants were shown the credits they had obtained dependent on their
success or failure on that trial. They then were asked to indicate how tired they felt on a

I"

scale ranging from 0 to 100, with O representing “not tired at all” and 100 representing
“completely exhausted”. Immediately before the first trial, participants were given as
much time as they needed to indicate how tired they currently felt. On each subsequent
trial, the starting value on the scale was the value the participant had entered on the
previous trial, and participants had a maximum of 5 seconds to either confirm or change
this value. Participants could change the value on the rating scale in increments of 1 by
using the left and right arrow keys on a keyboard. They then confirmed their chosen value
by pressing the downward arrow key, and a green frame appeared around the rating
scale. To ensure that participants reported their feelings of exhaustion accurately, it was
made clear to them that none of their ratings would have an effect on the task they were

asked to complete.

Fatigue rating experiment analysis

The main aim of this behavioural experiment was to examine whether fatigue ratings
would be susceptible to the same short-term recoverable and long-term unrecoverable
factors that were found to influence the choice data in the fMRI experiment. To test this,
changes in fatigue ratings from trial n-1 to trial n were analysed with linear regression
models fitted to each participant’s ratings, with predictors of effort, reward and their
interaction.

Trials in which participants worked or rested were examined in separate LMMs than trials
in which participants rested. This was due to the fact that “effort” is not a continuous
variable in this experiment, with 0% effort not continuous between 30-50% force levels.
Only trial n in which participants had successfully squeezed and thus obtained the credits
were included in the model. This resulted in the exclusion of M = 4.21% (SD = 6.60) trials.
Analysis at the group level was made by performing t-tests of normalised t-values against

zero.

Modelling trial by trial fatigue ratings

To test whether the computational model fitted to choices in the fMRI experiment
could also explain changes in fatigue ratings induced by effort and rest, we fitted the five
computational models that predicted fatigue effects to the ratings data (Supplementary
Figure X). On each trial t, fatigue (F) was calculated as the sum of a participant’s pre-task
fatigue rating (F:.rt), recoverable fatigue (RF) and unrecoverable fatigue (UF):

F) = Fsiare + RF ) + UF (1)
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Initial RF and UF values were set to 0, with RF and UF subsequently updated on each trial.
RF increases dependent on the force (E) exerted on a trial (Equation 2) and decreases
dependent on the time rested (T) on a trial (Equation 3):

RF(t) = RF(t—l) + (a * E(t)) (Z)

RF ¢y = RF(t-1) = (§ * T(p)) (3)

Individuals differ in the degree to which effort increases their fatigue, as reflected by the
subject-specific parameter a, and in how quickly they recover during rest, reflected by the
parameter 8. Unlike RF, UF accumulates depending on the effort exerted across the whole
task and is not restored by resting during a trial (Equation 4). The parameter 0 represents
how quickly different individuals build up fatigue that cannot be easily recovered.

UF = UF 1)+ (6 * Ey) (4)

They were updated for every trial according to the model and added to the fatigue level
indicated by the respective participant before the start of the task.

The fit between the model and the data, as indexed by the sum of squared residuals
between the participant’s ratings and the model’s estimates, was optimised using
fminsearch function in Matlab, i.e. model parameters were changed to minimise the
difference between each participant’s actual fatigue rating and the fatigue rating
predicted by the model for each trial. To maximise the chances of finding global rather
than local minima, parameter estimation for the full model and for all alternative models
was repeated over a grid of initialisation values, with 6 initialisations (ranging from 0 to 1)
per parameter. The optimal set of parameters for each model was used for model
comparison.

To verify whether the three parameters used to quantify the effects of effort and rest
were necessary, four other models were also fitted to participants’ ratings. The alternative
models either assumed (i) a UF component only (i.e. 8 being fitted), (ii) an RF component
only including one parameter, assuming that the rates of fatigue build-up during effort
and of fatigue decrease during rest are similar, (iii) an RF component including one
parameter as well as a UF component, and (iv) an RF component including separate work
and rest parameters (i.e. o and & being fitted) but no UF. In order to investigate the
models’ relative ability to predict the behavioural data, model fits were compared using
Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) with lower
values indicating better fit.
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A) Calibration B) Training
Effort cue Effort Outcome

1 o KNI

C) Main task
Cue Effort/Rest Outcome Ratina Response
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Supplementary Figure 5. Behavioural study trial structure. Participants were required to exert
force for rewards, with effort levels calibrated to their MVC (A), after training at each of four
effort levels (0%,30,39,48% MVC) they performed 120 forced execution trails. On each trail
they were instructed an effort that would be required (indicated by a pie chart), and then
required to exert that level of force for a total of 3 out of 5s to obtain credits. They were then
told the amount of credits received — 6, 8 or 10 credits if successful or 0 credits if failing to
exert the required force. Following this they rated their level of tiredness from 0-100 on a
continuous scale.
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atigue rating

A) Fatigue increases across the task
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B) Effort predicts trial-to-trial
changes in fatigue
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Supplementary Figure 6. Behavioural
study rating results. (A) Mean trial by trial
ratings of “tiredness” between  0-100

across trials. Shaded areas represents SEM.
(B) Change in fatigue ratings from t to t-1
as a function of effort level (x-axis) and
reward (shade of blue) on trial t (i.e. the
effort just exerted and the reward received
for it). Only successful trials are included.
Rest trials (0% MVC) induced recovery,
with a linear effect of effort on increasing
ratings. (C) Linear regression on trial to
trial changes in ratings revealed significant
effects of effort, but no significant effect of
reward or effort x reward interaction. Error
bars depict SEM. Results support the
notion of a gradual increase in fatigue (A)
across the experiment as well as trial by
trial short-term recoverable changes (B).
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A) Model comparison reveals A) Full model is most frequently

best fit by full model observed in the population
35000 [ 1 *
30000
é 0.8
25000 e
o)
&) O nn
< 20000 * 5
= 15000 S
@ §o4
10000 3
o
x 0.2
5000 | -
0 0 '
1 2 3 4 5 1 2 3 4 5
Model Model

C) Models tested
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Supplementary Figure 7. Computational modelling results for behavioural rating study. (A)
Model comparison results in AIC for the models predicting changes in fatigue ratings across
the experiment. The full model (5) is the best fit to the data when punishing for the number of
parameters. (B) Exceedance probabilities for the models fitted to the ratings data Y-axis
reflects the probability of being the most frequently observed model in the population. Model
S is the winning “full” model of fatigue containing separate RF and UF components.(C) Models
compared. All models predicted changes in fatigue ratings. The best fitting model predicted
changes in fatigue that were partially recoverable - increase through effort, decrease through
rest — but also contained a long-term unrecoverable component.
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2) The evidence in favor of model 5 (with both RF and UF) compared to model 4 (RF
only) is weak (slight difference in AIC or BIC). Besides, it seems that, as they are
written in Fig. 3, model 5 and model 4 are no different. They can both be rewritten as
F(t) = param1 x sum(E) + param2 x sum(T), i.e. some weighted sum of cumulative
effort and cumulative resting time. | might have missed something here, but at the
very least this needs clarification.

Response: We thank the reviewer for raising these points about the extent to which this
model successfully captures behaviour above alternatives. From a conceptual point we note
that the models all try and capture a very similar phenomena — that is five of the models try
and capture an increase in fatigue after effort and reduction after rest, and all of the models
assume that rewards act as an incentive, increasing value, and the amount of force required
serves as a cost decreasing it. It is therefore expected that the winning model would only
show a small improvement over others. However, the two models are distinct. The full
model contains separate weighting (i.e. a distinct parameter) on the effect of effort
increasing RF from the degree to which effort increases UF. As such, people’s long-term
increase in fatigue due to effort can be independent from the short-term increase in fatigue
by effort. In the simpler model 4, this is not the case, there is only a singular parameter that
dictates an increase in fatigue by effort. We have gone through the manuscript to ensure
these points are clear.

However, we agree with the reviewer that it is important for our aims that we show that our
model comparison is robust, that UF and RF are needed to explain the effects of fatigue and
that our full model is the best characterisation of people’s behaviour. To address the
reviewer’s concerns we have now (i) calculated exceedance probabilities (EP) on the AIC
values (multiplied by -1) for the model comparison. EPs take a random-effects approach to
calculate the probability that a winning model is the most frequent in the population. We
find that the winning model has an EP of 0.72, and has a much higher probability than the
next best model without UF which has an EP of 0.16. These EPs are now plotted in
supplementary figure 4. (ii) We then fitted the five models that contain a change in fatigue
used in the original manuscript to explain trial to trial ratings in the new dataset outlined
above. Replicating the original choice data, using Bayesian model comparison we show that
the full model containing independent UF and RF components is the best explanation of
fatigue ratings in this new data. This demonstrates robustly that fatigue is made up of both a
short-term and a long-term component and highlights that our fMRI results are likely
correlating with such findings.
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In the revised manuscript we include this additional behavioural experiment and the
analyses of it in the supplementary material (details also included in reply to the last point),
as well as including the exceedance probabilities from the original dataset:
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Supplementary Figure 4. Supplementary results from fMRI study behaviour. (A) Histogram of
proportion of trials on which participants made choices to “rest” out of 210 trials. There is
considerable variability in choices both within and between many participants. (B) Exceedence

probabilities for the models fitted to the choice data. Exceedance probabilities for models
fitted to fMRI behavioural data. Y-axis reflects the probability of being the most frequently
observed model in the population. The full model (5) is the most frequently best fitting model
in the population. (C) Model parameters for each participant (green dot) and average across
participants for the discounting parameter fitted to the pre-task (left), the two recoverable
parameters (middle) and the unrecoverable parameter (right). Error bars represent SEM.
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3) Simpler accounts must be included in the model comparison. The change in the
ranges of reward and effort levels, between pre-task and main task, might by itself
induce a change in the subjective value function. One possibility is for instance
regression to the mean: in both cases participants tend to accept rewards above the
mean, or efforts below the mean, which could be mistaken as a fatigue effect. | am
aware that choices denote a shift of preference within the main task, but the change
in the range might still affect conclusions, because it is not accounted for in model
comparison. To fix the issue, an intercept parameter, capturing the difference
between tasks, could be introduced in fatigue models.

Response: We appreciate the reviewer’s point that simpler models could, in theory, explain
changes in behaviour from the pre-task to the main task, with participants simply applying a
similar heuristic to the value space or simply shifting their valuation down in a ‘range-
dependent’ manner. We first would note that our behavioural analyses are not consistent
with this, with the willingness to work changing across trials of the main task. This was
shown statistically in our regression models, through the model comparison results, and also
in the original figure 2E, which highlights a reduced willingness to exert higher efforts at

lower rewards that changes between the first and second half.

Further to this, we now also include a supplementary figure displaying the first and last 27
trials of the task (below). As can be seen, participants were accepting offers at a very high
rate (>90%) at the beginning of the main task, with even the highest effort/lowest reward
offer still being accepted 50% of the time. This is consistent with what the model would
predict would happen at the start of the main task, where only the short-term recoverable
fatigue component would be having an effect. It is also inconsistent with a significant change
in valuation from the pre-task to the main task. As can be seen, for the last 27 trials, there
has been a significant change in behaviour, with offers accepted a low proportion of the
time except at the lowest effort /highest reward levels. This is all consistent with significant
changes in behaviour across the task driven by increased discounting, and an effect of both
short-term recoverable and long-term unrecoverable fatigue effects.

We agree with the reviewer that this should also be compared within the model space. For
this reason, we include model 6 which models a change in valuation (i.e. a new discount
parameter) between the pre-task and the main task. This model would be able to capture a
regression to the mean effect, however, we found that this model could not explain choice
behaviour better than several of the models that contained an effect of fatigue on choice.
Second, we tried to include the model suggested by the reviewer, in which an intercept term
was included to explain differences between the tasks. However, the model fitting failed to
find a stable solution, with participants model parameters differing each time the model
fitting procedure was conducted and high correlations were identified between parameters.
This is consistent with ‘over-parameterisation’ and thus suggesting that this model is not
able to appropriately capture choices.
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In the revised manuscript we have clarified how our results support the notion of valuations
changing across the main task, included the additional figures and highlighted in the
discussion how the results cannot be explained by a range-dependent or regression to the
mean effects on value between the pre and main task.
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Supplementary Figure 2. (A) Fatigue ratings taken before and after the main
task of the fMRI study. Each dot represents one subject and error bars reflect
SEM. Fatigue was higher after the main task than before. (B) Shift in choices
award from higher effort lower reward options in last 27 trials compared to
first 27 trials. Shift does not occur for lowest effort highest reward offer,

consistent with a shift in valuation not more random behaviour.

Main text page 9

Consistent with a dynamic change in the value of working, there was a significant
interaction between effort and cumulative effort, as well as main effects of effort,
reward and cumulative effort (cumulative effort x effort: Z = -4.19, p < .001; effort:
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-4.35, p < .001; reward: Z = 3.96, p < .001; cumulative effort: Z = -3.83, p < .001).
The three-way (Z = -0.27, p = .79) and the cumulative effort x reward interactions
(Z = 1.40, p = .16) were not significant. Importantly, offers that were considered as
higher in value and were chosen to work for at a high proportion in the pre-task,
became gradually less and less likely to be selected across trials in the main task
(Fig.2; Supp. Fig.2).

Supplementary Results page 7

Could these results be due to participants becoming more random in the main task
due to boredom or other confounding factors? We show that Effort and Reward
still have very strong significant effects when examining only the last quarter of
trials (Effort: Z = -5.2319; p < .0001; Reward: Z = 4.3050; p < .0001). As such
participants were basing their behaviour strongly on the effort levels towards the
end, which is not consistent with more random behaviour. In addition,
participants were still choosing to work on almost 100% of trials for the highest
reward and lowest effort in the last 27 trials of the main task (see supplementary
figure 2), which is also inconsistent with fatigue causing more stochastic
behaviour.

4) Besides, instead of cumulative effort, or cumulative reward (as suggested above),
a simpler function of time-on task, like trial number, should be tested. It could simply
be that participants are more and more bored with the task, or willing to go home. A
way to show that fatigue is really about effort cost would be to sum quadratic (not
linear) effort levels. Also, instead of an effect on effort cost (or reward benefit, as
suggested above), trial index or fatigue could impact an additive parameter, which
would suggest that they are just less willing to squeeze anymore, irrespective of
reward and effort levels.

Response: The reviewer raises an important point that boredom could be a factor in
people’s choice behaviour in the main task. Although we cannot rule out this possibility,
predictions about how choice behaviour changes across the experiment can be made in
relation to boredom: (i) it would lead to more distracted behaviour which would result in
more missed trials over time or more trials in which the required force is not exerted.
However, in the experiment missed trials and “failed” comprise less than 2%, such that there
is not enough variance across participants to statistically test if missed trials increased with
trial number, suggesting that participants were not becoming less attentive to the task and
(ii) choices that are more random and would not depend on the offered effort and reward
levels would occur at the end of the experiment. However, statistically we show that Effort
and Reward still have very strong significant effects when examining only the last quarter of
trials (Effort: Z = -5.2319; p < .0001; Reward: Z = 4.3050; p < .0001) and showed a significant
cumulative effort X effort interaction (p<0.001), with the effect of effort stronger at the end
of the experiment than at the beginning. As such participants were basing their behaviour
more strongly on the effort levels towards the end, which is not consistent with boredom
leading to a generalised reduction in rejecting offers to work irrespective of effort and
reward. In addition, participants are still choosing to work on almost 100% of trials for the
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highest reward and lowest effort in the last 27 trials of the main task (see supplementary
figure 2), which is also inconsistent with boredom leading to a rejection of all offers and a
non-specific reduced willingness to squeeze at the end of the task.

In addition to this, we also note that in the new behavioural data from the task with trial-to-
trial ratings, participants show changes in their ratings of fatigue across the whole task.
Although self-report, this data corroborates sensations of fatigue impacting on motivation.
As such, our results are consistent with the notion of sensations of fatigue changing that
impact on the motivation to exert effort for reward, rather than boredom. In the revised
manuscript we have highlighted these analyses and discuss whether the effects could be
related to boredom rather than fatigue driving changes in motivation.

The reviewer’s second point regarding the quadratic effect of effort on fatigue is an
interesting one. However, there are two difficulties in estimating this in the main task (i)
there are only three effort levels, as such a quadratic or linear effect of effort on fatigue
cannot easily be distinguished as there is not enough parametric range to distinguish
between them, (ii) the model is estimated on choice data, where the valuation is parabolic,
as has been shown repeatedly for effort-based decision-making (Chong et al., 2017,
Lockwood et al., 2017). As a result, an increase in fatigue causes a parabolic effect on choice
behaviour. Models with linear increases or squared increases in fatigue will likely not be
distinguishable — other than with small changes in parameter weights. However, in the
additional data of trial-by-trial ratings we show changes in ratings of fatigue are linear in
form rather than quadratic, suggesting that for the effort levels used in this task the effects
of effort on fatigue are linear (see Supplementary Figure 6). In the revised manuscript we
now highlight these points in the discussion as well as in the supplementary results.

Main text page 10

Importantly, offers that were considered as higher in value and were chosen to work for at
a high proportion in the pre-task, became gradually less and less likely to be selected
across trials in the main task with effort and reward having stronger effects in even in the
last 27 trials of the experiment (Fig.2; Supp. Fig.2). Such findings are inconsistent with
boredom or other factors leading to generally more noisy or random behaviour. Instead
these results are indicative of participants changing their subjective evaluation of working
across trials, with accumulated efforts increasing the discounting effect of effort and
reducing the value of working across the experiment.

Main Text page 19

Although in this study we cannot fully rule out the possibility that this effect is simply due
to time-on-task or boredom effects, we are able to show that it affects both effort-based
decisions and self-reported fatigue. Moreover, we show that this longer-term effect is
independent from a short-term recoverable component and that it covaries with activity
during effort-based choice in the left MFG, largely overlapping with an area which has

previously been associated with subjective aversion to cognitive effort .
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Main Text page21

It was beyond the scope of this investigation to examine whether the different
components of motivational fatigue map onto purely psychological changes, physiological
or metabolic changes in the state of the body, or fluctuations in neuromodulatory systems
141881 However, the computational approach taken here was able to best explain changes
in decisions about whether to exert effort for reward, and in self-reported sensations of
fatigue. Although accumulated reward and accumulated effort were correlated in the fMRI
study, rewards did not influence fatigue ratings trial by trial in the behavioural study. Such
findings, that sensations of fatigue were fluctuating in the experiment and could be
quantified using the same computational model in which effort exerted causes changes in
fatigue, suggest that changes to choice behaviour in the fMRI experiment are more likely
to be due to exerted effort than accrued reward. In line with this, the UF and RF
components fluctuated in regions that have previously been linked to effort processing,

62,63
. Future

rather than in regions that have been found to signal accumulated reward
work will need to identify the source of these fluctuating, putative fatigue states, and
disentangle them from other processes, such as opportunity cost processing, boredom,

task switching and time-on-task.

Neuroimaging (claims 2 and 3)

5) The finding that left MFG decreases with fatigue (be it RF or UF) is convincing, as
the cluster shows up in a whole-brain analysis, surviving correction for multiple
comparisons. However, its contribution to the shift in preference could be specified.
What the analysis shows is that its activity is decreasing with time on task (or
fatigue), but the link to choices is not established. Could it be that left MFG is simply
less active when effort is declined, which becomes more and more frequent across
task trials? Would this be related to shorter deliberation time?

Response: We thank the reviewer for their question regarding the role of the MFG in the
choice components. Its important to note that our results do support the role of the MFG in
the decision process, by influencing the degree to which a reward is devalued by effort. In
this regard, it is linked to choice behaviour. It is plausible that MFG activity simply decreases
as offers are rejected, however, our results are more consistent with the findings of Blain
and colleagues, who implicate this region in “executive fatigue” in healthy people and over-
training in athletes. Future work will need to dissect its contribution to changes in decision
processes linked to fatigue. In the revised manuscript we highlight how the MFG could
contribute to decision processes and also include an RT analysis

Main Text page 19
This study unifies separate lines of research that have theorised that the effects of fatigue

14,35 . . .
, and provides a formalised account of their

may occur on more than one timescale
effects on effort-based decisions. One line of research had suggested that extended

periods of work lead to exhaustion that has consequences for tasks performed after the
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11,17,36-38

one which caused the fatigue . This “executive fatigue” influences activity in the

MFG in tasks performed after having been exhausted, an effect exacerbated in athletes

. 11,39
who are over-trained ™

. This form of fatigue appears to be unrecoverable in the sense
that simply taking short rests does not have a restorative effect. Although in this study we
cannot fully rule out the possibility that this effect is simply due to time-on-task or
boredom effects, we are able to show that it affects both effort-based decisions and self-
reported fatigue. Moreover, we show that this longer-term effect is independent from a
short-term recoverable component and that it covaries with activity during effort-based
choice in the left MFG, largely overlapping with an area which has previously been

associated with subjective aversion to cognitive effort *°.

Page 35

In addition, to examine activity that covaried with reaction times, we also ran a separate
GLM in which only individual trial by trial reaction times were included as a regressor
(Supplementary table 4).

Supplementary Table 4

Anatomical locations in which activity significantly covaried with individual reaction times at
p <.001, uncorrected for multiple comparisons

Anatomical area MNI peak No. of voxels  Z-value Voxel puncorr.
Left anterior insula -33,17,5 11158 7.69 <0.001*
Brain stem 6,-22,-7 367 6.26 <0.001*
Left inferior temporal gyrus -45, -58, -13 338 5.32 <0.001*
Right pallidum 18,2,-1 82 4.31 <0.001
Left cerebellum -36,-52,-34 32 4.28 <0.001
Right inferior temporal gyrus 48, -61, -13 154 4.23 <0.001
Brain stem 6, -28, -34 68 4,17 <0.001
Left medial orbital gyrus -21, 38, -22 13 3.99 <0.001
Left medial orbital gyrus -15, 11, -19 8 3.61 <0.001
Left thalamus -12,-22,14 8 3.55 <0.001
Right frontal pole 21,65, -1 6 3.52 <0.001
Left hippocampus -24,-25,-4 6 3.44 <0.001
Right central operculum 48,-19, 17 8 3.32 <0.001
Right inferior frontal gyrus 51,47, -10 7 3.29 <0.001

* indicates significance at a threshold of p < .05 with a whole-brain voxel-level family-wise
error correction.

6) On the contrary, the dissociation between RF and UF relates to cingulate zones that do
not appear in activation tables, even at uncorrected threshold. They only survive small-
volume correction within pre-defined regions of interest that seem quite arbitrary (why
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not other regions, like the anterior insula?). | think this level of evidence is way too weak
to maintain a conclusion such as neural correlates of RF and UF can be dissociated.

Response: The reviewer’s points about significance are important, and allow us to clarify our
analyses, to highlight that our results are reported at a stringent threshold correcting for
multiple comparisons but also test anatomically specific hypotheses.

In regards to the definition of regions we tested specific hypotheses about two
Cingulate/SMA zones which have been implicated consistently in studies in effort-based
decision-making and research on fatigue across species and methodologies (Klein-Flugge et
al., 2015, Chong et al., 2017, See Muller et al., 2019; Le Heron et al., 2018; Vassena et al.,
2019; Verguts et al., 2015 for reviews; see Pessiglione et al., 2018 for a meta-analysis). Of all
the regions in the brain, this medial frontal cortex region and the VS are the most commonly
implicated regions. Moreover, these regions have also been implicated in studies examining
how value-based decisions change across contexts and timescales (Kolling et al., 2016;
Wittmann et al., 2018). As such, we had considerable evidence to test hypotheses about the
contributions of the medial frontal cortex to how effort-based decisions change across trials
in this experiment.

It is also important to note that our approach to correcting for multiple comparisons with
volume-based corrections rather than whole brain is a common approach to controlling for
false positives in fMRI data. However, our particular approach is more statistically
conservative than is common in studies that take a ROl based approach. To define the
volume used for correction for multiple comparisons we merged together the different
masks that comprised our hypothesised regions, and thus the statistical threshold used for
voxels was defined by the number of voxels across masks, not only for a particular cingulate
zone. This means that a more stringent threshold is imposed, with a larger number of voxels
being corrected for than that which are in the region of interest. However, we are able to
benefit from the fact that individual masks for the different zones were anatomically precise,
and thus allowed us to localise our results for UF and RF to distinct cingulate ones. Thus, we
controlled for false positives across regions, as well as within regions, but were also able to
make more precise anatomical arguments. This approach is much more statistically
conservative, and sets a more stringent statistical threshold than approaches often used
when testing hypothesised regions i.e. only correcting for a single small-volume or by only
correcting regions by the number of ROIs included in the analysis (not their number of
voxels). It is for this reason that the Z-values for all of our main results are very high, with
the least significant key result having a Z-score of 3.57 — corresponding to a p-value of
0.0001. In debates around statistical thresholding in fMRI, Z-scores ranging between 2.5-3.1
are the most commonly deployed (Woo et al., 2014) and this result is therefore clearly far in
exceedance of such thresholds and that includes in results published very recently in this
journal (e.g Fromer et al.,, 2019; Hogan et al.,, 2020). As such, although we have used a
“small” volume correction the results reached a statistical threshold far more stringent than
those reported in many papers.
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In terms of the Insula, we had not focused on this region, as although there is some evidence
linking this region to effort and fatigue, it is more mixed than that of the medial frontal
cortex — and loci differ across studies from very posterior regions (Meyniel et al., 2013) to
more anterior (Chong et al., 2017). However, we appreciate that readers may be interested
in results in other regions, including the insula. Interestingly, we found that activity in the
anterior covaried positively with the unrecoverable fatigue. We have now highlighted this
additional result in the manuscript.

In regards to the presence of these results in uncorrected tables, the UF is indeed present in
supplementary table 1, in addition RF is present in the table, but was part of a larger cluster
with multiple peaks. This is common when examining results at reduced thresholds, where
independent clusters end up appearing joined together due to voxels at their extremities
showing only weak significance that is present at reduced thresholds. However, as noted
above, the result correspond to a highly significant effect, even if its peak is not apparent in
the table.

In the revised manuscript we more clearly highlight our strategy, that our results are
significant at very stringent thresholds and highlight that the results are not present in the
tables at reduced threshold due to merging with other clusters.

Main Text Page 35

Because previous studies have emphasised the importance of the VS and the dACC/pre-
SMA region in processing effort-based decisions, and in order to be able to specifically
localise activity to anatomically and functionally distinct regions, we also probed these
areas using a priori regions of interest. Therefore, t-contrasts were conducted at the
whole-brain level at an uncorrected statistical threshold of p < .001, and then a FWE small
volume correction was applied using a combined mask taken from appropriate atlases
(bilateral VS: from Harvard-Oxford Atlas; bilateral dACC and pre-SMA: areas RCZa, RCZp
and pre-SMA defined through resting-state parcellations of the frontal cortex by Neubert
and colleagues4l. By combining these masks together we provide a more conservative
statistical threshold than individual ROI analyses, balancing possible false negatives that
can occur with whole-brain correction. Full tables of results are reported at an uncorrected
threshold of p < .001 in Supplementary tables 1 to 3. At this reduced threshold clusters in
the VS and RCZp lie within a larger cluster and thus do not show in the list of peak results
only.

7) There is a double-dipping issue when selecting clusters based on regression
against RF or UF and then comparing regression estimates extracted from the peak
of these clusters. The issue is that the selection is not independent from the
comparison, meaning that it is biased towards voxels in which the noise will favor a
significant comparison.
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Response: We appreciate the important point regarding avoiding double-dipping in
analysing fMRI data. The reviewer’s comment gives us the opportunity to highlight that we
did not define our regions of interest, or make statistical inferences, based on comparisons
between regression estimates extracted from the peak results. The values shown in the
figures are extracted from the peak voxels, for display purposes, but statistical inferences
were made in the following manner to avoid double-dipping: (i)To first examine whether
regions showed significant effects of RF, UF or SV, we examined whether we could identify
voxels within the hypothesised regions that significantly covaried with each of these
parameters separately, (ii) to test if the same region also encoded one of RF, UF or SV, more
than the other variables, we performed independent contrasts between each of these
variables (RF>UF, RF>SV etc.) and examined whether there were voxels present in the same
anatomical zone that overlapped with voxels defined by the results from (i). Thus, we
interpret results based on significant overlapping voxels within a specific anatomical zone
across these analyses, rather than from values extracted from a region. Thus, we have not
taken approaches that would have led to double-dipping. In the revised manuscript we
highlight this approach and highlight how we avoid our results being driven by false positives
due to double-dipping.

Main Text page 14

We therefore examined voxels in which activity at the whole brain level and within our
hypothesised regions of interest ([ROI] — See Methods) significantly covaried with RF or
UF. Then we tested whether the same voxels significantly covaried with one parametric
regressor and did not significantly covary with the others. Such an approach of examining
overlap avoids the problems of double-dipping in ROl based analyses.

8) Showing that activity in neural regions like the ventral striatum correlates with
fatigue-weighted subjective value is no proof that fatigue does affect value signals in
these regions. This is because subjective value integrates factors (reward and effort
levels) that are sufficient to explain the correlation. In other words, VS activity might
correlate with fatigue-weighted SV just because it responds to rewards. To prove
their point, the authors need to show that neural activity in VS or other regions is
better explained by fatigue-weighted SV than by regular SV (without fatigue).

Response: We thank the reviewer for giving us the opportunity to highlight our reasoning for
considering signals in the VS and SFG as signalling value, weighted by fatigue, rather than a
consistent value signal across the experiment. The reviewer is correct that we have not
statistically shown that signals in these regions covary with fatigue-weighted value per se.
Such a comparison is challenging because both fatigue-weighted value and the subjective
value without an influence of fatigue are highly correlated (0.7) — this is unsurprising as both
are defined by both reward and effort as they note. However, what could not be explained
by a static SV computation, would be the signal within a region correlating with individual
subjects’ fatigue parameters from the computational model. In the VS we found that
individual differences in signalling covaried with each of the fatigue defining parameters.
This supports the notion that signals in the VS depended on a person’s sensitivity to fatigue,
which supports the idea that this region was signalling value, weighted by fatigue. In the
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revised manuscript we highlight how we interpret the VS results and fatigue-weighted value
and include points in the discussion about how we can interpret signals as value vs fatigue-
weighted value.

Page 21

Moreover, they point to a role of the VS for integrating current levels of fatigue with the
value of persisting with a demanding task, and variability between people in such
tendencies. A limitation of the experiment is that comparing value to fatigue-weighted
value signals is challenging, as they are necessarily correlated within the design. However,
importantly, we found that variability in signalling in the VS between people correlated
with the parameters of the computational model. Such a finding is consistent with activity
in the VS signalling a dynamically changing estimate of value, which is weighted by each
participants’ tendency to persist in the face of momentary fatigue. Such effects would be
missed or confounded by typical analysis approaches, e.g. when examining changes
correlated with trial number or behaviour pre vs post exhaustion, but they can be
examined using the formal framework outlined here. Future work will need to understand
how the VS integrates fatigue and value-related information leading to fluctuations in the
motivation to persist with ongoing behaviour.

9) There is the same difference between frontal pole and VS as between MFG and
cingulate zones: the former activation is convincing because it survives whole-brain
corrected threshold, while the latter rely on a priori ROI. However, | would question
the ‘frontal pole’ label, which usually refers to BA 10. From the map on Fig. 5 it
seems that the cluster is more dorsal and posterior, more like superior frontal gyrus
(sometimes called dorsomedial prefrontal cortex).

Response: We thank the reviewer for noting that our label of frontal pole may not have
been clear. The result extended across the areas 9 and 10 on the Superior Frontal Gyrus
(SFG). We have now re-labelled these results where appropriate to clarify this.

In regards to the VS, this region has been one of the most commonly reported regions in
studies of value-based decision-making, including those examining effort-based decisions
across species (Kurniawan et al., 2010; Schuoppe et al., 2014; Massar et al., 2015; Salamone
et al., 2007) and thus we had strong hypothesis linking its function to value processing in this
task. Much like the result in the cingulate zones, although not bonferroni whole brain
corrected (which is open to false negatives) the result still survives a high threshold of
multiple comparison correction and has a Z-value of 4.3. In line with our previous comment,
we highlight that this is a robust result that passes a stringent threshold, and is statistically
stronger than results reported in many recently published papers.

In the revised manuscript, we expand our justification for the VS region of interest and
highlight how this result is statistically robust and also have changed figure 5 and discussion

of the superior frontal result to Frontal Pole / Superior Frontal Gyrus throughout.

Page 4
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and ventral striatum (VS) have been implicated in computing value and motivating the

5,6,8,26-32

exertion of effort . Evidence suggests that these regions also change their response

with time on task **%*®

Minor issues:

- Introduction and discussion could more focused, at present there are many
redundancies, and the links with cited papers are often loose. Also, the novelty of
the computational framework is clearly oversold: increasing effort cost with
cumulative effort is quite a standard solution.

Response:

We apologise to the reviewer for any lack of clarity in the Introduction and if any of the
claims appeared oversold, this was not the intention. We merely wanted to highlight that
there has yet to be a model of fatigue that unifies the short-term and long-term effects of
fatigue and can measure these effects on trial by trial decisions of whether exerting effort
for reward is ‘worth it". We have now revised the wording throughout to reflect this.

- Fig. 2D is not particularly useful, as | cannot see the fatigue effect (I presume
the plot is meant to show darker choice probability with progress in the task).

Response: We apologise that the reviewer found this figure panel unhelpful. We believe its
inclusion is useful to highlight that work/rest decisions fluctuate over the experiment, and
relate to a comment by another reviewer, but also to highlight that when people make
decisions to rest is not highly consistent — which is why having a model that accounts for
variability between people is important. We have now clarified these points in the text and
figure legend.

(d) Percentage of participants who accepted the work offer, illustrated separately for each
trial in the main task. Values reflect the consistency with which trials were accepted or
rejected across the experiment. This shows considerable variability in choices, but high
levels of choices to “work” in early trials, rather than late.

- The analysis in Fig. 3C is at odds with the winning computational model,
because RF and UF are now included as additive (significant) regressors, instead
of interacting with effort cost. If the idea is to provide further evidence in favor of
the model, this is not helpful. It rather suggests that choices are more and more
biased towards rest with increasing trial number.

Response: The reviewer is correct that this analysis showed an effect of RF and UF
independently of effort, however, we agree that it is more informative to show an
interaction with effort. In the revised manuscript we have included an updated analysis
showing significant interactions between effort level on a trial and UF and RF levels
according to the model.
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Page 12

To test that this model was not only better than the alternatives but also significantly
predicted choice behaviour, we performed a logistic regression on work versus rest
decisions including z-scored reward and z-scored interactions of effort and trial-by-trial
model-estimated recoverable and unrecoverable fatigue as predictors. As in the previous
logistic regressions, reward significantly predicted choice (p < .001), but crucially there
were also significant negative interactions of effort and both fatigue components
(recoverable fatigue x effort: Z = -4.98, p < .001; unrecoverable fatigue x effort: Z =-5.17, p
< .001). This was the case whether using the average estimated fatigue across participants
or the model’s idiosyncratic estimate of fatigue from each participant (all ps < .001). Thus,
when the levels of fatigue in the model were higher, it was predictive of a greater
tendency to rest, in particular when higher effort levels were on offer. Therefore, the
willingness to exert effort for reward is not static but fluctuates moment-to-moment.
When fatigue states in our model are higher this is related to reduced motivation and

crucially a greater discounting of reward by effort.

- 1 did not find any information about how participants were remunerated. This is
important to discard the possibility that they simply trade their payoff against
time on task, instead of squeezes.

Response: We apologise that this information was not included in the manuscript.
Participants were paid a default of £25 for participating in the experiment and could earn up
to £10 further as a bonus for the rewards collected during the experiment, which depended
on the choices they made and successful exertions of required effort.

Page 24

Participants were remunerated with £25 for taking part in the study, plus a possible £10
further as a bonus payment. The bonus depended on the credits accrued on all
successfully executed trials of the main task, as well as trials executed during the training
and pre-task phase. Thus an increase in the bonus was an incentive on every trial.

- There are a few typos that need correction (e.g., Fig. 3B: “Schematic

representation for how F ... effect value and choices to work or rest”).

Response: Thank you for highlighting these typos, these have now been corrected.
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Reviewer #3 (Remarks to the Author):

In this interesting manuscript the authors explore the role for trial-wise fatigue in the
neural computations of effort-based decision-making. The authors present evidence
for two distinct fatigue signals that are distributed across various nodes within a
fronto-striatal network. Fatigue is an under-studied and poorly understood construct,
and this work therefore has the potential to make a significant and innovative
contribution. The paper is superbly written and the analytical methods are
sophisticated and appropriate. Despite these strengths, | do have some (mostly
minor) concerns with aspects of the analysis and some more significant concerns
related to interpretation. | have the following comments for the authors to consider:

Response: We thank the reviewer for their positive evaluation of the work. Their comments
have allowed us to improve the manuscript and include additional data that addresses their

concerns.

The most significant problem as | see it is that “fatigue” is an under-specified
construct both conceptually and operationally. Specifically, it seems likely that there
are likely moderate to high correlations between the parameters representing
recoverable fatigue (RF) and unrecoverable fatigue (UF) and other decision-variables.
As | understand the task design and computational model, the UF parameter scales
the cumulative expenditure of effort. However, it would seem that cumulative
expenditure of effort would also be highly correlated with cumulative rewards, as the
effortful option always yields greater rewards. Therefore, this parameter could
capture diminishing marginal utility of accumulating points over the course of the
task. It would also necessarily correlate at least moderately strongly with the mere
passage of time. As such, the strict interpretation as a measure of “unrecoverable
fatigue” seems hard to justify. One could just as easily think of it as a global
“opportunity cost signal” reflecting the additive and/or interactive effects of fatigue,
diminished interest in additional points, a desire to finish up the study and move on
to other activities, etc., etc., Indeed, such global opportunity cost signals have been
predicted in the context of effort (e.q., Kurzban et al., 2014).

Similarly, for the interpretation of the RF parameter as representing “recoverable
fatigue”, other interpretations seem equally plausible. It would seem this value
might also correspond with forgaging values, task switching, etc., all of which could
be consistent with the observed results in terms of both the computational model
and the imaging results in the RCZ. The authors acknowledge this on the one-hand,
but still claim that their work shows a unique RF contribution. But without ruling out
the possibility that RF is merely tracking with other decision-variables, claiming a
unique RF component seems to be an over-reach.
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Response: The reviewer raises a number of important questions about how strongly our
results can claim to be linked to “fatigue” versus other potentially correlated phenomena
such as opportunity cost processing, or cumulative reward. The reviewer is correct that
some of these questions were hard to address in the existing dataset. However, to more
robustly test if our computational model could capture moment-to-moment changes in
sensations of fatigue as well as changes in motivation from trial to trial we have included an
additional experiment. In this additional data, participants performed a very similar
experimental task, except on each trial they were forced to either work or rest rather than
being able to choose to do so. Rather than making choices, on each trial they then rated how
tired they were between zero and 100. We then fitted the five models used in the original
manuscript to explain changes in trial by trial decisions, to explain trial to trial ratings in the
new dataset. Replicating the original choice data, using Bayesian model comparison we
show that the full model containing independent UF and RF components is the best
explanation of fatigue ratings in this new data. This demonstrates robustly that people’s
subjective report of fatigue is made up of both a short-term and a long-term component. In
this additional dataset we also find no evidence that rewards influence trial by trial ratings of
fatigue. Thus, although it is plausible that other decision variables may correlate with RF and
UF, these results add weight to the notion that there are sensations of fatigue that build up
over a short and longer timescale, that is not directly tied to decision variables other than
the accumulated effect of exerting effort.

In the revised manuscript we have included the full results of this additional dataset and
revised discussion where we note that our results could relate to other phenomena and
decision variables, but also are consistent with subjective reports of fatigue.

Main Text Page 12

To further examine whether the computational model was able to capture sensations of
fatigue, we performed an additional, similar behavioural experiment (n=40). In this study,
participants performed a task with identical effort (0, 30, 39, 48%) and reward levels (6, 8,
or 10 credits). However, rather than being able to freely choose whether to work or rest
on each trial, instead they were required to exert a level of effort (or take a rest) and then
rate their level of “tiredness” (a synonym for fatigue) on each trial. The computational
model would predict that fatigue ratings would (i) increase as a function of effort exerted,
(ii) would decrease after a trial of rest, (iii) the build-up would be best characterised by
both RF and UF factors and (iv) would change independently of reward. In line with the
predictions of our model, we found a significant effect of effort on trial by trial changes in
fatigue ratings, a significant reduction in ratings after a trial of rest, but no significant
effect of reward on ratings. To directly test these claims, we fit the five models that aim to
capture changes in fatigue above to trial by trial ratings (Supplementary Methods &
Results). The full model, containing separate RF and UF parameters better explained
ratings than the other models. These results support the notion that our model is able to
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capture trial by trial changes in fatigue induced by effort, and its effects on the value
ascribed to exerting effort for reward.

Main Text page 22

It was beyond the scope of this investigation to examine whether the different
components of motivational fatigue map onto purely psychological changes, physiological
or metabolic changes in the state of the body, or fluctuations in neuromodulatory systems
141839 However, the computational approach taken here was able to best explain changes
in decisions about whether to exert effort for reward, and in self-reported sensations of
fatigue. Although accumulated reward and effort were correlated in the fMRI study,
rewards did not influence fatigue ratings trial by trial in the behavioural study. Such
findings, that sensations of fatigue were fluctuating in the experiment and could be
quantified using the same computational model in which effort exerted causes changes in
fatigue, suggest that changes to choice behaviour in the fMRI experiment are more likely
to be due to exerted effort than accrued reward. In line with this, the UF and RF
components fluctuated in regions that have previously been linked to effort processing,
rather than in regions that have been found to signal accumulated reward (Juchems et al.,
2017 & San Galli et al., 2018). Future work will need to identify the source of these
fluctuating, putative fatigue states, and disentangle them from other processes, such
opportunity cost processing, boredom, task switching and time-on-task.

A) Calibration B) Training
' - Effort cue Effort Outcome

I |~

C) Main task
Cue Effort/Rest Outcome Ratina Response

A A

1s 05s 5s 05s 1.5s 5s(max)0.5s (minp.5s

Supplementary Figure 5. Behavioural study trial structure. Participants were required to exert
force for rewards, with effort levels calibrated to their MVC (A), after training at each of four
effort levels (0%,30,39,48% MVC) they performed 120 forced execution trails. On each trail
they were instructed an effort that would be required (indicated by a pie chart), and then
required to exert that level of force for a total of 3 out of 5s to obtain credits. They were then
told the amount of credits received — 6, 8 or 10 credits if successful or 0 credits if failing to
exert the required force. Following this they rated their level of tiredness from 0-100 on a
continuous scale.
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C) Models tested
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Supplementary Figure 7. Computational modelling results for behavioural rating study. (A)
Model comparison results in AIC for the models predicting changes in fatigue ratings across
the experiment. The full model (5) is the best fit to the data when punishing for the number of
parameters. (B) Exceedance probabilities for the models fitted to the ratings data Y-axis
reflects the probability of being the most frequently observed model in the population. Model
S is the winning “full” model of fatigue containing separate RF and UF components.(C) Models
compared. All models predicted changes in fatigue ratings. The best fitting model predicted
changes in fatigue that were partially recoverable - increase through effort, decrease through
rest — but also contained a long-term unrecoverable component.
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Related to the above, it was a bit surprising not to see subjective report of fatigue
and its association with model parameters. While self-reported fatigue has its own
measurement limitations, it would nevertheless provide some additional evidence
that the putative fatigue parameters are tracking with the subjective experience of
fatigue. If these data were collected as part of this study then they should be
included. If not, it could potentially be included in a follow-up behavioral study in a
separate sample.

Response: We thank the reviewer for raising this point. In addition to the results now
included from the additional experiment outlined above, which highlights that fatigue is
being reported by participants in an almost identical experiment, we also now include
ratings from the participants from the fMRI experiment taken from before and after the
main task. We did not include this data originally, as it has significant limitations. Firstly, for
practical reasons participants did not rate their sensations of fatigue immediately before and
after the main task inside the MRI scanner — there were short breaks before and after. As
such, short-term fluctuations in fatigue are unlikely to consistently influence ratings.
Secondly, participants were free to choose whether to work or rest, and thus, by design had
the opportunity to avoid becoming too fatigued. As such, these ratings should be
interpreted with caution. However, the data does suggest that participants were being
fatigued during the experiment and that this related to a component of the model.
Participants were required to rate from 0 (not at all) to 10 (extremely) how tired they felt at
the moment both before the start of the main task and after completion of the main task.
We found that ratings of fatigue were increased at the end of the experiment compared to
the beginning (Z = 3.35, p <0.05) and that participants UF parameters correlated with the
change in their fatigue ratings (rs(33) = .3614, p = .0329, two-tailed). This supports the notion
that changes in motivation evident in the choice behaviour of the fMRI participants were
linked to changes in their levels of fatigue/tiredness. We did not find any correlation with
other parameters, however, this is to be expected as the RF component models short-term
effects of fatigue, which are unlikely to have an effect on participants ratings at the end of
the experiment. In the revised manuscript we now include this data in supplementary
materials and supplementary figure 2.

Page 12

These results support the hypothesis that the value ascribed to exerting effort for reward
fluctuates over time as a function of ‘fatigue’ as estimated by the model. However, there
are other factors that may correlate with the effects of fatigue within this model, such as
boredom or the accumulation of reward. To further demonstrate that this model was
capturing sensations of fatigue, we correlated the model parameters for each participant
with the change in their subjective ratings of fatigue before and after the main task. We
found a significant correlation between the UF parameter (6) and the change in rating (rs=
.3614, two-tailed p = .033, 95% ClI = [0.032, 0.620]). Participants showing a greater increase
in ratings of fatigue had a higher parameter weight, suggesting a greater reduction in the
willingness to exert effort for reward due to UF. No significant correlations were identified
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between the parameter weights defining RF and the change in ratings, although such a
result is to be expected as RF putatively only has short-term effects but ratings were taken
more than one hour apart.

A) Fatigue ratings increase
after main task
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Supplementary Figure 2. (A) Fatigue ratings taken before and after the main
task of the fMRI study. Each dot represents one subject and error bars reflect
SEM. Fatigue was higher after the main task than before. (B) Shift in choices
award from higher effort lower reward options in last 27 trials compared to
first 27 trials. Shift does not occur for lowest effort highest reward offer,
consistent with a shift in valuation not more random behaviour.
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Another potential concern is floor/ceiling effects. It’s unclear how much intra-
individual variability there was in choices, which could impact interpretability of
fatigue-brain relationships. Based on figure 2D, it appears that the effortful option
was chosen a very high percentage of the time. At the individual level, if someone
chose almost all effortful options, then we might infer that they simply did not find
the task very fatiguing, in which case it become less clear how to interpret an
association between the RF or UF regressor and neural activity. This could
significantly influence power if the effective sample size (subjects contributing
meaningful variability in choice behavior) is much lower than the actual sample size.

Response: We thank the reviewer for helping to clarify these points. Firstly, although Figure
2D highlights that lots of the offers were accepted by participants on a lot of trials, this plot
was included to show that participants do rest often, but on different trials. In addition,
whilst the reviewer is correct that little variability in choice behaviour could reflect that
motivation is not changing for a participant over the course of the experiment, this does not
mean that participants were not experiencing fatigue. Our new behavioural dataset shows
that all participants show an increase in fatigue across the experiment, almost all increase
their fatigue rating after a high effort. The most parsimonious explanation is therefore that
some people experience fatigue but are able to persist, whereas others are less capable of
enduring when experiencing similar levels of exhaustion. Thus, most participants in the fMRI
study chose to rest on multiple trials, and those that only rested on a small number of trials
may still have had latent sensations of fatigue. We now outline this in the revised
manuscript and include the proportion of choices to rest in a histogram — supplementary
Figure 4a.

Page 44

Although in this study we cannot fully rule out the possibility that this effect is simply due
to time-on-task or boredom effects, we are able to show that it affects both effort-based
decisions and self-reported fatigue.
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Supplementary Figure 4. Supplementary results from fMRI study behaviour. (A) Histogram of
proportion of trials on which participants made choices to “rest” out of 210 trials. There is
considerable variability in choices both within and between many participants. (B) Exceedence

probabilities for the models fitted to the choice data. Exceedance probabilities for models
fitted to fMRI behavioural data. Y-axis reflects the probability of being the most frequently
observed model in the population. The full model (5) is the most frequently best fitting model
in the population. (C) Model parameters for each participant (green dot) and average across
participants for the discounting parameter fitted to the pre-task (left), the two recoverable
parameters (middle) and the unrecoverable parameter (right). Error bars represent SEM.
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| appreciate the authors’ incorporating a control analysis of choice-difficulty analysis.
The method used for estimating choice difficulty is sound, but is susceptible to
limitations for participants with highly stable choice preferences (one may agonize
over a decision while still arriving to a choice consistent with model predictions). This
can lead to a dramatically different scaling of trial-wise difficulty values across
subjects. The authors appear to have addressed this issue by averaging difficulty
values across participants, but I’'m not sure this makes sense. Neural activity for the
“average” choice difficulty for a particular trial is not necessarily reflective of
individual differences. This may partly explain the null effects for this analysis.

Response: The reviewer raises an important point that there are multiple ways to estimate
proxies of choice difficulty (Kolling et al., 2016). We appreciate that there is a limitation with
the approach we have taken, that individual differences in choice difficulty may not have
been taken in to account. However, the alternative approach — to use individual estimates —
as the reviewer notes would also have significant limitations with hugely different ranges of
variance between participants to be explained — which can lead to distorted results driven
by small numbers of participant — or null results. Thus, in the revised manuscript we note the
limitation to taking the approach we have, but also included a trial by trial RT analysis.
Although RT analyses are also a limited proxy of choice difficulty, the inclusion of this
additional information will allow readers to better understand what our results do and do

not reflect.

Page 16
Moreover, we did not find that these regions specifically signalled variation in trial by trial
reaction times (p<0.001 uncorrected, supplementary table 4).

Page 35

In addition, to examine activity that covaried with reaction times, we also ran a separate
GLM in which only individual trial by trial reaction times were included as a regressor
(Supplementary table 4).
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Supplementary Table 4

Anatomical locations in which activity significantly covaried with individual reaction times at
p <.001, uncorrected for multiple comparisons

Anatomical area MNI peak No. of voxels  Z-value Voxel puncorr.
Left anterior insula -33,17,5 11158 7.69 <0.001%*
Brain stem 6,-22,-7 367 6.26 <0.001*
Left inferior temporal gyrus -45, -58, -13 338 5.32 <0.001*
Right pallidum 18,2,-1 82 4.31 <0.001
Left cerebellum -36,-52,-34 32 4.28 <0.001
Right inferior temporal gyrus 48, -61, -13 154 4.23 <0.001
Brain stem 6, -28,-34 68 4.17 <0.001
Left medial orbital gyrus -21, 38, -22 13 3.99 <0.001
Left medial orbital gyrus -15,11, -19 8 3.61 <0.001
Left thalamus -12,-22,14 8 3.55 <0.001
Right frontal pole 21,65, -1 6 3.52 <0.001
Left hippocampus -24,-25,-4 6 3.44 <0.001
Right central operculum 48,-19,17 8 3.32 <0.001
Right inferior frontal gyrus 51,47, -10 7 3.29 <0.001

* indicates significance at a threshold of p < .05 with a whole-brain voxel-level family-wise
error correction.

It was unclear if proper control comparisons were performed for imaging results. For
example, in the two RCZ regions associated with UF and RF, it would be useful to
include the additional direct comparisons to confirm a double-dissociation. It could
easily be the case that the area of RCZ showing association with RF is only slightly
below SVC threshold for UF, and/or vice-versa, which would significantly change the
interpretation of sub-regional specificity.

Response: We apologise to the reviewer that this was unclear in the original manuscript. All
regions where we make a claim about a specific effect e.g. RF in a portion of the RCZ, we
performed (i) a contrast to see if there was a significant effect of those variables
independently of the others (e.g. does the RCZ show an of UF?), uncorrected threshold
(p<0.001) to examine whether voxels in the same region showed a significant effect of the
other variables and (ii) we also performed contrasts (e.g. RF>UF) to ensure double
dissociations where regions significantly signalled a variable significantly more than any
other. We now highlight this strategy more clearly in the results section.

PAGE 14

To test our hypotheses, we first wanted to examine whether distinct regions signalled
motivational fatigue states on different timescales. We therefore examined voxels in
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which activity at the whole brain level and within our hypothesised regions of interest
([ROI] — See Methods) significantly covaried with RF or UF. Then we tested whether the
same voxels significantly covaried with one parametric regressor and did not significantly
covary with the others. Such an approach of examining overlap avoids the problems of
double-dipping in ROl based analyses. Thus, results we report reflect a response
exclusively to RF and UF.

In their justification for the UF/RF distinction, the authors note the work of Blain and
colleagues, showing that greater fatigue led to more impulsivity/inconsistency in
choice behavior. It might be interesting to test a similar idea in the current data, e.g.,
by examining comparing choice behavior in early and late trials in the current task.

Response: The reviewer raises an interesting point, regarding fatigue making participants
more or less impulsive or inconsistent. This is an interesting idea, although it is hard to
precisely quantify how impulsivity across all effort and reward levels would look like in this
experiment, unlike the work of Blain and colleagues which is designed to address such
guestions about rewards and delay costs. However, one might expect that if participants
were becoming more inconsistent that (i) they may become less effort sensitive across the
experiment (i.e. there is a reduction in how much people take the effort level into account)
and (ii) may show inconsistent choices towards the end of the experiment across all effort
and reward levels. However, statistically we show that Effort and Reward still have very
strong significant effects when examining only the last quarter of trials (Effort: Z=-5.2319; p
< .0001; Reward: Z = 4.3050; p < .0001) and showed a significant cumulative effort X effort
interaction (p<0.001), with the effect of effort stronger at the end of the experiment than at
the beginning. As such participants were basing their behaviour more strongly on the effort
levels towards the end, which is not consistent with more random behaviour. In addition,
participants are still choosing to work on almost 100% of trials for the highest reward and
lowest effort in the last 27 trials of the main task (see supplementary figure 2), which is also
inconsistent with more stochastic behaviour. In the revised manuscript we have highlighted
these analyses and discussed their relation to the Blain et al. work.

Supplementary Results page 7

Could these results be due to participants becoming more random in the main task due to
boredom or other confounding factors? We show that Effort and Reward still have very
strong significant effects when examining only the last quarter of trials (Effort: Z = -5.2319;
p <.0001; Reward: Z = 4.3050; p < .0001). As such participants were basing their behaviour
strongly on the effort levels towards the end, which is not consistent with more random
behaviour. In addition, participants were still choosing to work on almost 100% of trials
for the highest reward and lowest effort in the last 27 trials of the main task (see
supplementary figure 2), which is also inconsistent with fatigue causing more stochastic
behaviour.
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A) Fatigue ratings increase
after main task
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B) Effort discounting in early and late trials in main task
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Supplementary Figure 2. (A) Fatigue ratings taken before and after the main
task of the fMRI study. Each dot represents one subject and error bars reflect
SEM. Fatigue was higher after the main task than before. (B) Shift in choices
award from higher effort lower reward options in last 27 trials compared to
first 27 trials. Shift does not occur for lowest effort highest reward offer,
consistent with a shift in valuation not more random behaviour.

This study unifies separate lines of research that have theorised that the effects of fatigue
may occur on more than one timescale®*?, and provides a formalised account of their
effects on effort-based decisions. One line of research had suggested that extended
periods of work lead to exhaustion that has consequences for tasks performed after the

11,17,35-37

one which caused the fatigue . This “executive fatigue” influences activity in the

MFG in tasks performed after having been exhausted, an effect exacerbated in athletes

. 11,
who are over-trained %

. This form of fatigue appears to be unrecoverable in the sense
that simply taking short rests does not have a restorative effect. Although in this study we
cannot fully rule out the possibility that this effect is simply due to time-on-task or
boredom effects, we are able to show that it affects both effort-based decisions and self-

reported fatigue. Moreover, we show that this longer-term effect is independent from a
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short-term recoverable component and that it covaries with activity during effort-based
choice in the left MFG, largely overlapping with an area which has previously been
associated with subjective aversion to cognitive effort *°.

Minor comments:
Please show discounting curves as well as parameter value distributions.

Response: We thank the reviewer for noting that we had not included the parameter values.
We have now included those in supplementary figure 4. In regards to discounting curves,
this is more challenging as of course the discounted value of a reward changes trial by trial
according to our model. Discounting curves therefore become difficult to visualise clearly,
but we hope the parameter values help demonstrate clearly the variability between
participants in how value would change differently for different participants.
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Supplementary Figure 4. Supplementary results from fMRI study behaviour. (A) Histogram of
proportion of trials on which participants made choices to “rest” out of 210 trials. There is
considerable variability in choices both within and between many participants. (B) Exceedence

probabilities for the models fitted to the choice data. Exceedance probabilities for models
fitted to fMRI behavioural data. Y-axis reflects the probability of being the most frequently
observed model in the population. The full model (5) is the most frequently best fitting model
in the population. (C) Model parameters for each participant (green dot) and average across
participants for the discounting parameter fitted to the pre-task (left), the two recoverable
parameters (middle) and the unrecoverable parameter (right). Error bars represent SEM.
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It would be worth noting that the region of left MFG associated with UF appears
similar to the region identified in a task focused on detecting effort aversion
(Mcguire et al., PNAS, 2010). That might be worth discussing in terms of the
interpretation of UF.

Response: We thank the reviewer for reminding us of this important paper. We have now
included discussion of this work in relation to the UF result.

Page 19

This form of fatigue appears to be unrecoverable in the sense that simply taking short
rests does not have a restorative effect. Although in this study we cannot fully rule out the
possibility that this effect is simply due to time-on-task or boredom effects, we are able to
show that it affects both effort-based decisions and self-reported fatigue. Moreover, we
show that this longer-term effect is independent from a short-term recoverable
component and that it covaries with activity during effort-based choice in the left MFG,
largely overlapping with an area which has previously been associated with subjective
aversion to cognitive effort®.

It would be worth examining different striatal ROIs, including those associated with
motor function. The authors may want to consider using the Choi 2011 parcellation
seeds or some other functional parcellation of the striatum to interrogate its role
more thoroughly.

Response: We thank the reviewer for highlighting the importance of precise VS localisation.
Using the Harvard-Oxford atlas we were able to show that our peak coordinate lies within
the Nucleus Accumbens. We have now included this information in the revised results.

Page 16

A t-contrast on SV revealed a significant positive relationship between the BOLD signal in
the superior frontal gyrus (SFG) extending into the frontal pole (-12, 68, 17; Z = 4.67, p =
.03 FWE) as well as in the ventral striatum, with the peak voxel within the nucleus
accumbens of the Harvard-Oxford atlas (9, 11, -10; Z=4.31, p< .01 svc).

For correlations between neural activity and model parameters, please perform
comparisons of correlation coefficients (e.g., Steiger test or equivalent) to confirm
differences.

Response: The reviewer raises an important point regarding correlations. However, to avoid
double dipping our correlation analyses involved running an SPM covariate analysis and then
identifying voxels within the VS that covaried across participants. As such, we do not have a
correlation coefficient for non-significant correlations in the VS, as we have no voxels from
which to extract a statistic. This avoids double-dipping but does mean that testing for
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differences between correlations is not possible. We now note this limitation in the revised
manuscript.

Page 35

To avoid double-dipping when correlating parameters with voxels which are already
known to show a significant result in a non-independent analysis we performed these
analyses by examining whether any voxels showed a significant effect within the ROI
masks. Such an approach does have the limitation that the significance between
correlations cannot be determined formally.

It is unclear why tables report uncorrected whole-brain values? It seems based on
the text that these values were derived from a whole-brain corrected map.

Response: We apologise for the lack of clarity. The tables reporting uncorrected results were
included for completeness and transparency, but all results in the main text about which
inferences are made survived corrections for multiple comparisons.

Page 35

Full tables of results are reported at an uncorrected threshold p < .001 in Supplementary
tables1to 3
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REVIEWER COMMENTS
Reviewer #1 (Remarks to the Author):

The authors have adequately addressed the concerns except for one point. The behavioral analysis
of participant choices was undertaken using a weighted summary statistic method. This is not
state of the art and a hierarchical (frequentist or Bayesian) model should be estimated. I suspect
that a Bayesian HM will be required by the community, but certainly a hierarchical model should be
estimated.

Reviewer #2 (Remarks to the Author):

The authors have done consequent work to address all concerns. In particular, they have run a
new behavioral experiment to show that their model nicely accounts for fatigue self-reports, in
addition to choices made during MRI scanning. However, the manuscript has not changed much at
a conceptual level, and I still find confusing the expression of motivational fatigue. The additional
evidence brought during this revision only provides more support to the idea that what changes
with repeated effort is simply fatigue, probably muscular fatigue or perhaps, as the authors
suggest, cognitive fatigue. The allusions to potential changes in motivation, such as persistence in
motivation (in the title), the idea that motivation is not static but dynamic (in the abstract), the
“change in motivation” model and the proclaimed fluctuations in motivational fatigue (in the
abstract, introduction and discussion) are misleading. The authors should make clear that the
study is about how fatigue builds up and decreases willingness to make effort (by inflating effort
cost in the expected value function). The motivational framing should be abandoned because it
gives the wrong idea (that fatigue interacts with reward value instead of effort cost).

Besides, although I find appealing the tale of two fatigue states, I'm still afraid that the existence
of unrecoverable fatigue is confounded with other factors (such as time on task) and that the
evidence for recoverable fatigue signals in the brain is weak (borderline p-value in a region of
interest picked among many possibilities). What could be done to back up the model with the two
fatigue terms is a Bayesian comparison within a factorial model space (null model, effort cost
affected by RF only, effort cost affected by UF only, effort cost affected by both fatigue terms). The
issue with the present model comparison is that there is no clear winner, but this may relate to the
peculiar model space that was explored.

Reviewer #3 (Remarks to the Author):

I appreciate the authors' thoughtful responses to my comments and congratulate them on an
excellent piece of work.

I do have one remaining question - For model 7, were the pre-task k and temperature parameters
used? Did they compare their winning model to the fit of the model with k and temperature
estimated from the main tasks? If not, I think this might be important (i.e. to show that the more
flexible model fits better than the original parabolic model that doesn’t use the parameters from
the pre-task that may not capture effort discounting as effectively in the main task).



Reviewer #1 (Remarks to the Author):

The authors have adequately addressed the concerns except for one point.
The behavioral analysis of participant choices was undertaken using a
weighted summary statistic method. This is not state of the art and a
hierarchical (frequentist or Bayesian) model should be estimated. | suspect
that a Bayesian HM will be required by the community, but certainly a
hierarchical model should be estimated.

Response: We are pleased that our revisions have addressed the reviewer’s
comments and we thank them for helping us improve the manuscript.

We agree with the reviewer that hierarchical approaches offer some advantages over
the classic approach taken to the model fitting in this manuscript. During this project
we spent some time attempting to use both existing and bespoke approaches to fit
these models in a hierarchical manner. However, no existing hierarchical approach
was able to be adapted to accommodate unique features of our model that were
implemented to capture fatigue. Specifically, because in this model we carried over
parameters from the pre-task (k and ), into the models fitted to the main task,
hierarchical approaches failed to converge. This was because a participant’s fatigue
parameters partially depended on the pre-task parameters — thus the distributions for
each of the fatigue related parameters were non-independent from these other
parameter — the end result being that attempts to refit participant parameters to a
distribution produced worse model fits.

This approach of carrying parameters over was necessary and vital for modelling
fatigue, as we needed to account for the known substantial individual differences that
have been found in how willing people are to exert effort for reward when not
fatigued (see Chong et al., 2017 for example). Thus, on balance, we decided that
deploying approaches that have been used for model fitting (log-likelihood), model
comparison (Bayesian information and Akaike information criterions) and testing for
frequency in our population (exceedence probabilities) for many years and for a
whole range of novel computational model developments still provided is with robust
results. In future work we aim to devise a model fitting approach that will allow us to
combine our fatigue modelling with the benefits of a hierarchical fitting procedure.



Reviewer #2 (Remarks to the Author):

The authors have done consequent work to address all concerns. In
particular, they have run a new behavioral experiment to show that their
model nicely accounts for fatigue self-reports, in addition to choices made
during MRI scanning. However, the manuscript has not changed much at a
conceptual level, and I still find confusing the expression of motivational
fatigue. The additional evidence brought during this revision only provides
more support to the idea that what changes with repeated effort is simply
fatigue, probably muscular fatigue or perhaps, as the authors suggest,
cognitive fatigue. The allusions to potential changes in motivation, such as
persistence in motivation (in the title), the idea that motivation is not static but
dynamic (in the abstract), the “change in motivation” model and the
proclaimed fluctuations in motivational fatigue (in the abstract, introduction
and discussion) are misleading. The authors should make clear that the study
is about how fatigue builds up and decreases willingness to make effort (by
inflating effort cost in the expected value function). The motivational framing
should be abandoned because it gives the wrong idea (that fatigue interacts
with reward value instead of effort cost).

Besides, although I find appealing the tale of two fatigue states, I'm still afraid
that the existence of unrecoverable fatigue is confounded with other factors
(such as time on task) and that the evidence for recoverable fatigue signals in
the brain is weak (borderline p-value in a region of interest picked among
many possibilities). What could be done to back up the model with the two
fatigue terms is a Bayesian comparison within a factorial model space (null
model, effort cost affected by RF only, effort cost affected by UF only, effort
cost affected by both fatigue terms). The issue with the present model
comparison is that there is no clear winner, but this may relate to the peculiar
model space that was explored.

Response: We thank the reviewer for their additional time evaluating the manuscript.
We agree with the reviewer’s interpretation of our results predominantly relating to
fatigue. To address their comments we have now substantially changed the
manuscript, removing the term motivation from the title, re-written large sections of
the Introduction and Discussion to highlight that here we are referring the build up of
fatigue, and how it impacts on decisions to exert effort for reward. Throughout the
manuscript we now do not refer to the term “motivational fatigue”, and in all places
we highlight that we are referring to the build up of fatigue and how it impacts on
effort discounting. In places we have kept use of the term persist, because it directly
relates to variability between people in choices the task — people continue to exert
effort even as fatigue increases, and variability in ventral striatum signalling
correlated with variability in the parameters from the model — suggesting that ventral
striatum signalling may reflect how willing people are to persist through fatigue and to
continue to exert effort. However, we fully appreciate the reviewer’s points and have
made substantial changes throughout the manuscript.

In regards to their second point, we apologise that the Bayesian model comparison
we had taken was perhaps not clear in the previous version. Our approach indeed
included the proposed factorial structure (null models, RF only, UF only and RF +
UF) and model comparison —in terms of AIC, BIC and exceedence probabilities did
lead to strong evidence in favour of the same model in both experiments. However,
over and above that factorial structure it was also necessary to include a second null



model given that there were two phases of the task which were modelled. In addition,
we included a mathematically plausible, although theoretically unlikely, version of RF
were its build up depended on one parameter which was included in two models (one
with RF and one with RF and UF). However, we appreciate that the factorial nature
of the modelling had not been made clear. In the revised manuscript we have
changed several figures and descriptions of the models that more easily highlight the
models of interest to the reviewer, and also show how model comparison (in terms of
both AIC and exceedence probabilities) provides robust evidence for the full model of
fatigue being the best at capturing both the effects of fatigue on choice data and
ratings data (as can be seen in the revised figures). Given that this model wins, with
both recoverable and unrecoverable factors necessary to explain changes in effort-
based choice, and trial by trial ratings of fatigue, we believe this provides strong
evidence of both factors underlying sensations of fatigue and the willingness to exert
effort.

Revised text (model description — page 32)

To verify whether the three parameters used to quantify the effects of fatigue
were necessary, alternative models were also fitted to participants’ choices in
the main task. These models fit within a factorial structure of models
containing no effect of fatigue (two null models), an effect of UF only (i.e. &
being fitted), an effect of RF only (i.e. # and J being fitted) or the full model with
both RF and UF. The two null models predicted no effect of fatigue in the main
task, one which used the original pre-task discounting parameter (4£) and thus
assumed that the willingness to exert effort stayed the same across the whole
experiment, and a second where a new discounting parameter (y) was
calculated across all trials in the main task which assumed a fixed change in
the willingness to work between the pre and main tasks. In addition, two
further mathematically plausible, but theoretically unlikely, models were
included which used only one parameter to scale the effect of effort and rest
on recoverable fatigue (i.e. only @ being fitted across both work and rest trials).
In one of these models this fatigue was only comprised by this one parameter
RF, while in a second model, fatigue comprised UF plus the one parameter RF.
These two models had higher AIC values and thus worse fits than versions of
the RF model including separate parameters and are thus not shown in figures.
In the models including a fatigue term, initial RF and UF values were defined
such that the initial total fatigue was always equal to 1.



Revised Figure 3

A) Models of effort-discounting with / without fatigue

Null models (no effects of fatigue):
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Figure 3. Modelling the fatigue-weighted subjective
value of effort and reward. (A) List of models
compared. All models assume that rewards (R)
increase subjective value (SV), effort (E) decreases
subjective value, and people discount the rewards by
effort idiosyncratically — modelled with a discount
parameter ‘k’ fitted to the pre-task. Two null models
assume that the willingness to exert effort for reward
remains static across the trials of the main task,
either with the same discounting parameter as for
the pre-task (k; model 1) or with a new discounting
parameter (y; model 2). Models 3 to 5 capture
changes in effort discounting due to fatigue. The full
model (model 5) assumes that exerting effort
increases recoverable fatigue (RF), but time (Test)
spent resting decreases it. Both of these are scaled
for each participant by two corresponding free
parameters that define a person’s short-term
fatigability (a, &). Unrecoverable fatigue also
increases through exerted efforts, but never declines
here. This is also weighted by an idiosyncratic free
parameter (), which defines long-term fatigability.
These are summed to create F, which then serves to
increase the discounting of rewards by effort as they
increase. Models 3 and 4 include only the effects of
UF or RF. (B) Schematic representation for how F
(both UF and RF combined) affect value and choices
to work or rest, with greater discounting of rewards
by effort as fatigue increases. (C) Model comparison
highlights that the full model is a better predictor of
choice data than the simpler models in terms of AIC
(left) and in exceedance probabilities (right),
highlighting that both RF and UF are necessary to
understand the willingness to exert effort. Star
indicates winning model. (D) Furthermore, the
model-estimated RF and UF - from model 5 —
significantly interacted with effort to predict choice
behaviour in a logistic regression. The asterisks show
significant t-scores (p < .001) and the error bars
represent SEM.
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C) Models tested

model 1: Unrecoverable fatigue only (UF)
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Supplementary Figure 7. Computational modelling results for behavioural rating study. (A)
Model comparison results in AIC for the models predicting changes in fatigue ratings across
the experiment. The full model is the best fit to the data when punishing for the number of
parameters. (B) Exceedance probabilities for the models fitted to the ratings data. Y-axis
reflects the probability of being the most frequently observed model in the population. Model
3 is the winning “full” model of fatigue containing separate RF and UF components. (C) Models
compared. All models predicted changes in fatigue ratings. The best fitting model predicted
changes in fatigue that were partially recoverable - increase through effort, decrease through
rest — but also contained a long-term unrecoverable component.



Reviewer #3 (Remarks to the Author):

| appreciate the authors' thoughtful responses to my comments and
congratulate them on an excellent piece of work.

| do have one remaining question - For model 7, were the pre-task k and
temperature parameters used? Did they compare their winning model to the
fit of the model with k and temperature estimated from the main tasks? If nof,
| think this might be important (i.e. to show that the more flexible model fits
better than the original parabolic model that doesn’t use the parameters from
the pre-task that may not capture effort discounting as effectively in the main
task).

Response: We thank the reviewer for their congratulations and kind comments on
the work and revisions. The reviewer raises an important point that an additional
model with free K and beta parameters in the softmax would be informative. They
were correct in that model 7 did use the fixed parameters, however, the original
model 6 (model 2 in the latest revision) did use a refitted parameter (y) in
replacement of the pre-task discounting parameter (k) to address exactly the
question by the reviewer. There was little evidence that this model was able to
capture choice behaviour effectively, with an exceedence probability close to 0. In
the revised manuscript we have modified the descriptions of the models and how
they are presented in figures to make this clearer to address the reviewers’ comment
and those of reviewer 2. We thank you for helping us improve our work.



REVIEWERS' COMMENTS

Reviewer #2 (Remarks to the Author):

The authors should be praised for their careful revisions.
I see no good reason to delay publication any longer.
Reviewer #3 (Remarks to the Author):

The authors have addressed my concerns.



REVIEWERS' COMMENTS

Reviewer #2 (Remarks to the Author):

The authors should be praised for their careful revisions.
| see no good reason to delay publication any longer.

Authors Response: We thank the reviewer for their helpful comments and kind words.

Reviewer #3 (Remarks to the Author):
The authors have addressed my concerns.

Authors Response: We thank the reviewer for their helpful comments.



