
©	2021	Brown	VM	et	al.	JAMA	Psychiatry.	 

Supplemental Online Content 
 

Brown VM, Zhu L, Solway A, et al. Reinforcement learning disruptions in individuals with 
depression and sensitivity to symptom change following cognitive behavioral therapy. JAMA 
Psychiatry. Published online July 28, 2021. doi:10.1001/jamapsychiatry.2021.1844 

 

eMethods. 
eResults. 
eReferences. 
eFigure 1. Association of overall performance with MDD diagnosis and symptom severity 
eFigure 2. Model fit and parameter recovery 
eFigure 3. Posterior distributions and individual means of parameters 
eFigure 4. Association of model parameters with model-agnostic summaries of behavior 
eFigure 5. Association between anhedonia and reward learning parameters by diagnosis 
eFigure 6. Behavioral performance and neural reward signals by depression status and overall 
depression severity 
eFigure 7. Differences in processing of loss outcomes by negative affect 
eFigure 8. Stability of parameter estimates over time for control participants 
eFigure 9. Parameter changes with time for participants with depression 
eFigure 10. Diagram of flow of participants through study, including optional CBT portion 
eFigure 11. Neural responses associated with symptom improvement 
eFigure 12. Schematic depiction of effects of outcome sensitivity and outcome shift on 
valuation 
eTable 1. Reward prediction error, MDD group (n = 69) 
eTable 2. Reward expected value, MDD group (n = 69) 
eTable 3. Reward prediction error, controls without depression (n = 32) 
eTable 4. Reward expected value, controls without depression (n = 32) 
eTable 5. Loss outcome value correlated with negative affect (MASQ Mixed Distress subscale; 
n = 101) 
eTable 6. Loss outcome value, low negative affect participants (n = 52) 
eTable 7. Loss outcome value, high negative affect participants (n = 49) 
eTable 8. Depression diagnosis, specifier, severity, medications, and comorbid diagnoses for 
participants 
eTable 9. Exploratory follow-up analyses of associations between symptom change and 
reinforcement learning parameters in participants with depression who completed CBT 

 

This supplementary material has been provided by the authors to give readers additional 
information about their work. 



©	2021	Brown	VM	et	al.	JAMA	Psychiatry.	 

eMethods. 
 

Study design & participants 
 

Inclusion criteria for all participants included: age 18 to 64, English speaking, normal or corrected to 
normal vision, verbal IQ greater than 80, no contraindications to MRI scanning, no loss of consciousness 
greater than 30 minutes, no hormonal disorders, no behaviors meeting criteria for substance abuse or 
dependence (excluding nicotine dependence) in the past 30 days, and no current or past psychotic or 
bipolar disorders. Clinical and demographic data for participants are reported in Table 1 in the main text. 
Participants were recruited as part of a larger study assessing neurobehavioral indicators of 
psychopathology. A total of 2,363 participants made initial contact and were screened for the parent 
study. Reasons for exclusion included: nonresponse to subsequent contact attempts (N=456), outside age 
range (N=39), MRI contraindications (N=319), history of loss of consciousness (N=87), current 
substance abuse or dependence (N=184), mania, psychosis, or subthreshold/remitted depression 
(N=824), declined participation (N=37), recent treatment (N=93), or, for controls only, poor 
demographic match to enrolled patients (N=50). Based on a priori power analyses (conducted for effect 
size of slope = .6 based on prior studies (e.g., Langenecker et al., 2007; Chen et al, 2007), alpha level of 
.001 to correct for multiple comparisons across the brain volume, and power = 0.9) and expected 
attrition due to loss to followup and task and fMRI analyses, participants were enrolled until the 
proposed sample size of 50 per group (no depression, depression receiving CBT, depression not 
receiving CBT) was met for the larger study. To be included in the present analyses, participants were 
required to demonstrate engagement on the behavioral task and successfully complete fMRI scanning at 
study entrance (see Procedures below for further description of exclusion criteria). Sixty-nine 
participants with depression and 32 controls were included in baseline (i.e., pre-treatment) analyses 
(total N = 101). Excluded participants did not differ (ps > .0.05) from those included at baseline by age; 
gender; depression diagnosis; severity of depression, anhedonia, or negative affect; education or income 
level; ethnicity; marital status; or use of psychotropic medications; but had lower estimated IQ as 
measured by the Wechsler Test of Adult Reading (WTAR)1. 

Participants with a SCID 2 diagnosis of depression were additionally required to have a BDI score 
greater than 12 on the day of the baseline scan, while nondepressed participants were required to have a 
BDI score less than 13 3. Consistent with previous reports 4,5, symptom severity measures 4,6 were 
modestly related within participants with depression (R2 values of .13 to .32) and more strongly related 
across all participants (R2 values of .65 to .81), indicating that these measures mapped onto distinct 
constructs, particularly in participants with clinically elevated symptoms. eTable 8 contains information 
about depression diagnoses, severity, subtypes, medication classes, and comorbid diagnoses. Possible 
personality disorders were assessed using the Personality Diagnostic Questionnaire for DSM-IV (PDQ- 
4)7, a screener for possible personality pathology, and were not considered exclusionary. Based on the 
PDQ, 62 participants screened above the cutoff for any personality disorder at baseline (18 for paranoid 
personality disorder, 0 for histrionic, 4 for antisocial, 31 for obsessive-compulsive, 8 for negativistic, 15 
for schizoid, 3 for narcissistic, 31 for avoidant, 31 for depressive, 7 for schizotypal, 5 for borderline, and 
12 for dependent personality disorder; note that some participants screened above the cutoff for multiple 
disorders). 



©	2021	Brown	VM	et	al.	JAMA	Psychiatry.	 

Reinforcement learning task 
 

Participants completed a reinforcement learning task with the goal of maximizing reward and 
minimizing loss8–10. On each trial, participants were presented with two abstract stimuli. One stimulus 
had a higher (75%) probability of leading to a better monetary outcome and a lower probability (25%) of 
leading to a worse monetary outcome, while the probabilities for the other stimulus were reversed 
(i.e., smaller probability of better outcome and larger probability of worse outcome). The participant’s 
choice was framed for a jittered viewing time of 2–4 seconds, after which the outcome (monetary 
amount gained or lost) was shown for 2 seconds. A fixation cross was shown between each trial for a 
jittered viewing time of 1–3 seconds. At the beginning of each block, high and low outcome values were 
randomly chosen with replacement from outcome pairs of {20,70}, {25,75}, or {30,80} and kept 
consistent within blocks. 

 
An adaptive design titrated task difficulty by ending blocks of trials based on participants’ individual 
learning rather than after a predetermined number of trials. Specifically, block-end criteria included 7 of 
the last 10 choices being ‘correct’ (with correct defined as the stimulus more likely to lead to the better 
outcome); the first block within each valence (reward, loss) was required to be at least 15 trials long. 
Participants completed an average of 4.03 gain blocks and 4.06 loss blocks and the average number of 
trials in a block were 14.77 (gain) and 14.49 (loss). The same stimuli were used for all trials within each 
block, and new stimuli, requiring new learning, were used for each new block. New stimuli were 
randomly chosen from a stimulus set without replacement for each session; therefore, stimuli were not 
repeated within session but could be repeated across sessions. On average, a third of the stimuli were re- 
used between lab visits. Re-use of stimuli was random with respect to participant, symptom severity, 
diagnostic group, valence (reward vs. loss), and post-treatment symptom improvement (if applicable). 
Blocks consisted of all reward learning or all loss learning trials and valence (reward, loss) was 
interleaved across blocks. The task ended when participants completed at least 50 total trials total and at 
least 25 correct trials per valence. The median number of trials completed for all groups at all timepoints 
was 50. Severity of anhedonia and negative affect symptoms, as well as presence of a depression 
diagnosis and severity of depressive symptoms, were all positively correlated (p < .05) with completing 
more gain trials; no symptom or diagnostic measures were correlated with number of loss trials. 

 
Participants completed a practice round prior to entering the scanner. Participants were only instructed 
that ‘one picture is always better than the other’; unknown to them, the structure of the task was such 
that one stimulus had a 75% chance of leading to the better outcome and a 25% chance of leading to the 
worse outcome, with opposite probabilities for the other stimulus. Participants were given an initial 
endowment of $10; final earnings for the learning task were added to payments for the larger battery of 
biobehavioral measures. To ensure participants were attending to the task and had suitable behavior for 
model fitting, participants who switched options in either reward or loss blocks less than 5% of the time 
were excluded from analyses (N=11 [8 with depression and 3 without; comparison of proportion 
excluded by diagnostic status χ2<0.001, p=1.0] at baseline and N=2 post-treatment; similar to 11,12). 

Across all participants at baseline, the internal consistency of learning parameters was generally 
acceptable to excellent (split-half reliability of parameters, median [95% credible interval (CrI)]: gain 
learning rate 0.955 [0.789:0.998], loss learning rate 0.950 [0.796:0.998], gain outcome sensitivity 0.523 
[-0.286:0.938], loss outcome sensitivity 0.790 [-0.352:0.993], gain outcome shift 0.866 [-0.591:0.996], 
loss outcome shift 0.853 [0.390:0.992]). Internal consistency estimates were similar when examining 
participants with or  without a depression diagnosis separately. Data from nondepressed participants 
were used to calculate test-retest reliability from baseline to follow-up (n=20; see below for details on 
participant flow and time intervals). Parameters with sufficiently precise estimates had good test-retest 
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reliability (median [95% CrI]: gain learning rate 0.703 [-0.345:0.990], loss learning rate 0.775 
[0.330:0.977], gain outcome  sensitivity 0.787 [-0.120:0.992]; calculated as in13). Loss outcome 
sensitivity [CrI: -0.892:0.978], gain outcome shift [-0.924:0.950] and loss outcome shift [-0.833:0.957] 
had wide posterior estimates of reliability, indicating insufficient data to move posterior estimates away 
from uninformative priors (range -1 to 1) due to the small sample size in this analysis. As a result, only 
medians of parameters estimated with sufficient precision (defined as a 95% CrI range less than 1.5) are 
reported. 

 
Neuroimaging data collection and preprocessing 

 
Participants were scanned on a 3T Siemens Tim Trio MR scanner. Echoplanar images were collected in 
34 4-mm slices at a 30° hyperangulation from the anterior-posterior commissure (AC-PC) line (TR = 
2000 ms, TE = 30 ms, flip angle = 90°, matrix = 64 x 64, voxel size = 3.4 x 3.4 x 4.0 mm3). A high 
resolution (1 mm3) anatomical Magnetization Prepared Rapid Gradient Echo (MPRAGE) T1 image (TR 
= 1200 ms, TE = 2.66 ms, flip angle = 12°) was collected to aid in registration. 

 
Preprocessing and all further imaging analyses were conducted using SPM8 for fMRI (Wellcome Trust 
Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) and consisted of slice 
timing correction, realignment to the first functional image, coregistration to the participant’s high- 
resolution structural image, normalization to the MNI template, and smoothing to ensure Gaussianity 
(6mm FWHM). Participants with motion greater than 3 mm or 0.05 radians in any direction or who had 
incomplete scanning data were excluded. The proportion of participants excluded for motion or 
incomplete scanning data did not differ for participants with versus without depression at baseline or 
post-treatment timepoints (all χ2<3.2, all ps>0.05). 

Cognitive-behavioral therapy 
 

After completing baseline study procedures, participants with depression were offered 12 weeks of 
cognitive-behavioral therapy. The naturalistic design of our study meant that participants with 
depression were free to enroll in the treatment phase of the study or to decline treatment. Patients 
receiving treatment were treated by experienced licensed psychologists (25.6 +/- 8.6 years in practice) 
using the manual by Munoz & Miranda 14. Participants could complete up to 12 weekly sessions of 
therapy but were considered to have an adequate course of CBT if they completed at least eight 
sessions; most participants (25/28) completed twelve sessions. After 12 weeks, participants completed 
all study procedures again; depressed and nondepressed participants did not differ on time between 
assessments (mean [SD] number of days between first and second time point: patients 115 [2.8], 
controls 111 [2.3], t57 = 0.930, p > .1). Twenty-eight depressed participants and 20 controls had suitable 
data at both time points for analyses of pre- to post-treatment behavioral and neural changes (see 
eFigure 8 for a diagram of participant flow through treatment). Participants with depression who 
completed follow-up assessments but who had declined (n=8) or did not complete (n=3) treatment are 
investigated in exploratory follow-up analyses (below); these participants were not included in primary 
analyses due to concerns about systematic differences due to non-random assignment. Similar to 
baseline analyses, treatment completers did not differ from patients who did not complete treatment or 
who were excluded from analyses on any clinical or demographic measures except estimated IQ. 
Participants who were lost to follow-up, regardless of treatment selection, did not differ from those who 



©	2021	Brown	VM	et	al.	JAMA	Psychiatry.	 

on any clinical or demographic measure, both across all participants and within participants with a 
depression diagnosis only. 

 
Model-agnostic analysis of behavior at baseline 

 
Model-agnostic analyses assessed the relationship between non-model-based and model-based analyses 
and between overall performance and symptom severity. 

 
To broadly examine the relationships between model-derived learning parameters and model-agnostic 
measures of behavior, individual estimates for mean values of each learning parameter, separated by 
reward and loss learning, were extracted and compared to summary behavioral measures. These 
analyses confirmed expected relationships between these model-based and model-agnostic measures 
(see eFigure 4 for plots of individuals’ model-derived mean learning parameter values against 
individuals’ proportions of correct choices, representing overall performance on the task, and proportion 
of trials with switches between options, representing less consistency in choices). We note the unique 
relationships of each model-derived learning parameter with these traditional summary variables; these 
relationships illustrate how differences in components of learning patterns, indexed by combinations of 
increases and decreases in model-derived parameter values, may be obscured when viewing summary 
variables only. 

 
Learning patterns independent of a formal computational model were investigated by assessing the 
relationship between model-agnostic learning measures and baseline symptoms, with performance 
defined as the proportion of choices options more likely to lead to higher outcomes. Reward and loss 
performance were negatively but nonsignificantly related to all symptoms (eFigure 1; all ps > 0.05), 
except for a positive but non-significant relationship between reward performance and anhedonia in 
participants with depression (t65 = 1.18, p = .2). 

 
Model estimation 

 
Participants’ choices were fit to models using hierarchical Bayesian estimation, which estimated the 
distribution of each free parameter over the group of participants and for each participant individually 15– 
17. By allowing group and individual level distributions over parameters and allowing each level to 
inform estimates at other levels, hierarchical Bayesian estimation more accurately recovers true 
parameters, especially parameters that are somewhat correlated as is often the case in reinforcement 
learning models 18–20. Posterior distributions were estimated using Hamiltonian Monte Carlo with a No- 
U-Turn Sampler (HMC with NUTS) as implemented in Stan via its RStan interface (21, version 2.19). 
Group level parameters were specified as normally distributed, with a lower bound of 0 on outcome 
sensitivity (or inverse temperature, in models with this parameter) to constrain the parameter to be 
positive. Parameters were given a non-centered parameterization to aid in estimation by specifying 
mean, scale, and error distributions for each parameter 22. Similar to 23,24, mean distributions, estimated 
at the group level, were specified as normally distributed with priors of mean = 0 and standard deviation 
= 10, for parameters that were not logit transformed, or with standard deviation = 2.5 for parameters that 
were logit transformed. Scale distributions, estimated at the group level, were given a half-Cauchy prior 
25 (bounded to be greater than 0) with values of 0 and 2.5 (0 and 2 for parameters that were logit 
transformed). Error distributions, which were estimated for each subject, were given a normal prior with 
mean = 0 and standard deviation = 1. Similarly, effects of covariates, and for treatment analyses, effects 
of time, treatment, and interactions were given a normal prior with mean = 0 and standard deviation = 1. 
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For learning rate, these parameter values were then run through a logistic transformation to bound values 
between 0 and 1. Therefore, each subject’s parameter (for example, learning rate) consisted of a group 
estimated mean value plus the combined value of the group estimated scale value multiplied by the 
individually estimated error value. The effects of covariates were assumed to adjust the mean of each 
parameter (due to homogeneity of variance), and so acted on the mean value of the parameter per 
subject. Models were estimated separately for reward and loss learning except where noted. Four chains 
were run for each valence, with 8000 samples per chain (4000 after discarding warm-up samples). 
Chains were visually inspected for convergence and showed good mixing, with all values of the 
potential scale reduction factor 26 less than 1.1. 

Reinforcement learning model specification and validation 
 

Model selection. Model-based analyses were conducted using reinforcement learning models 27,28. 
Model parameters were based on previous work on learning differences in depression and differential 
learning from rewards and losses 20,29–31, with a particular focus on parameters assessing differences in 
updating versus valuation. Updating was represented by a learning rate parameter α, indexing how 
rapidly the expected value Q was updated based on prediction error, which is the difference between 
received value R and expected value Q: 

 

 
Two possible explanations for altered valuation were considered: first, a difference in relative scaling 
known as outcome sensitivity (ρ; similar to 20): R’t = ρ *Rt, (where R’ indicates an altered valuation of 
received value R), or an overall shift (τ) in valuation of outcomes: R’t = τ + R. This second possible 
change in valuation, by shifting all values, also allows for valence-sensitive rescaling of values often 
seen when learning from rewards versus losses 30. To differentiate the effects of outcome sensitivity and 
outcome shift, outcome sensitivity was multiplied on the more extreme outcome only (+/-$0.70 to 
$0.80). 

 
In addition, learning could be affected not by changes in valuation, but by changes in decision processes. 
These decision effects can be represented by inverse temperature β (an exploration/exploitation 
parameter which functions similarly to outcome sensitivity ρ but acts at the choice and not valuation 
stage): 

 
 

 
Where P(A)t represents the probability of choosing option A at trial t. Decision effects can also be 
represented by choice perseveration ω (which functions similarly to outcome shift τ but acts at the 
choice rather than valuation stage 32): 
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where choicet-1 is 1 if the stimulus (A in this example) was chosen on the previous trial and 0 if it was 
not. 

 
To test which combination of parameters best represented participants’ behavior on the task, models 
with learning rate α plus 1) one valuation parameter, outcome sensitivity ρ (similar to 20; model α + ρ; 
2 free parameters for reward and loss learning, respectively); 2) both valuation parameters (model α + 
ρ + τ; 3 free parameters per valence); 3) one decision parameter, inverse temperature β (model α + 
β; 2 free parameters per valence); 4) both decision parameters (model α + β + ω; 3 free parameters 
per valence) were tested. Models without inverse temperature β as a free parameter fixed this parameter 
based on its estimated value (β ≈ 7). 

Model fit was compared with integrated BIC (iBIC) computed from the posterior distribution, 
penalizing for the number of parameters. A lower iBIC indicates a better fitting model 33. Model fit was 
tested with models fit across all participants, within participants with depression only, and within 
participants without depression only to ensure the winning model was the same regardless of diagnosis. 
Using a model fit measure based on BIC, rather than other measures such as AIC, penalizes models with 
extra parameters more severely and is more conservative about overfitting data to models with excessive 
parameters 34; a corollary of this effect is that if a BIC-based measure selects a more complex model, an 
AIC-based measure is guaranteed to select the same model. Integrated BIC also accounts for the 
hierarchical, dependent nature of individuals’ model fits which is not possible with indices requiring 
individual fit statistics (e.g., Bayesian model selection; 35). The best fitting model (lowest iBIC) for both 
reward and loss learning included learning rate, outcome sensitivity, and outcome shift (model α + ρ + 
τ; eFigure 2). We further confirmed the role of the outcome shift parameter by examining the 
relationship between relative model fits of models with and without this parameter and proportion of 
behavior switches by participant and valence. Since the outcome shift parameter changes the value of 
the currently chosen option, making the currently chosen option more or less likely to be chosen in the 
future, adding this parameter should improve the fit for people who switch less than average. We found 
this effect, and particularly during loss learning (regression of proportion of behavioral switches on 
difference in per-trial log likelihood between a model with versus without outcome shift: gain t99 = - 
1.926, p=0.057; loss t99 = -9.388, p<.001). 

 
Independence of model parameters. Reinforcement learning model parameters can show collinearity 
between parameters assessing value updates (such as learning rate) and value scaling (such as inverse 
temperature or outcome sensitivity) 15,20,24. Therefore, parameter recovery, correlation of individual 
parameter estimates, inspection of posterior distributions, and analysis of relationships between 
parameters and model-agnostic behavioral summaries were carried out to ensure parameters were 
independently estimated and related to behavior. First, model recovery was performed for different 
combinations of parameter values. Specifically, simulated data for 100 subjects was created with 
combinations of three different levels of the mean value of each parameter (.25, .50, and .75 for reward 
and loss learning rate; .50, 1.0, and 1.5 for reward and loss outcome sensitivity; -.50, -.25, and 0 for 
reward outcome shift; and 0, .50, and 1.0 for loss outcome shift), resulting in 27 overall sets of simulated 
data with different combinations of parameters. Values were chosen based on the range of parameters in 
real participants’ behavior. Model parameters were estimated for this simulated data and recovered 
parameter values were plotted against simulated parameter values to verify parameters could be 
independently estimated at different values. Importantly, this validation ensured similar values could be 
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recovered from one simulated value of a parameter while varying the simulated values of all other 
parameters. 

 
Next, using empirical data from all participants estimated as one group, individual estimates were 
extracted for each parameter and correlated. No parameters within a valence (reward, loss learning) 
showed correlations above 0.4. Then, to ensure parameters were independently identifiable, the samples 
from the posterior distributions for each parameter were plotted against the other parameters in each 
valence to allow visual inspection of any correlations or trade-offs in the value of each parameter across 
its posterior distribution. Lastly, relationships between each parameter and model-agnostic behavioral 
summaries (proportion of correct choices and switches) were calculated to determine whether 
parameters showed differential relationships with overall behavior on the task. 

 
All model validation methods including parameter recovery (eFigure 2A), inspection of posterior 
probability distributions (eFigure 3A), correlation of empirical individual parameter estimates (eFigure 
3B), and relationships with model-agnostic behavioral summaries (eFigure 4) indicated that the 
parameters of the best fitting model were recoverable and uniquely identifiable. Of note, whether 
parameters can be independently estimated in reinforcement learning models is affected by a number of 
factors, including the model employed, the task performed by participants, and the amount of data 
collected at subject and group levels, but is particularly affected by the method used to estimate 
parameters. The fully Bayesian hierarchical estimation implemented by the HMC NUTS algorithm used 
here explores posterior distributions in a manner that greatly reduces intercorrelations among parameters 
and improves recovery of simulated parameters 22, resulting in an improved ability to estimate 
uncorrelated parameters compared to other work with similar models. As shown in eFigure 3B, the 
correlations between learning rate and outcome sensitivity were in opposite directions by valence 
(positive correlation for reward and negative for loss). This difference is due to the differential 
relationship between these parameters by valence - in reward learning, the outcome sensitivity parameter 
is multiplied on the higher reward, and participants are learning to achieve this reward. For loss trials, 
this parameter is multiplied on the higher loss, and participants learn to avoid this loss, leading to 
mirrored effects on parameter tradeoffs between reward and loss learning. 

 
Differentiation of learning by valence (reward, loss). Based on previous work, we assumed a priori that 
learning patterns differed for rewards and losses 31,36,37. Nonetheless, to test whether participants’ 
behavior was better characterized by combining or separating parameters across reward and loss blocks, 
models with (1) all parameters combined across reward and loss (total number of parameters = 3), (2) 
each parameter split between valence in turn (e.g., learning rate split between valence while outcome 
sensitivity and outcome shift were combined, repeated in turn for outcome sensitivity and outcome shift; 
total number of parameters per model = 4), and (3) all parameters split between valence (total number of 
parameters = 6). The integrated BIC (iBIC) was again used to measure model fit, with lower iBIC 
indicating a better fit. To check if the best fitting model was the same across groups, iBIC was 
calculated across all participants as well as within groups of participants with and without depression 
separately. Including unique parameters for reward and loss learning improved model fit over 
combining some or all parameters across valence (eFigure 2c); this provided support for the posited 
valence- sensitive learning processes. 
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Assessment of model based behavioral differences at baseline 
 

Estimation of parameters using both group and individual level information may introduce dependencies 
among the individual level estimates, in that using participants’ parameters on an individual basis to 
compare against outside measures (e.g., symptom severity, diagnosis) can be biased 25,38,39. Therefore, to 
examine relationships between parameters and variables of interest, the effects were estimated within the 
model by introducing another parameter to index the effect of the variable of interest 39,40. To do so, 
covariates were z-scored or, in the case of binary variables, dummy coded, and entered into a regression 
during model estimation to predict the mean of a parameter. For example, the following analysis 
determines the effect of anhedonia on learning rate: 

 
αtotal = αintercept + anhedonia*αanhedonia + ε 

 
In this manner, αanhedonia represents the effect of (standardized) anhedonia severity on learning rate. To 
determine significance, 95% of the posterior distribution of these parameters was required to not 
include0 (i.e., to be entirely above or below 0 41). To assess whether results were unique to one primary 
subscale of the MASQ (anhedonia, negative affect, or arousal) relative to the others at baseline and to 
reduce the number of independent tests, analyses with all three of these measures were also run in the 
same model. To account for potential nonlinearities in the relationship between symptoms and behavior 
across clinical and non-clinical levels of depression, models were also run within the depressed 
participants only as well as across all participants (total number of independent tests: 2 for reward 
learning (all participants and depressed participants only) and 2 for loss learning). To control the total 
probability of concluding that a learning-symptom relationship existed in a direction that it did not 
(‘Type S error’), we restricted experimentwise Type S error to 5%42. Note that as a scaling parameter, 
learning rate lies only in the range of 0 to 1, but to aid in estimation, this parameter was estimated as a 
continuous variable and then logistically transformed to be bounded between 0 and 1. Therefore, to ease 
interpretation the effects of symptoms on learning rate were reported for transformed (range of 0 to 1) 
values. Analyses were also run with estimated IQ and presence of psychotropic medication as additional 
covariates, but inclusion of these covariates did not meaningfully change any results. 

 
Power analyses 

 
To determine what effect sizes we were powered to detect, we simulated 100 datasets with 80% power 
to detect effects where they exist. We measured power as the percent of simulated datasets where 95% 
of the posterior distribution of the relationship between symptom severity and learning parameters was 
significantly more or less than 0. Posterior distributions of effect sizes for regression coefficients (f2) 
were then computed from these simulated datasets using Bayesian R2 43. Effect sizes were computed for 
sample sizes for all participants at baseline (N=101) and for participants with depression only (N=69) 
and were interpreted according to 44, where f2 > 0.02 is a small effect size, f2 > 0.15 medium, and f2 > 
0.35 large. For N=101, we were powered to detect small effect sizes (median f2 = 0.106) and for N=69, 
we were powered to detect medium effect sizes (median f2 = 0.326). 

Baseline imaging analyses 
 

First level imaging analyses used parametric regressors of prediction error δ or outcome value Rt at the 
time of outcome and expected value Qt of the chosen option at the time of onset. Prediction error and 
expected value were calculated based on participants’ individually estimated parameters from the 
reinforcement learning model and were z-transformed prior to entering in the imaging model 45. 
Regressors were separated by valence (reward or loss) and all regressors were modeled as stick 
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functions. Additional regressors of no interest were included for button presses, block number, and six 
motion parameters. Data were high pass filtered with a cutoff of 128 seconds. 

 
Primary group level analyses focused on ventral striatum and ventromedial prefrontal cortex, brain areas 
known to be central to reinforcement learning 46,47. Regions of interest were defined from the peak 
coordinates from a meta-analysis of prediction error and expected value BOLD response in 
reinforcement learning tasks 48; specifically, a 6 mm sphere was drawn around the peak coordinate from 
right and left striatum from prediction error-related activation and subgenual anterior cingulate cortex 
from expected value-related activation. The first eigenvariate of the beta values in each ROI from 
prediction error, outcome value, and expected value activations was extracted for each participant and 
regressed against measures of interest. 

 
Additional whole brain analyses were run to examine contributions of expected value and outcome value 
signals at the outcome time point. Whole brain imaging analyses used an initial cluster defining 
threshold of p < .001 and a cluster-level topological FDR significance of p < .05 49. 

To relate neural activation to symptom measures, BOLD activity (ROI values and whole-brain 
activation) were correlated with symptom measures. The relationship between expected value and 
prediction error related activity and symptom measures was further tested by testing the interaction of 
prediction error neural signal and symptom measures on expected value neural signal in striatal ROIs (as 
in 50). Analyses were also run with estimated IQ and presence of psychotropic medication as additional 
covariates; inclusion of these covariates did not meaningfully change any results. 

 
Given the effect of negative affect on prediction error signaling in subgenual ACC, exploratory follow 
up analyses were performed. Specifically, as prefrontal cortical signals in areas like subgenual anterior 
cingulate cortex are linked more to value representation than prediction error itself51,52, we examined 
thetwo value-related components of prediction error (i.e., ‘expected’ value and ‘actual’ value received) 
to determine if either explained the relationship between reduced prediction error signaling in subgenual 
anterior cingulate and negative affect in a way that reflected the model-based behavioral findings of a 
more negative outcome shift parameter. This analysis revealed that greater negative affect was 
negatively related to (that is, less modulated by) signaling of ‘actual’ outcome value in ventromedial 
prefrontal cortex and precuneus (p < .05 corrected; eFigure 6a; eTable 5), with no significant 
relationship with ‘expected value’ either at time of cue onset or outcome; outcome shift parameter 
values did not mediate this relationship (see eFigure 6b and Tables S6 and S7 for neural processing of 
outcome value within participants low and high in negative affect separately). This result suggests that 
participants greater in negative affect differ in neural processing of actual outcome values, with 
subsequent effects on prediction error, rather than in processing expected value. 

 
Behavioral analyses of symptom change and symptom-independent change over time 

 
To investigate the relationship between changes in reinforcement learning parameter values and changes 
in symptoms with the depressed participants, analyses were run assessing the interaction of changes in 
symptoms with time on learning parameters (2 independent statistical tests: 1 each for reward and loss 
learning). Changes in symptoms were defined as post- minus pre-treatment, such that higher values 
indicated more improvement. Since the learning variables of interest were assessed at pre- and post- 
treatment only, including this slope as well as baseline severity in analyses is analogous to an mixed 
effects model53 assessing changes across time within each person and relating these changes to 
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symptoms across people. Similar to baseline analyses, the mean of each parameter was estimated as a 
regression of the intercept of the parameter plus main effects and interactions of time and symptoms. 
Specifically, analyses included the within-subject main effect of time (dummy coded for 0 = first session 
and 1 = second session), the main effect of baseline symptoms, and the interaction of time and 
symptoms54: 

αtotal = αintercept + time*αtime + baseline_anhedonia*αanhedonia + time*Δanhedonia*αtime*symptom + ε 

In this analysis, the αsymptom*time parameter assesses the change in learning rate from the first to second 
session related to improvement (slope) in anhedonia, while the αtime parameter assesses the change in 
learning rate across sessions unrelated to improvement in anhedonia. The parameters for intercept, time, 
and time*symptom were allowed to vary by participant (i.e., an uncorrelated random intercept and 
random slope model 55 for analyses with total symptom change; for analyses with individual subscales, 
random slope models led to a lack of convergence and so only random intercept models were used). 
Analyses were also run with estimated IQ, presence of psychotropic medication, and depression 
specifiers (melancholic depression, atypical depression) as additional time-independent covariates in 
separate analyses; inclusion of these covariates did not meaningfully change any results. 

 

Exploratory analyses of CBT-specific effects 
 

To assess whether relationships between changes in learning and symptoms were specific to symptom 
improvement after CBT, participants who completed treatment were compared to a small group (‘non- 
CBT’) of participants who were depressed at baseline but declined (n=8) or did not complete treatment 
(n=2: both attended only three sessions) but returned for follow-up assessment. Analyses compared the 
28 participants who completed treatment to the 10 who declined or did not complete treatment. One 
additional participant enrolled in CBT but did not complete an adequate number of sessions (sessions = 
5) and so was excluded from the CBT vs. no-CBT comparison. CBT depressed, non-CBT depressed, 
and nondepressed participants did not differ on time between assessments (mean [SD] number of days 
between first and second time point: CBT depressed 117 [18.2], non-CBT depressed 110 [12.9], and 
nondepressed 111 [10.1], F1,57 = 0.01, p > .1). 

 
To investigate differences in learning parameters between the CBT and non-CBT group, model-based 
analysis included an additional main effect and interactions with treatment: 

 
αtotal = αintercept + time*αtime + baseline_anhedonia*αanhedonia + treatment*αtreatment + 

time*Δanhedonia*αtime*symptom + time*treatment*αtime*treatment + baseline_anhedonia*treatment*α 

symptom*treatment + Δanhedonia*treatment*time*αsymptom*time*treatment + ε 

In this analysis, the αsymptom*time*treatment parameter assesses the change in learning rate from the first to 
second session in the CBT relative to no-CBT group related to improvement (slope) in anhedonia, while 
the αsymptom*time parameter assesses the change in learning rate from the first to second session 
independent of treatment condition. 
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eResults 
 

Baseline results: depression diagnosis and severity 
 

Reward learning. No parameters significantly differed by depression diagnosis (learning rate: mean = 
0.041 (standardized mean = 0.348), CrI -0.077:0.265; outcome sensitivity: -0.233 (1.70), CrI 
0.512:0.028; outcome shift: 0.132 (1.77), CrI -0.013:0.283) or by depression severity (BDI; learning 
rate: -0.002 (- 0.033), CrI -0.074:0.127; outcome sensitivity: -0.084 (-1.40), CrI -0.205:0.033; outcome 
shift: 0.045 (1.32), CrI -0.022:0.111). 

 
Loss learning. No parameters significantly differed by depression diagnosis (learning rate: 0.074 
(0.736), CrI -0.050:0.292; outcome sensitivity: 0.395 (1.08), CrI -0.346:1.09; outcome shift: -0.147 (- 
1.44), CrI -0.356:0.046) or by depression severity (learning rate: 0.055 (1.06), CrI -0.030:0.170; outcome 
sensitivity: 0.312 (1.62); outcome shift: -0.072 (-1.48), CrI -0.170:0.020). 

 
Baseline results: simultaneous analysis of three MASQ subscales 

 
Results were similar when assessing all MASQ scales in the same analysis compared to separate 
analyses: for reward learning in participants with depression, anhedonia was related to higher 
learningrate and lower outcome sensitivity (learning rate: mean = -0.120 (standardized mean = -2.24), 
CrI 0.106:-0.005; outcome sensitivity: 0.270 (2.41), CrI 0.063:0.505) . For loss learning in all 
participants, negative affect was marginally related to lower outcome shift (mean = -0.178 
(standardized mean = 1.65), CrI -0.392:0.031). No additional significant associations between 
symptoms and learning parameters emerged when examining all three scales together. 

Analyses of parameter change: symptom-independent changes over time 
 

Independent of changes in symptoms, participants with depression showed increased reward outcome 
sensitivity (mean change = 1.14 (standardized mean change = 2.77), CrI 0.434:2.04), decreased reward 
outcome shift (-0.349 (-2.54) CrI -0.107:-0.649), decreased loss learning rate (-0.167 (-1.75) CrI -
0.054:- 0.156), and decreased loss outcome sensitivity (-1.73 (-2.77) CrI -0.537:-2.98). Reward learning 
rate (- 0.180 (-1.45), CrI -0.155:0.02) and loss outcome shift (0.253 (1.58) CrI -0.055:0.577) did not 
significantly change across visits. Overall shifts in parameters are shown in eFigure 9A and estimates 
of parameters of participants with depression at each time point are shown in eFigure 9B. Testing 
changes over time independent of symptoms showed the same pattern of effects, confirming that 
symptom- related and symptom-independent changes with time could be independently estimated. 

 
Analyses of symptom change: exploratory CBT-specific effects 

 
Exploratory analyses compared participants electing to receive CBT to those who did not, focusing on 
parameters showing changes with symptoms during treatment (gain learning rate and loss outcome 
shift). During gain learning, learning rate showed a trending CBT-specific increase with symptom 
change (learning rate: mean = 0.171 and CrI = -0.001 to 0.018), with no relationship between changes in 
learning and symptom change independent of treatment condition (-0.005, CrI = -0.022 to 0.239). 
During loss learning, outcome shift showed nonsignificant increases with symptom change that were of 
similar magnitude for effects specific to (0.345, CrI = -0.418:1.14) and independent (mean = 0.233 and 
CrI = -0.323 to 0.817) of CBT. No other parameters during gain or loss learning showed significant or 
trending  relationships with symptom change. 
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eFigure 1. Association of overall performance with MDD diagnosis and symptom severity 
 

 
eFigure 1. Relationship of overall performance with symptom severity. Performance (proportion 
correct choices) is plotted versus symptom severity measures (anhedonia [MASQ anhedonia], negative 
affect [MASQ general distress], and anxious arousal [MASQ anxious arousal]). Control participants’ 
data are indicated by open circles and participants with a depression diagnosis by filled circles. Top 
panels (navy) show gain learning performance while bottom panels (maroon) show loss learning 
performance. Regression lines for the relationship between performance and symptom severity are 
plotted for all participants (solid line), control participants only (dashed line), and participants with a 
depression diagnosis only (dotted line). 
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eFigure 2. Model fit and parameter recovery 

 
 

eFigure 2. Model fit and parameter recovery. A) The model with learning rate α, outcome sensitivity 
ρ, and outcome shift τ fits better across all participants (large left panel), control participants (top right 
panel), and participants with depression (bottom right panel) across reward (x axis) and loss (y axis) 
learning, relative to plausible alternative models of: learning rate α and inverse temperature β; learning 
rate α, inverse temperature β, and value-independent perseveration ω; and learning rate α and outcome 
sensitivity ρ. Values shown are integrated BIC (iBIC) values 77. Smaller iBIC values indicate a better 
fitting model. B) Parameter values can be independently recovered from simulated data; 100 participants 
with mean parameter values at three different levels, determined based on the range of real participants’ 
values, were simulated and recovered. Top panel shows reward parameters and bottom panel shows 
loss parameters, with simulated values indicated by gray dots connected by dotted gray lines, and 
recovered values indicated by navy (reward) or maroon (loss) symbols. Squares indicate recovered 
learning rate values, circles indicate recovered outcome sensitivity values, and crosses indicate 
recovered outcome shift values. C) Separating all parameters by valence (reward and loss) fits better 
across all participants, within control participants only, and within participants with depression only, 
relative to models combining one or all parameters across valence. Values shown are integrated BIC 
(iBIC) values. 
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eFigure 3. Posterior distributions and individual means of parameters 
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eFigure 3. Posterior distributions and individual means of parameters. A) Posterior distributions. 
Top panels (navy) indicate relationships among posterior distributions of reward parameters and bottom 
panels (maroon) of loss parameters. Each dot represents a sample from the posterior distribution of all 
participants included in baseline analyses during MCMC sampling (after discarding warm-up samples). 
B) Individual parameter means. Top panels (navy) indicate correlations of means of individual reward 
parameters and bottom panels (maroon) of individual loss parameters. Both sets of plots indicate a lack 
of collinearity among parameters. 
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eFigure 4. Association of model parameters with model-agnostic summaries of behavior 
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eFigure 4. Relationship of model parameters with model-agnostic summaries of behavior. 
Parameters of learning rate (left column), outcome sensitivity (middle column), and outcome shift (right 
column) show differentiable relationships with overall proportion of correct choices (top row) and 
overall proportion of switches (bottom row). Navy circles denote values from reward learning and 
maroon circles denote values from loss learning. Learning rate was moderately related to performance, 
with low learning rates, reflecting slower acquisition of contingencies, related to lower proportion of 
correct choices (gain: r2 = .097; loss: r2 = .079) and more switches (gain: r2 = .122; loss: r2 = .056). 
Outcome sensitivity changes the value of the more extreme outcome and, by extension, changes the 
value difference between options. This parameter was related to the ability to pick the stimulus more 
likely to lead to a better outcome (i.e., proportion correct choices; gain: r2 = .613; loss: r2 = .690) and to 
a reduced tendency to switch options (gain: r2 = .591; loss: r2 = .404), as would be expected with 
increased ability to differentiate among outcomes. Meanwhile, outcome shift changes all outcome values 
to be more positive or negative; this parameter was less related to the proportion of correct choices 
(gain: r2 = .0001; loss: r2 = .117) but was related to a reduced tendency to switch with higher valuation 
of outcomes (gain: r2 = .169; loss: r2 = .560), reflecting a tendency to switch away from any choice 
whenthe associated outcomes are perceived as more negative with a negative outcome shift value, and 
to stay with all choices when outcomes are viewed as positive with a more positive outcome shift value. 
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eFigure 5. Association between anhedonia and reward learning parameters by diagnosis 
 
 

 
eFigure 5. Relationship between anhedonia and reward learning parameters by diagnosis. Dots 
represent individual parameter estimates per participant in models estimated separately in control (filled 
circles) and MDD (open circles) participants. X axis is anhedonia (MASQ anhedonia subscale) and Y 
axis is parameter estimates for learning rate (top) and reward sensitivity (bottom), with regression lines 
and R2 values noting the relationship between anhedonia and parameter values for each diagnostic 
group. Note that partial pooling of individual estimates in the hierarchical estimation means that 
individual estimates should be used for illustration only and that R2 values shown here may deviate 
somewhat from regression values reported in results. 
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eFigure 6. Behavioral performance and neural reward signals by depression status and overall 
depression severity 

 

 
 

eFigure 6. Behavioral performance and neural reward signals by depression status and overall 
depression severity. A) Reward and loss learning performance by diagnosis. B) Relationship of overall 
performance with depression (BDI) by diagnosis. C) Depression (BDI) is unrelated to behavioral reward 
and loss learning parameters. D) Lack of differences in neural reward learning signals in depression. 
Left column is modulation of brain activity by the parametric modulator of expected value at time of 
stimulus onset and right column is prediction error at the time of outcome; top row is control 
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participants and bottom row is participants with depression. Values are shown p < .05 whole brain FDR 
corrected (p < .001 cluster forming threshold). Significant clusters are reported in eTables 1-4. 
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eFigure 7. Differences in processing of loss outcomes by negative affect 

 
 

eFigure 7. Differences in processing of loss outcomes by negative affect. A) Significant whole-brain 
corrected differences by negative affect in modulation of brain activity with level of outcome (FDR p < 
.05, cluster forming threshold of p < .001; eTable 5). Group-level covariate of negative affect on a 
parametric modulator of outcome value at the time of outcome receipt. B) Processing of outcome value 
separated into low (top; eTable 6) and high (bottom; eTable 7) negative affect participants based on a 
median split, for the purposes of understanding the effect of negative affect shown in panel A. Note that 
both groups show robust responses that are modulated by outcome value (activation is significant p < 
.05 corrected & displayed at p < .005 uncorrected), but, reflecting the differences in signal by level of 
negative affect shown in A), these responses show a different spatial pattern and direction of activation 
in low and high negative affect participants. Specifically, participants with high negative affect showed 
activation negatively related to outcome value in dorsomedial prefrontal cortex and insula and no 
positive relationship between outcome value and vmPFC signal, indicating these participants engaged a 
different, more negatively-valenced network of brain areas rather than the positively-valenced regions of 
vmPFC and striatum engaged by low negative affect participants. 
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eFigure 8. Stability of parameter estimates over time for control participants 
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eFigure 8. Stability of parameter estimates over time for control participants. Left panel is reward 
parameters and right panel is loss parameters; violin plots indicate posterior densities of the within- 
subject change in each parameter from the first time point to the second, with a value of 0 representing 
no change in learning parameters. 
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eFigure 9. Parameter changes with time for participants with depression 
 

 
 
 
 

eFigure 9: Parameter changes with time for participants with depression. A) Left panel is reward 
parameters and right panel is loss parameters; violin plots indicate posterior densities of the within- 
subject change in each parameter, independent of symptom change, from the first time point to the 
second, with a value of 0 representing no change in learning parameters. Significant changes over time 
are represented by colored densities (navy for significant changes in reward learning parameters and 
maroon for significant changes in loss learning parameters). B) Changes in learning parameters from 
pre- to post-treatment for individual patients. Individual lines of parameter change are colored by degree 
of overall symptom improvement. 
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Excluded from baseline analyses 
-subclinical BDI score on day of scan (3) 
-motion/poor imaging data quality (16) 
-technical issues with behavioral data 
collection (2) 
-lack of behavioral engagement on task (10) 

Enrolled in baseline analyses (100) 

Included in baseline analyses (69) 

 
 

Excluded from post-treatment 
analyses 

-motion/poor imaging data quality (14) 
-technical issues with behavioral data 
collection (3) 
-lack of behavioral engagement on task (4) 

Included in post-treatment analyses 
(28) 

Discontinued CBT or did not return 
for post-treatment time point (6) 

eFigure 10. Diagram of flow of participants through study, including optional CBT portion 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

eFigure 10. Flow of participants with depression through study, including optional CBT portion. 
Bolded boxes on left side of diagram indicate final numbers for baseline analyses (top) and analyses of 
correlations with treatment (bottom). Note: this diagram does not include non-psychiatric control 
participants: N=32 included for baseline analyses and N=20 included in follow-up analyses matched to 
depressed participants’ post-treatment time points. 

Enrolled in optional CBT (55) 
  

Returned for post-treatment 
time point (49) 
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eFigure 11. Neural responses associated with symptom improvement 
 

 
eFigure 11. Neural responses associated with symptom improvement. A) Reward learning: 
moderation of striatal expected value-prediction error relationship by pre-treatment anhedonia is 
significantly reduced post-treatment. Filled dots indicate values at baseline and open dots indicate 
follow-up values. Green dots indicate participants with low baseline anhedonia (non-depressed 
controls,assessed at matched timepoints to patients) and purple dots indicate participants with high 
baseline anhedonia. Values are right striatum region of interest activation to prediction error (x axis) 
and expected value (y axis). Solid lines represent regression lines pre-treatment and dotted lines 
represent regression lines post-treatment, with a significant change in slope for the high anhedonia 
group and no change for controls. B) Loss learning: change in sgACC signal pre- to post-treatment does 
not correlate with changes in symptoms. Maroon dots indicate patients’ percent change in symptoms 
(total MASQ) versus post- minus pre-treatment sgACC region of interest activation to prediction error. 
Line is regression line showing lack of relationship. 
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eFigure 12. Schematic depiction of effects of outcome sensitivity and outcome shift on 
valuation 

 

 
eFigure 12. Schematic depiction of effects of outcome sensitivity and outcome shift on valuation. 
The relationship between low and high values is illustrated with the black line and changes effected by 
each parameter are illustrated with colored lines. Outcome sensitivity (green) is multiplied on the more 
extreme value (high reward/low loss) and changes the slope of values. Outcome shift (light blue) is 
added to all values and changes the intercept of values. 
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eTable 1. Reward prediction error, MDD group (n = 69) 
 

Cluster 

Number 
 

Region 

Peak MNI 

Coordinate 

Peak T 

Value 

Cluster 

Size 

1 Right ventral striatum 14 6 -12 6.04 2001 

 Ventromedial prefrontal cortex -12 38 -10 4.74  

2 Left ventral striatum -16 6 -12 5.53 812 

3 Left precuneus -4 -50 32 5.3 848 

4 Left superior parietal lobule -32 -78 46 4.43 323 

5 Left cerebellum -14 -82 -24 3.94 213 
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eTable 2. Reward expected value, MDD group (n = 69) 
 

Cluster 

Number 
 

Region 

Peak MNI 

Coordinate 

Peak T 

Value 

Cluster 

Size 

1 Right fusiform gyrus 32 -48 -18 -7.34 20497 
 Left inferior parietal lobule -34 -62 44 -7  
 Right occipital lobe 36 -78 26 -6.87  

2 Right middle frontal gyrus 48 48 18 -6.56 7339 
 Right middle cingulate gyrus 6 28 36 -6.5  

3 Right calcarine sulcus 26 -38 18 6.33 608 

4 Left calcarine sulcus -26 -42 10 6.2 621 

5 Right striatum 16 4 -4 -6.17 3403 
 Left thalamus -6 -10 -4 -5.45  

6 Left middle frontal gyrus -52 24 34 -5.74 1335 

7 Left insula -30 20 4 -5.59 304 

8 Right superior temporal gyrus 58 -32 14 5.34 1990 

9 Left medial frontal gyrus -8 60 16 5.17 1235 

10 Left superior temporal gyrus -54 -32 14 4.8 683 

11 Right postcentral gyrus 16 -46 68 4.6 514 

12 Right subgenual cingulate 6 24 -4 4.58 239 

13 Left postcentral gyrus -18 -48 68 4.38 160 
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eTable 3. Reward prediction error, controls without depression (n = 32) 
 

Cluster 

Number 
 

Region 

Peak MNI 

Coordinate 

Peak T 

Value 

Cluster 

Size 

1 Left striatum -24 0 -4 7.65 21994 
 Right caudate 20 4 16 6.57  

2 Right cerebellum 20 -80 -28 7.31 8522 
 Left middle temporal gyrus -60 -44 -10 6.94  
 Left cerebellum -36 -72 -46 6.57  

3 Left angular gyrus -50 -68 26 5.68 5614 

 Posterior cingulate gyrus -2 -36 38 5.2  

4 Right middle frontal gyrus 28 38 46 5.19 893 

5 Right middle temporal gyrus 58 -38 -12 4.26 213 
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eTable 4. Reward expected value, controls without depression (n = 32) 
 

Cluster 

Number 

 
 

Region 

Peak MNI 

Coordinate 

Peak T 

Value 

Cluster 

Size 

1 Right inferior parietal lobule 42 -62 42 -7.44 2077 

2 Right middle frontal gyrus 46 10 34 -6.94 4764 
 Right middle cingulate gyrus 8 18 44 -6.58  

3 Midbrain -8 -14 -12 -6.9 424 

4 Left inferior frontal gyrus -42 46 12 -6.29 745 

5 Right precentral gyrus 20 -20 78 6.21 4684 

6 Right insula 32 22 -8 -5.98 437 

7 Right thalamus 16 -32 20 5.94 265 

8 Left inferior parietal lobule -36 -60 42 -5.62 1321 

9 Left cerebellum -38 -62 -50 -5.55 1909 

10 Left thalamus -18 -36 14 5.39 284 

11 Right superior temporal gyrus 54 -10 -2 5.25 517 

12 Right fusiform gyrus 32 -60 -10 -4.93 1154 

13 Left inferior frontal gyrus -46 2 30 -4.84 183 

14 Subgenual anterior cingulate cortex 6 28 -4 4.78 170 

15 Left insula -32 18 -8 -4.55 284 

16 Ventromedial prefrontal cortex 0 48 -20 4.46 582 

17 Right striatum 16 4 -2 -4.4 151 

18 Left precuneus -8 -54 26 4.19 269 
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eTable 5. Loss outcome value correlated with negative affect (MASQ Mixed Distress subscale; 
n = 101) 

 
Cluster 

Number 
 

Region 

Peak MNI 

Coordinate 

Peak T 

Value 

Cluster 

Size 

1 Left precuneus -6 -64 44 -4.46 277 

2 Subgenual anterior cingulate 4 32 -2 -4.39 976 
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eTable 6. Loss outcome value, low negative affect participants (n = 52) 
 

Cluster 

Number 
 

Region 

Peak MNI 

Coordinate 

Peak T 

Value 

Cluster 

Size 

1 Left middle frontal gyrus -20 32 44 6.5 848 

2 Right superior frontal gyrus 8 8 60 -5.87 869 

3 Ventromedial prefrontal cortex 4 54 -10 4.86 1287 

4 Right supplementary motor area 4 -26 58 4.63 1357 

5 Right ventral striatum 12 4 -14 4.61 190 

6 Left precuneus -12 -46 40 4.44 578 

7 Right cerebellum 52 -72 -42 4.39 200 
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eTable 7. Loss outcome value, high negative affect participants (n = 49) 
 

Cluster 

Number 
 

Region 

Peak MNI 

Coordinate 

Peak T 

Value 

Cluster 

Size 

1 Right supplementary motor area 12 6 68 -6.09 2417 

2 Right insula 42 16 -6 -5.23 430 

3 Right precentral gyrus 24 -10 36 5 618 

4 Right inferior parietal lobe 40 -40 26 4.68 269 

5 Left insula -40 24 0 -4.49 283 

6 Left postcentral gyrus -34 -28 32 4.27 381 

 
Note: results in all fMRI activation tables are based on whole brain correction at p < .05 cluster 

corrected with topological FDR using a p < .001 cluster forming threshold. 
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eTable 8. Depression diagnosis, specifier, severity, medications, and comorbid diagnoses for 
participants 

 
Primary 
Diagnosis N 

 MDD 
Severity N 

 MDD 
Specifier N 

 
Medications1 N 

 Comorbid 
Diagnoses2 

N 

 
None 32 

 
N/A3 35 

 
N/A4 40 

 
None 78 

 Nicotine 
Dependence 

10 

MDD, 
single 
episode 

 
13 

 

mild 

 
15 

 

neither 

 
26 

 
Antidepressant 
only 

 
10 

 Posttraumatic 
Stress 
Disorder 

9 

 

MDD, 
recurrent 

 
 
47 

 
 
moderate 

 
 
39 

 
 
atypical 

 
 
12 

Antianxiety 
only 

Sleep only 

 
5 

 
4 

 Obsessive- 
Compulsive 
Disorder 

4 

Panic 
Disorder 

8 

 
Dysthymia 3 

 
severe 12 

 
melancholic 23 Antidepressant 

+ antianxiety 
3 

 

Social Phobia 7 

Dysthymia 
+ MDD, 
recurrent 

 
2 

     
Antidepressant 
+ sleep 

 
1 

 Agoraphobia 7 

Dysthymia 
+ MDD, 
single 
episode 

 

1 

    
Antidepressant 
+ antianxiety 
+mood 
stabilizer 

 

1 

 Anxiety 
Disorder NOS 

1 

 
1Psychotropic medications; categories based on 93 
2Ns are counted for each comorbid diagnosis separately. Participants with multiple comorbid diagnoses were: 2 participants 
with panic disorder + agoraphobia + social phobia; 1 participant with panic disorder + PTSD, 1 with panic disorder + 
agoraphobia, 1 panic disorder + nicotine dependence, 1 agoraphobia + PTSD, 1 agoraphobia + social phobia, 1 social phobia 
+ nicotine dependence, 1 agoraphobia + PTSD + OCD, 1 social phobia + PTSD + nicotine dependence, 1 agoraphobia + 
nicotine dependence 
3No diagnosis or dysthymia only 
4No diagnosis, dysthymia only, or information not available 
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eTable 9. Exploratory follow-up analyses of associations between symptom change and 
reinforcement learning parameters in participants with depression who completed CBT 

 
 
 
Valence 

 
 
Symptom Cluster 

 
 
Parameter 

 
Regression 
β (mean) 

Regression β 
(mean, 
standardized) 

 
Lower 
Bound 

 
Upper 
Bound 

Reward Anhedonia 
(Change) 

Learning Rate 
(Change) 

 
0.143 

 
3.532 

 
0.047 

 
0.264 

Outcome Sensitivity 
(Change) 

 
-0.517 

 
-4.167 

 
-0.727 

 
-0.322 

Outcome Shift (Change) 0.033 0.406 -0.103 0.164 
 
Negative Affect 
(Change) 

Learning Rate 
(Change) 

 
0.328 

 
3.837 

 
0.153 

 
0.475 

Outcome Sensitivity 
(Change) 

 
-0.541 

 
-1.563 

 
-1.080 

 
-0.093 

Outcome Shift (Change) 0.214 1.142 -0.098 0.451 
 
 
Arousal (Change) 

Learning Rate 
(Change) 

 
0.118 

 
1.972 

 
0.031 

 
0.224 

Outcome Sensitivity 
(Change) 

 
-0.0367 

 
-1.255 

 
0.106 

 
1.345 

Outcome Shift (Change) 0.152 1.401 -0.027 0.327 
Loss  

Anhedonia 
(Change) 

Learning Rate 
(Change) 

 
0.090 

 
1.190 

 
0.010 

 
0.185 

Outcome Sensitivity 
(Change) 

 
1.188 

 
1.929 

 
-0.059 

 
1.863 

Outcome Shift (Change) -0.007 -0.066 -0.145 0.203 
 
 
Negative Affect 
(Change) 

Learning Rate 
(Change) 

 
-0.042 

 
-2.440 

 
-0.077 

 
-0.014 

Outcome Sensitivity 
(Change) 

 
-1.281 

 
-4.787 

 
-1.732 

 
-0.862 

Outcome Shift 
(Change) 

 
0.419 

 
5.086 

 
0.290 

 
0.559 

 
Arousal (Change) 

Learning Rate (Change) -0.052 -1.242 -0.146 0.052 
Outcome Sensitivity 
(Change) 

 
-0.510 

 
-0.769 

 
-1.440 

 
0.729 

Outcome Shift (Change) 0.113 0.858 -0.125 0.305 
Bolded values indicate significant relationships between changes in parameters and changes in 
symptoms following CBT. Change is measured as proportion improvement from pre- to post-CBT, so a 
positive relationship indicates greater increases in a parameter value in participants with greater 
symptom improvement. 


