Metabolites identification of chemical constituents from the eggplant (*Solanum melongena* L.) calyx in rats by UPLC/ESI/qTOF-MS analysis and their cytotoxic activities

Yuanyuan Song ^{a,1}, Ting Mei ^{a,1}, Yan Liu ^{b,1}, Shengnan Kong ^b, Jincheng Zhang ^a, Minzhen Xie ^a, Shan Ou ^a, Meixia Liang ^a, Qi Wang ^{a,*}

Affiliation:

^a Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China ^b Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin 150040, China

*Correspondence:

Qi Wang, PhD, Department of Medicinal Chemistry and Natural Medicine Chemistry, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081, China. Tel: 86-451-86660227, E-mail address: mydearmumu@163.com.

¹. These authors contributed equally to this work.

Table of Contents

Fig. S1. Base peak chromatograms of **1** in rats liver after oral administration (A), extracted ion chromatograms of **1-M2** in rat liver microsomes (B), and the standard solution of **1-M2** (C).

Fig. S2. Proposed metabolic pathway for 5 in rats after oral administration.

Fig. S3. TIC chromatograms of metabolites of *n*-trans-p-coumaroyltyramine (1, a), *n*-trans-p-coumaroyloctopamine (2, b), *n*-trans-p-coumaroylnoradrenline (3, c), *n*-trans-feruloyloctopamine (4, d), phenylpropanoid neochlorogenic acid (5, e) in rat liver microsomes in vitro.

Fig. S4. Total ion chromatograms (a) and extracted ion chromatograms (b, c, d, e, f, g, h) of compound **1** and its metabolites in rat urine.

Fig. S5. Total ion chromatograms (a) and extracted ion chromatograms (b, c, d, e, f, g, h) of compound 2 and its metabolites in rat urine.

Fig. S6. Total ion chromatograms (a) and extracted ion chromatograms (b, c, d, e, f, g, h, i, j) of compound **3** and its metabolites in rat urine.

Fig. S7. Total ion chromatograms (a) and extracted ion chromatograms (b, c, d, e, f, g, h) of compound 4 and its metabolites in rat urine.

Fig. S8. Total ion chromatograms (a) and extracted ion chromatograms (b, c, d, e, f, g, h) of compound **5** and its metabolites in rat urine.

Table S1. The effects of 1-5 on cell activity of A549 (human lung adenocarcinoma

 Table S2. The effects of 1-5 on cell activity of HepG2 (human liver cancer cell).

 Table S3. The effects of 1-5 on cell activity of HCT116 (Human colorectal cancer cells).

Table S4. The effects of 1-5 on cell activity of MCF7 (Human breast cancer cells).

Figure S1. Base peak chromatograms of 1 in rats liver after oral administration (A), extracted ion chromatograms of 1-M2 in rat liver (B), and the standard solution of 1-M2 (C).

Figure S2. Proposed metabolic pathway for 5 in rats after oral administration.

Fig. S3. TIC chromatograms of metabolites of *n*-trans-p-coumaroyltyramine (**1**, a), *n*-trans-p-coumaroyloctopamine (**2**, b), *n*-trans-p-coumaroylnoradrenline (**3**, c), *n*-trans-feruloyloctopamine (**4**, d), phenylpropanoid neochlorogenic acid (**5**, e) in rat liver microsomes in vitro.

Fig. S4. Total ion chromatograms (a) and extracted ion chromatograms (b, c, d, e, f, g,

h) of compound 1 and its metabolites in rat urine.

Fig. S5. Total ion chromatograms (a) and extracted ion chromatograms (b, c, d, e, f, g, h) of compound **2** and its metabolites in rat urine.

Fig. S6. Total ion chromatograms (a) and extracted ion chromatograms (b, c, d, e, f, g, h, i, j) of compound **3** and its metabolites in rat urine.

Fig. S7. Total ion chromatograms (a) and extracted ion chromatograms (b, c, d, e, f, g,

h) of compound 4 and its metabolites in rat urine.

Fig. S8. Total ion chromatograms (a) and extracted ion chromatograms (b, c, d, e, f, g,

h) of compound 5 and its metabolites in rat urine.

Group	n -	Cell availability (%)		
		24h	48h	72h
Control	9	100±17.80	100±6.93	100±7.28
1	9	88.82±7.81	73.61±5.93***	70.39±9.65***
2	9	90.91±8.76	78.13±11.78**	90.00±16.00
3	9	88.91±6.24	85.44±10.93*	90.50±11.61
4	9	86.06±17.06	90.27±9.93*	94.65±9.90
5	9	87.26±7.94*	98.61±9.80	87.73±12.73*

 Table S1. The effects of 1-5 on cell activity of A549 (human lung adenocarcinoma cell).

Group	n	Cell availability (%)		
		24h	48h	72h
Control	9	100±7.99	100±7.82	100±5.15
1	9	153.56±42.55**	162.62±48.48**	139.48±24.10**
2	9	139.56±26.88**	164.83±38.21**	139.85±39.56*
3	9	126.63±20.89**	125.33±23.30*	114.58±9.79**
4	9	116.55±10.34**	102.95±14.74	108.87±6.57*
5	9	118.04±21.15*	84.30±8.70**	101.95±5.67

 Table S2. The effects of 1-5 on cell activity of HepG2 (human liver cancer cell).

Group	n -	Cell availability (%)		
		24h	48h	72h
Control	6	100±10.24	100±14.80	100±3.34
1	6	106.94±23.84	91.26±16.12	60.63±4.64***
2	6	96.46±10.19	95.26±17.11	71.06±8.45***
3	6	87.74±12.40	104.84±6.73	80.48±6.58***
4	6	95.94±6.57	102.56±8.42	100.84±8.35
5	6	80.25±7.51*	85.13±14.86*	47.04±5.07***

 Table S3. The effects of 1-5 on cell activity of HCT116 (Human colorectal cancer cells).

Group	n	Cell availability (%)		
		24h	48h	72h
Control	6	100±7.50	100±8.92	100±6.64
1	6	137.08±5.17**	96.21±17.34	50.85±9.15***
2	6	131.60±14.75**	98.17±13.74	105.30±13.11
3	6	147.71±26.95***	101.12±10.16	96.05±11.35
4	6	200.04±25.17***	99.52±6.19	96.73±6.10
5	6	46.58±8.14***	31.80±5.67***	13.50±2.78***

 Table S4. The effects of 1-5 on cell activity of MCF7 (Human breast cancer cells).