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1 Appendix A: Simulation parameters 1

The network simulations follow the model proposed in reference [1], and the parameters 2

are displayed in Table 1. 3

Parameter Value

R0 2.4 [2]
Average Symptoms Duration τ0 14 days [3, 4]
Networks Average Degree D * 100 [1]

Incubation Time Distribution P(τ) Γ(6.25, 25/26) [5]
Mutation Rate µ 0.001 substitution per base, per year [6, 7]
Genome Size B 29900 bases [2]

Table 1. Simulation Parameters. The number of nodes in each simulation is
described properly.
*This is the input average degree for the networks construction, but the actual value for
each realization fluctuates. For the communities simulations, this is the parameter for
constructing each isolated network, as also for the control case p = 0.

For the numerical solution of mean-field approaches, following the SEIR model 4

Ṡ = −βSI/N
Ė = βSI/N − σE
İ = σE − γI
Ṙ = γI

(A1)

we have used the following parameters: R0 = 2.4, γ = 1/14 day−1; β = R0γ and 5

σ = 1/〈ti〉, where 〈ti〉 is the mean period of incubation, averaged over the distribution 6

from Table 1 [1]. 7

2 Appendix B: Analytical calculations 8

Our goal is to derive a recurrence equation for the average genetic distance, i.e., given 9

the distance dt at time t, we aim to calculate the distance dt+1 at time t+ 1. The idea 10

is to calculate dt+1 as a weighted average, where the weights are the number of pairs 11

that are distanced by a certain amount. In a SEIR model, every iteration starts with a 12

given number of recovered (Rt), infected (It) and exposed (Et) individuals. When an 13

individual recovers, its infecting virus stops to spread and to evolve, and we call it a 14
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final virus. There are Rt final viruses at the beginning of a given iteration. Viruses 15

infecting Exposed individuals can mutate during this iteration. However, viruses in 16

Infected individuals can either evolve and mutate in this time step or not, since their 17

hosts might recover. The latter become final and are counted as rt. Infected individuals 18

can also spread the virus, which replicate before evolving or becoming final. Such 19

offspring (xt) increase the number of viruses in Exposed individuals in the next 20

iteration, when they will be allowed to evolve. 21

At the beginning of iteration t+ 1, there are (Rt +Et + It)(Rt +Et + It − 1)/2 pairs 22

of viruses sharing an average distance equal to dt, but along the iteration some of the 23

distances may increase by a certain amount to be calculated, as also new viruses may 24

arise. Therefore, 25

dt+1 =
1

Z ′t

(
dt

(Rt + Et + It)(Rt + Et + It − 1)

2
+ Increases + Offspring

)
, (A2)

where Z ′t is a normalization factor, which counts the total number of pairs at the end of 26

iteration t+ 1, 27

Z ′t =
(Rt + Et + It + xt)(Rt + Et + It + xt − 1)

2
. (A3)

If the mutation rate is zero and no new infections occur (xt = 0) the “Increases” term 28

and the “Offspring” term are equal to zero, and dt+1 = dt, as expected. 29

In the following two subsections, we shall calculate the “Increases” term and the 30

“Offspring” term, which accounts for the evolution and for the spread, respectively. 31

2.1 Increases 32

Genetic distances between evolving viruses increase over time. In order to calculate how 33

much these distances increase we first consider that mutations occurring in the same 34

locus of different genomes are unlikely, as well as more than one mutation per locus on a 35

single genome. This approximation holds as long as the epidemic duration T remains 36

sufficiently small, µT � 1. Thus, after one time step, an evolving genome acquires, on 37

average, Bµ mutations. The distance between two evolving genomes will increase, on 38

average, by 2Bµ nucleotides after one time step. The distance between viruses in 39

exposed individuals, for example, increases by 2Bµ and because there are Et(Et − 1)/2 40

pairs of exposed individuals, their evolution along the iteration t+ 1 contributes 41

2BµEt(Et − 1)/2 to the Increases term. On the other hand, the distance between 42

viruses in an exposed and a recovered individual, or an infected individual that recovers, 43

is only Bµ, because the latter two do not evolve. There are Et(Rt + rt) pairs among 44

these viruses, and thus their contribution to Increases is Et(Rt + rt)Bµ. We recall that 45

the updates in our model occur in the order “Transmission”, “Attempt to Recovery” 46

and lastly, “Genome Evolution”. Thus, if an infected individual recovers its virus does 47

not have the chance to mutate. 48

Therefore, in order to compute the Increases term, we must calculate the average 49

increase in distance between all pairs of viruses and how many pairs of these viruses 50

exist. Table 2 summarizes this information. We obtain 51

Increases =EtRtBµ+ EtrtBµ+ (It − rt)rtBµ+ (It − rt)RtBµ+ (It − rt)Et2Bµ

+
Et(Et − 1)

2
2Bµ+

(It − rt)(It − rt − 1)

2
2Bµ. (A4)
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Table 2. Increases in average distance and number of pairs of viruses.

Viruses Number of Pairs Average Distance Increase

(Et) and (Rt) EtRt Bµ
(Et) and (rt) Etrt Bµ

(It − rt) and (rt) (It − rt)rt Bµ
(It − rt) and (Rt) (It − rt)Rt Bµ
(It − rt) and (Et) (It − rt)Et 2Bµ

(Et) and (Et) Et(Et − 1)/2 2Bµ
(It − rt) and (It − rt) (It − rt)(It − rt − 1)/2 2Bµ

(Rt) and (Rt) Rt(Rt − 1)/2 0
(rt) and (rt) rt(rt − 1)/2 0
(rt) and (Rt) rtRt 0

2.2 Offspring 52

The contribution of the new infections to the average distance dt+1, the Offspring term, 53

is more tricky. To simplify matters we will assume that an infected individual infects 54

only one susceptible per time step, which is a good assumption if the basic reproduction 55

number R0 is small compared to the average duration of symptoms. Thus, xt is also the 56

number of individuals who infected a susceptible within the time step t+ 1, which will 57

be called ancestors from now on. Let D1 be the average distance between ancestors and 58

the other viruses at time t, and D2, the distance between the exposed and the other 59

viruses. Note that an ancestor may recover and, therefore, not mutate in this time step. 60

The Offspring term is a sum of different contributions between offspring and the other 61

viruses in the population, as explained in detail below. 62

1. Genetic distance between offspring and recovered. The number of pairs is xtRt. 63

Because offspring do not evolve in the time step they appear, their average 64

distance is D1. Then, its contribution to the Offspring term is xtRtD1. 65

2. Genetic distance between offspring and exposed. The number of pairs is xtEt. 66

Because the exposed evolve, these pairs contribute with xtEt(D2 +Bµ) to the 67

Offspring term. 68

3. Genetic Distance between offspring of an infected (ancestor) that does not recover 69

(there are (It − rt) of these individuals) and infected : 70

(a) The distance between an offspring and its ancestor is Bµ, since the ancestor 71

evolves. There are xt(It − rt)/It new infections of this type, contributing 72

with xt((It − rt)/It)Bµ to the distance. 73

(b) For each offspring there are It − rt − 1 infected individuals that did not 74

recover and are not its ancestral. The distance between the offspring and 75

these individuals is (D1 +Bµ), adding 76

xt((It − rt)/It)(It − rt − 1)(D1 +Bµ) to the Offspring term. 77

(c) The distance between the offspring and individuals that recover is D1, 78

because neither of these viruses evolve in this time step. There are 79

xt((It − rt)/It)rt pairs of these viruses, adding xt((It − rt)/It)rtD1 to the 80

Offspring term. 81

4. Genetic distance between offspring of infected (ancestor) that recover in this 82

iteration (there are rt of these individuals) and infected : 83
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(a) The distance between offspring and its ancestor is zero, because none of 84

them evolve. 85

(b) The distance between the offspring and the other viruses of type is D1. 86

There are xtrt/It new infections of this type, contributing 87

(xtrt/It)(rt − 1)D1 to the Offspring term. 88

(c) The distance between offspring and the other infected individuals is 89

(xtrt/It)(It − rt)(D1 +Bµ), since the other infected viruses evolve.. 90

5. Genetic distance between offspring. Because each ancestor gives rise to only one 91

new infection, this distance equals D1, and once there are xt(xt − 1)/2 pairs of 92

offspring, this contribution is (xt(xt − 1)/2)D1. 93

6. By summing everything up, we get

Offspring = xtRtD1 + xtEt(D2 +Bµ)

+ x
(It − rt)

It
Bµ+ xt

(It − rt)
It

(It − rt − 1)(D1 +Bµ) + xt
(It − rt)

It
rtD1

+ xt
rt
It

0 + xt
rt
It

(rt − 1)D1 + xt
rt
It

(It − rt)(D1 +Bµ)

+
xt(xt − 1)

2
D1. (A5)

Putting all these terms together and defining Zt ≡ 2Z ′t we obtain

dt+1 =
1

Zt
(dt(Rt + Et + It)(Rt + Et + It − 1)

+xtD1(xt − 3 + 2Rt + 2It + 2EtD2/D1)

+ 2Bµ(Et + It − rt)(Et + It +Rt + xt − 1)) . (A6)

The reason for assigning the distance D1 between infected and other viruses, instead 94

of dt, is that infected individuals represent only a fraction of the viruses in the 95

population, and the distance between them and other viruses grows over time, therefore 96

being above the average dt. The same holds for the exposed individuals. 97

Although we were not able to analytically find an expression for D1 and D2, we can 98

approximate them as follows. First we assume that D2 ≈ D1. When the epidemic 99

begins, all viruses are infected, so that D1 = dt. However, the ratio between infected 100

and recovered individuals decreases to zero along the epidemic, making D1 larger than 101

dt. Thus, to first order, it is possible to approximate D1 ≈ dt(1 + ε), with ε a function 102

of the number of recovered individuals, Rt/(It + Et +Rt) and the average number of 103

mutations Bµ. Our simulations showed that the linear function 104

D1 = dt(1 + 2BµRt/(It +Et +Rt)) works well (considering the parameters in Appendix 105

A), leading to the theoretical result expressed by Eq.(2) from the main text. 106

2.3 Continuum Limit 107

To achieve the continuum limit we start by substituting rt = Rt+1 −Rt and
xt = Et+1 −Et + It+1 − It +Rt+1 −Rt in Eq.(2) from the main text and subtracting dt
from both sides of this equation:

dt+1 − dt =
1

Zt
{2dt (Et+1 − Et + It+1 − It +Rt+1 −Rt)×

×
[
−1 +Bµ

Rt

It + Et +Rt
(Rt+1 +Rt + It+1 + It + Et+1 + Et − 3)

]
+ 2Bµ (Et + It +Rt −Rt+1) (Et+1 + It+1 +Rt+1 − 1)} (A7)
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with

Zt = (Et+1 + It+1 +Rt+1)(Et+1 + It+1 +Rt+1 − 1). (A8)

Then, we consider the first order approximations

ft ≈ f(t)

ft+1 ≈ f(t) + ḟ(t)∆t,

and once Bµ in the last line of Eq.(A7) is the number of mutations per time step, we
replace it by Bµ∆t

ḋ(t)∆t = (A9)

1

Zt

{
2d(t)∆t

(
Ė(t) + İ(t) + Ṙ(t)

)
×

×
[
−1 +Bµ

R(t)

I(t) + E(t) +R(t)

(
2R(t) + 2I(t) + 2E(t) + ∆t(Ė(t) + İ(t) + Ṙ(t))− 3

)]
+ 2B∆tµ

(
E(t) + I(t)− Ṙ(t)∆(t)

)(
R(t) + I(t) + E(t) + ∆t(Ė(t) + İ(t) + Ṙ(t))− 1

)}
(A10)

with

Zt = (R(t) + I(t) + E(t) + ∆t(Ė(t) + İ(t) + Ṙ(t)))×
× (R(t) + I(t) + E(t) + ∆t(Ė(t) + İ(t) + Ṙ(t))− 1). (A11)

Finally, by taking the limit ∆t→ 0 we obtain the continuous time equation. 108

2.4 Multiple Infections 109

The average distance d
(i)
root,t between viruses from a lineage and its root is calculated

using the same technique discussed above, however it is much simpler, once we only
need to calculate the average distance from a kind of virus and the root (a single virus
which does not evolve). Using the same notation, but now with a super-index to denote
the lineage, we obtain

d
(i)
root,t+1 =

1

Zt

[(
R

(i)
t + E

(i)
t + I

(i)
t

)
d
(i)
root,t + E

(i)
t Bµ+

(
I
(i)
t − r

(i)
t

)
Bµ+ x

(i)
t D

(i)
1,root

]
(A12)

with Zt = (E
(i)
t + I

(i)
t +R

(i)
t + x

(i)
t ) and D

(i)
1,root being the average distance between 110

infected and the root, which is given (similarly to D1) by 111

D
(i)
1,root = d

(i)
root,t

(
1 + 4Bµ

R
(i)
t

E
(i)
t + I

(i)
t +R

(i)
t

)
.

The factor 4 is a fit from numerical investigations. The continuum limit is obtained by 112

subtracting d
(i)
root,t from both sides of Eq.(6) from the main text, applying the 113

continuous approximation for each epidemic curve and taking the limit ∆t→ 0. 114

3 Appendix C: Real genetic evolution algorithm 115

In order to estimate the real (from genetic data) genetic evolution, we used 55 complete 116

genome sequences collected in China [8]. First, these sequences were ordered and 117
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numbered by its collection date and a matrix of genetic distances dij between genomes i 118

and j has been constructed. Each pair of sequences were alligned with the 119

Needleman-Wunsch algorithm, with score +1 for match and −1 for mismatch [9]. Then, 120

the distance between two genomes was computed counting the number of substitutions 121

between the sequences, neglecting indels. 122

We defined a time window τW = 14 = τ0 days. Thus, every genome collected within 123

τW are considered infected, and the genomes collected before this time window are 124

considered recovered. Now, we calculate the average distance among the infected dI,t, 125

recovered dR,t and among infected and recovered dIR,t at the time t. Fig.1 shows an 126

example of a distance matrix with a specific time window. Finally, the average distance 127

at time t can be computed as 128

dt =
dI,tIt(It − 1) + 2dIR,tItRt + dR,tRt(Rt − 1)

(Rt + It)(Rt + It − 1)
(A13)

where It and Rt are respectively given by I(t) and R(t) described evaluated in the 129

supplemental material. 130

With this algorithm, we obtained 20 non-overlapping sets of infected genomes. One 131

of these sets contained only one sequence and was not usable; a second set was too far 132

from all other data and was also discarded. Thus, we were able to calculate 18 points 133

(that appear in Fig.4 from the main text) with error bars given by the standard 134

deviation of each set of distances (between infected, recovered and between infected and 135

recovered) at each time t. 136
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Fig 1. Example of distance matrix to illustrate the algorithm to infer the
genetic evolution. Every genome collected within a time window τW is considered to
belong to an infected individual. The red block shows distances between these viruses.
The blue block shows viruses that appeared before the present time window, whose
individuals are considered to have recovered. Green blocks are distances between
infected and recovered individuals. The remaining entries are distances from viruses
that have not appeared yet at that considered time, i.e., they appeared after the
considered time window.

4 Appendix D: The COVID-19 data from China 137

We got the Chinese epidemic data from the dataset “Epidemic Data for Novel 138

Coronavirus COVID-19” from Wolfram data repository [10]. Unfortunately, this dataset 139

starts on 22 January (going up to 18 August by the date of our analysis), lacking the 140

previous data. Another concern is about the change in the notification protocols 141

adopted by the Chinese government. On 13 February, the Hubei province started to 142

report not only the positive laboratory tests, but also the clinically diagnosed cases as 143

infected too, appearing a sudden increase in infected curve [11]. We also need to correct 144

the data by including undetected cases. 145

Firstly, in order to correct the notification problem, we smoothly distribute the 146

sudden increase number of cases among the previous dates. Following reference [11], the 147
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corrected accumulated number of cases Ia,c(t) is given by 148

Ia,c(t) = Ia(t) + 15133

∑t
i=22 Jan Ia(t)∑13 Feb
i=22 Jan Ia(t)

(A14)

for t ∈ {22 Jan, . . . , 12 Feb}, where Ic(t) is the accumulated number of cases at date t, 149

and 15133 = Ia(13 Feb)− Ia(12 Feb) is the sudden increase due to the changes in the 150

notification protocol. 151

Now, the undetected cases in China were estimated in reference [12], and also 152

following reference [11], we get 153

Ia,c′(t) =
Ia,c(t)

1− θ(t)
(A15)

for the estimated total number of cases at time t, where θ is the undetected fraction, 154

θ(t) =

 0.86, for t ≤ 24 Jan
linear decrease, for 24 Jan ≤ t ≤ 08 Feb
0.31, for t ≥ 08 Feb

(A16)

This correction is also applied to the recovered curve. However, the Wolfram data 155

distincts recovered Rec(t) from deaths Dea(t), while our theory does not differentiates 156

these numbers. Thus, the number of recovered individuals we must consider is 157

R(t) =
Rec(t) +Dead(t)

1− θ(t)
(A17)

and the infected curve is now given as 158

I(t) = Ia,c′(t)−R(t) (A18)

Fig.2 shows the curves after these corrections. Once we do no have directly access to 159

exposed data, we did not consider exposed individuals, meaning, at this point, that we 160

are dealing with a SIR model without any prejudice to the present theory. However, 161

bad data is an important source of error. 162

Infected

Recovered

Fig 2. Chinese epidemic curves after corrections. The left chart shows the
cumulative number of infections in China. The blue curve is the reported number of
cases before the smoothness procedure of Eq.(14) and the orange curve is the result of
this procedure. The right charts are the recovered and infected curves R(t) and I(t).
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Finally, we fit an exponential curve to a few initial data points of I(t) and R(t) and 163

extrapolate it to previous dates. For the I-curve, we have adjusted the exponential 164

ea(t−t0), with fit parameters a and t0, on the first nI = 10 data points and extrapolated 165

it up to the first case t0 days before. With this approach, we found t0 = 11 Dec, which 166

is close to the first case reported by WHO, 08 Dec [13]. For the R(t)-curve, we have 167

used the first nR = 13 data points. The numbers nI and nR were chosen in order to 168

make the exponential extrapolation makes sense according to WHO estimates of the 169

first case, as also to make R(t) < I(t) in a plausible way. 170

Now, the curves R(t) and I(t) can be implemented in the recurrence equation and 171

the distance evolution can be estimated, with the first distance d0 equalling zero. 172
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