Table S1. Employed 57 radiomic features.							
Intensity based features (first order statistics)							
Let X denote the three dimensional image matrix with N voxels; $\overline{\mathbf{X}}$ be the mean of							
X ; P be the first o	rder histogram with 2	V _l discrete intensity l	evels.				
Feature	Formula	Feature	Formula				
1. Energy	$\sum_{i=1}^{N} \mathbf{X}(i)^2$	2. Entropy	$\sum_{i=1}^{N_l} \mathbf{P}(i) \log_2 \mathbf{P}(i)$				
3. Kurtosis	$\frac{\frac{1}{N}\sum_{i=1}^{N}(\mathbf{X}(i)-\bar{X})^{4}}{\left(\sqrt{\frac{1}{N}\sum_{i=1}^{N}(\mathbf{X}(i)-\bar{X})^{2}}\right)^{2}}$	4. Maximum	max(X)				
5. Mean	$\frac{1}{N}\sum_{i=1}^{N}\mathbf{X}(i)$	6. Mean absolute deviation	$\frac{1}{N}\sum_{i=1}^{N} \operatorname{abs}(\mathbf{X}(i) - \overline{X})$				
7. Median	median(X)	8. First quartile	Value that splits off the lowest 25% of data from the highest 75%				
9. Third quatile	Value that splits off the highest 25% of data from the highest 75%	10. Minimum	min(X)				
11. Range	$\max(\mathbf{X}) - \min(\mathbf{X})$	12. Root mean square (RMS)	$\sqrt{\frac{\sum_{i=1}^{N} \mathbf{X}(i)^2}{N}}$				
13. Skewness	$\frac{\frac{1}{N}\sum_{i=1}^{N} (\mathbf{X}(i) - \bar{X})^3}{\left(\sqrt{\frac{1}{N}\sum_{i=1}^{N} (\mathbf{X}(i) - \bar{X})^2}\right)^3}$	14. Standard deviation	$\sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(\mathbf{X}(i)-\bar{X})^2}$				
15. Uniformity	$\sum_{i=1}^{N_l} \mathbf{P}(i)^2$	16. Variance	$\frac{1}{N-1}\sum_{i=1}^{N} (\mathbf{X}(i) - \bar{X})^2$				
Shape/Size based	features		· · · -				
Let V denote the t	umor volume and A t	he surface area of th	e volume.				
17. Compactness 1	$\frac{V}{\sqrt{\pi}A^{2/3}}$	18. Compactness 2	$36\pi \frac{V^2}{4^3}$				
19. Maximum 3D diameter	The largest pairwise Euclidean distance between voxels on the surface of the tumor volume.	20. Spherical disproportion	$\frac{A}{4\pi R^2}$				
21. Sphericity	$\frac{\pi^{\frac{1}{3}}(6V)^{\frac{2}{3}}}{A}$	22. Surface area	$A = \sum_{i=1}^{Ns} \frac{1}{2} a_i b_i \times a_i c_i $ <i>Ns</i> is the total number				

			of triangles covering the surface and <i>a</i> , <i>b</i> and <i>c</i> are vertices of the triangles
			triangles.
23. Surface to volume ratio	$\frac{A}{V}$	24. Volume	The number of pixels in the tumor region multiplied by the voxel size.

Table S1 (cont.). Employed 57 radiomic features.

Textural features	Textural features (gray-level co-occurrence matrix based features)					
Let $\mathbf{P}(\delta, \alpha)$ be the co-occurrence matrix for an arbitrary distance δ and direction α ; N_g be the						
number of discrete intensity levels in the image; $p_x(1)$ be the marginal row probabilities; $p_y(1)$ be the marginal column probabilities: u_x be the mean of p_x : u_y be the mean of p_y : σ_y be the standard						
deviation of p_x ; σ_y be the standard deviation of p_y ; HXY be the entropy of P ; HX be the entropy of						
p_x ; HY be the entropy of p_y ;						
$p_{x+y}(k) = \sum_{i=1}^{N_g}$	$\sum_{i=1}^{N_g} \mathbf{P}(i,j), i+j=k, k=2,3$	3,,2 <i>N</i> g;				
$p_{x-y}(k) = \sum_{i=1}^{N_g}$	$\sum_{i=1}^{N_g} \mathbf{P}(i,j), i-j = k, k = 0$,1,, $N_q - 1$;				
$HX = -\sum_{i=1}^{N_g} p_r$	$(i)\log(p_r(i)), HY = -\sum_{i=1}^{N_g} p_V$	$(i) \log(p_{y}(i))$):			
$\Box_{l=1}^{l=1} \Gamma_{x}$ HXY1 = $-\sum^{N_{g}}$	$\sum_{i=1}^{N_g} \mathbf{P}(i, i) \log (n_i(i)n_i(i))$		HXY2 =			
$\sum_{i=1}^{N_a} \sum_{i=1}^{N_a}$	$\sum_{j=1}^{n} (i,j) \log (p_x(i)p_y(j))$,			
$-\sum_{i=1}^{s}\sum_{j=1}^{s}p_{x}($	$(i)p_y(j)\log(p_x(i)p_y(j))$	1				
25.	$\sum^{N_g} \sum^{N_g} i i \mathbf{P}(i, j)$	26. Cluster	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} [i+j-\mu_x -$			
Autocorrelation	$\sum_{i=1}^{n} \sum_{j=1}^{n} l J \mathbf{P}(l, j)$	Prominence	$\left \boldsymbol{\mu}_{\boldsymbol{\gamma}}\right ^{4}\mathbf{P}(i,j)$			
27. Cluster	$\sum_{i=1}^{N_g} \sum_{i=1}^{N_g} [i+j-\mu_x -$	28. Cluster	$\sum_{i=1}^{N_g} \sum_{i=1}^{N_g} [i + j - \mu_x -$			
Shade	$\left \mu_{\nu} \right ^{3} \mathbf{P}(i, j)$	Tendency	$\left \boldsymbol{\mu}_{\boldsymbol{\nu}} \right ^2 \mathbf{P}(i,j)$			
29. Contrast	$\sum_{i=1}^{N_g} \sum_{i=1}^{N_g} \mathbf{i} - \mathbf{j} ^2 \mathbf{P}(i, j)$	30.	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \frac{ij \mathbf{P}(i,j) - \mu_x(i) \mu_y(j)}{(i) - \mu_x(i) \mu_y(j)}$			
		Correlation	$-i-1-j-1$ $\sigma_x(i)\sigma_y(j)$			
31. Difference	$\sum_{k=1}^{N_{g}-1} n_{u} u(i) log_{2}[n_{u} u(i)]$	Dissimilarit	$\sum_{i=1}^{N_g} \sum_{i=1}^{N_g} \mathbf{i} - \mathbf{j} \mathbf{P}(\mathbf{i}, \mathbf{j})$			
entropy	$\Delta_{i=0} p_{x-y(i)} g_{2}[p_{x-y(i)}]$	у	$\Delta_{i=1} \Delta_{j=1} = 1^{10}$			
33. Energy	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} [\mathbf{P}(i,j)]^2$	34. Entropy (<i>HXY</i>)	$-\sum_{i=1}^{N_g}\sum_{j=1}^{N_g}\mathbf{P}(i,j)\log_2\left(\mathbf{P}(i,j)\right)$			
35	$\nabla^{N_a} \nabla^{N_a} \mathbf{P}(i,i)$	36.	$\mathbf{\nabla}^{N_{a}} \mathbf{\nabla}^{N_{a}} \mathbf{P}(i,i)$			
Homogeneity 1	$\sum_{i=1}^{g} \sum_{j=1}^{g} \frac{1}{1+ i-j }$	Homogenei tv 2	$\sum_{i=1}^{g} \sum_{j=1}^{g} \frac{1}{1+ i-j ^2}$			
		38.				
37.		Information				
Informational	HXY-HXY1	al measure	$\sqrt{1-e^{-2(HXY2-HXY)}}$			
measure of	$\max(HX,HY)$	of	VI C			
		2				
39. Inverse		10 Inverse				
Difference	$\sum_{i=1}^{N_g} \sum_{i=1}^{N_g} \frac{\mathbf{P}(i,j)}{(j-i ^2)}$	Difference	$\sum_{i=1}^{N_g} \sum_{i=1}^{N_g} \frac{\mathbf{P}(i,j)}{\langle i-i \rangle}$			
Moment	$1 + \left(\frac{N^2}{N^2}\right)$	Normalized	$\int \frac{1}{N} \int \frac{1}{N} \left(\frac{1}{N} \right)$			
inormanzea						

41. Inverse variance	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \frac{\mathbf{P}(i,j)}{ i-j ^2}, i \neq j$	42. Maximum Probability	$\max(\mathbf{P}(i,j))$		
43. Sum average	$\sum_{i=2}^{2N_g} \left[i \mathbf{P}_{x+y}(i) \right]$	44. Sum entropy	$-\sum_{i=2}^{2N_g} \mathbf{P}_{x+y}(i) \log_2 \big[\mathbf{P}_{x+y}(i) \big]$		
45. Sum variance	$\sum_{i=2}^{2N_g} (i - SE)^2 \mathbf{P}_{x+y}(i)$	46. Variance	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (i-\mu)^2 \mathbf{P}(\mathbf{i},\mathbf{j})$		
Textural features	s (gray-level run-length matrix	based feature	28)		
Let $p(i, j \theta)$ be the (i, j) th entry in the given run-length matrix p for a direction θ ; N_g be the number of discrete intensity levels in the image; N_r be the number of different run lengths.					
47. Short Run Emphasis	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} \left[\frac{p(i,j \theta)}{j^2} \right]}{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} p(i,j \theta)}$	48. Long Run Emphasis	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} j^2 p(i,j \theta)}{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} p(i,j \theta)}$		
49. Gray Level Non-Uniformity	$\frac{\sum_{i=1}^{N_g} \left[\sum_{j=1}^{N_r} p(i,j \theta) \right]^2}{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} p(i,j \theta)}$	50. Run Length Non- Uniformity	$\frac{\sum_{j=1}^{N_r} \left[\sum_{i=1}^{N_g} p(i,j \theta) \right]^2}{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} p(i,j \theta)}$		
51. Run Percentage	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} \frac{p(i,j \theta)}{N_p}$	52. Low Gray Level Run Emphasis	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} \left[\frac{p(i,j \theta)}{i^2}\right]}{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} p(i,j \theta)}$		
53. High Gray Level Run Emphasis	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} i^2 p(i,j \theta)}{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} p(i,j \theta)}$	54. Short Run Low Gray Level Emphasis	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} \left[\frac{p(i,j \theta)}{i^2 j^2} \right]}{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} p(i,j \theta)}$		
55. Short Run High Gray Level Emphasis	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} \left[\frac{p(i,j \theta)i^2}{j^2} \right]}{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} p(i,j \theta)}$	56. Long Run Low Gray Level Emphasis	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} \left[\frac{p(i,j \theta)j^2}{i^2}\right]}{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} p(i,j \theta)}$		
57. Long Run High Gray Level Emphasis	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} i^2 j^2 p(i,j \theta)}{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} p(i,j \theta)}$				