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SUPPLEMENTAL MATERIAL 

 

Methods 

 

Experimental pancreatitis in mice. Cerulein-induced (CER-AP) and L-arginine induced (Arg-

AP) acute pancreatitis models were performed in 12-week-old C57BL/6 mice that received 7 

hourly i.p. injections of 50 μg/kg cerulein or 3 hourly i.p. injections of 3.3 g/kg Arg; controls 

received physiologic saline injections. Mice were euthanized for analyses 7 hours after the first 

cerulein or 24 hours after the first Arg injection. Choline deficient, ethionine-supplemented (CDE) 

pancreatitis was induced in young (∼5-weeks old) female mice fed either CDE or control diet. 

Mice were euthanized 72 hours after the diet initiation. These models have been described in 

detail (1-7).   

In vivo treatments of mice. 12-week-old WT mice were subjected for 4 consecutive days to 

daily i.p. injections of 20 mg/kg simvastatin (8,9) or 20 mg/kg T0901317 (10); or 10 mg/kg 

U18666A for 15 days (11). Control mice received vehicle injections. Some of the simvastatin- 

and T0901317-treated mice were subjected to CER-AP on day 4, as indicated in corresponding 

figures.  



12-week-old Gnptab-/- mice were subjected to daily i.p. injections of 20 mg/kg simvastatin or 

the same dose of T0901317 for 4 or 21 days. Neither treatment changed total cholesterol content 

in pancreas. 

Pancreas subcellular fractionation. Subcellular fractionation of pancreatic tissue was 

performed by differential centrifugation (7). Pancreata were collected and homogenized in 8 ml of 

homogenization buffer with 5 full strokes in a Dounce homogenizer, and the nuclei and cell debris 

sedimented at 150 g. The postnuclear supernatant was centrifuged at 1,300 g, and the pellet 

collected and referred to as fraction Z. The supernatant was further centrifuged at 12,000 g, and 

both the 12,000-g pellet (fraction L) and supernatant (fraction C) were collected. Total protein in 

the fractions was measured by Bradford assay (Bio-Rad). The amounts of total protein in each 

fraction were consistent across experimental conditions. The quality of subcellular fractionation 

was evaluated by IB analysis for specific protein markers [this study and Ref. (7)].   

Isolation of mouse pancreatic acinar cells and lobules. Pancreatic acinar cells were isolated 

from mice of both sexes using a standard collagenase digestion procedure (1-6). Pancreatic 

lobules (∼2-mm thick) were excised and incubated at 37 °C in 199 medium containing 0.1 mg/mL 

soybean trypsin inhibitor (1).  

Human pancreas slices were obtained as in (12), from portions of live normal human 

pancreata from pre-terminal donors that were not used for transplantation and diverted to 

research (provided by Trillium Gift of Life Network, Toronto, Ontario, year 2020) or from normal 

portions of pancreatic cancer operations. Pancreas was cut into ~3x3x3 mm pieces and 

embedded with 37 °C low melting 3.8% agarose gel in extracellular solution containing (mM): 125 

NaCl, 2.5 KCl, 1 MgCl2, 2 CaCl2, 1.25 NaH2PO4, 26 NaHCO3, 2 sodium pyruvate, 0.25 ascorbic 

acid, 3 myo-inositol, 6 lactic acid, and 7 glucose, and placed on ice to solidify the gel. The gelled 

tissue blocks were sliced with Vibratome into 120 µm-thick slices; slices were washed with the 

same extracellular solution, placed in 199 medium containing 0.1 mg/mL soybean trypsin inhibitor, 

and treated with CCK-8 (CCK) or carbachol for ex-vivo pancreatitis.  



Baculoviral transduction. CellLightTM Rab5a-GFP and Rab7a-RFP reagents were added to 

suspension of isolated mouse acinar cells to reach the final concentration of 30 particles/cell, per 

manufacturer's protocol. The cells were gently shaken at 37 °C for 1 h to maximize transduction 

efficiency, cultured for another 16 hours, fixed, and analyzed by confocal microscopy. 

Mitochondria isolation and functional assays. Mitochondria were isolated from mouse 

pancreas and liver in a Ca2+-free medium in the presence of 1 mM EGTA, as in (3-5,13). The 

value of respiratory control ratio in these preparations, measured in the presence of succinate 

(quality control parameter), was greater than 3.0.   

Mitochondrial membrane potential (∆Ψm) was measured in mitochondria suspension (1 

mg/ml protein) using a tetraphenyl phosphonium (TPP+) electrode (3-5,13) in a buffer containing 

(mM) 250 sucrose, 22 KCl, 22 triethanolamine (pH 7.4), 3 MgCl2, 5 KH2PO4, 1 EGTA, 

supplemented with 0.5% BSA and 10 mM glutamate plus 2 mM malate as the respiratory 

substrate. An increase in ∆Ψm results in TPP+ uptake by mitochondria and, correspondingly, a 

decrease in external TPP+ concentration measured with the TPP+ electrode. The mitochondrial 

uncoupler FCCP was added at the end of each experiment to cancel ∆Ψm and thus normalize 

the changes in ∆Ψm. Variations in the basal ∆Ψm values between mitochondria preparations 

from normal mouse pancreas did not exceed 3%.  

Specific activities of individual ETC complexes were measured spectrophotometrically in 

homogenates of isolated mitochondria or submitochondrial particles, as in (14). 

Oxygen consumption rates (OCR) were measured in live acinar cells using Seahorse XFe96, 

as in (15). As shown in Figure 7, the decrease in OCR upon injection of the ATP synthase inhibitor 

oligomycin represents a portion of basal respiration that is used to drive ATP production (ATP-

linked). Addition of the uncoupler FCCP, which stimulates the respiratory chain to operate at 

maximum capacity, yields the value of maximal OCR. The combination of complex I inhibitor 

rotenone and complex III inhibitor antimycin A is added to shut down mitochondrial respiration, 

providing the contribution of non-mitochondrial respiration to correct for. In all within-set 



experiments we used the same volume of cell suspension with the same amount of protein; and 

partial oxygen pressure was monitored to ensure its stability in the cell suspension. 

IB analysis was done as in (1-7,15). Immunoblots were developed using enhanced 

chemiluminescence detection kit (Pierce), and band intensities were quantified by densitometry 

using FluorChem HD2 imaging system (Alpha Innotech/ProteinSimple). 

Fluorescence and light microscopy were utilized as described in (1-7,15). Pancreatic tissue 

was cut into ~3x3x3 mm pieces and fixed overnight at 4 °C with 4% (w/v) methanol-free 

paraformaldehyde in 0.1 M phosphate buffer. Tissue pieces were then equilibrated in 15% 

sucrose-phosphate buffer, embedded in Tissue-Tek OCT compound, and stored at -80 °C. For 

paraffin embedding, pancreatic tissue pieces were fixed in 10% buffered formaldehyde. Acinar 

cell pellets were fixed for 20 min at room temperature in 4% (w/v) paraformaldehyde in 0.1 M 

phosphate buffer.  

Fixed-frozen or paraffin-embedded pancreas and liver tissue sections and fixed cells were 

processed as in (1-7) and immunolabeled by incubating overnight at 4 °C with primary antibodies, 

followed by incubation with secondary antibodies conjugated with FITC or Texas Red. Nuclei 

were counterstained with DAPI or NucRed 647.  

Staining for neutral lipids and free cholesterol was performed by incubation of fixed-frozen 

tissue sections or fixed cells with, respectively, 2 µg/ml BODIPY493/503 for 45 min or 100 g/ml 

filipin for 2 h at room temperature. For double labeling, BODIPY493/503 or filipin were applied 

after fixed-frozen tissue or cell sections incubated with primary and secondary antibodies.  

To label acidic organelles, acinar cells were incubated with 100 nM LysoTracker Deep Red 

for 15 min at RT, washed, and fixed for 20 min in 4% (w/v) paraformaldehyde in 0.1 M phosphate 

buffer at room temperature. 

For trypsinogen activation peptide (TAP) immunolabeling, pancreatic lobules were fixed with 

2% paraformaldehyde and 0.05% glutaraldehyde in PBS, and processed as in (7,16).    



All fluorescence images were acquired with a Zeiss LSM710 confocal microscope using x63 

objective and preset within-experiment image acquisition settings. Quantitative fluorescence 

analysis was performed with Volocity software (PerkinElmer). Overlap between 2 fluorescent 

labels was measured using Manders-Costes coefficient. Pearson’s colocalization coefficient was 

calculated if both immunolabeled proteins had the same (e.g. “dotted”) staining pattern.   

Immunohistochemical detection of the infiltrating inflammatory cells was performed on 

paraffin-embedded pancreas sections using streptavidin-biotin immunoenzymatic antigen 

detection system, as in (1,2).    

Transmission electron microscopy. For electron microscopy (1-3,7), the tissue was cut into 1-

mm cubes and fixed overnight at 4 °C in 2.5% glutaraldehyde, 150 mM sodium cacodylate (pH 

7.4). After postfixation in 1% OsO4 followed by uranyl acetate, the tissue was dehydrated in 

ethanol and embedded in epoxy resin. 100-nm-thick sections were examined (S.W.F.) in a 

Hitachi-600 electron microscope. 

qPCR. Total RNA was isolated from tissue or cells using QIAGEN RNeasy Plus kit according 

to the manufacturer’s instructions, quantified in NanoDrop, and converted to cDNA with high-

capacity cDNA reverse transcription kit. KAPA SYBR FAST qPCR Master Mix kit and a 

LightCycler 480 were used for quantitative PCR. Fold change related to the control group was 

calculated using the 2ΔΔCt method with Rplp0/36B4 as the reference gene. Primers are available 

upon request. 

Transferrin-Alexa594 (Tf-594) internalization assay. Mouse acinar cells were incubated for 

2 h in serum-free 199 medium, pulsed with the fluorescently labeled Tf-594 (25 g/ml) for 30 

min on ice, washed with PBS, transferred to 37 ˚C, and chased for 3, 30, and 90 min. At these 

time points, cells were placed on ice, fixed, and analyzed with confocal microscopy.  

Measurement of protease and lipase activities. Activities of cathepsin (Cat) B and L, caspase-

3, trypsin, and lysosomal acid lipase (LAL) were measured in pancreatic tissue or cell 

homogenates and subcellular fractions with fluorogenic assays using substrates specific for CatB 



(Z-Arg-Arg-AMC), CatL (Z-Phe-Arg-AMC), caspase-3-like (Z-VAD-fmk), trypsin (Boc-Gln-Ala-

Arg-AMC), as previously described (1-4,6,7); and for LAL (4-methylumbelliferyl oleate), as in (17). 

In measurements of CatL activity, the assay buffer also contained 50 μM CA-074me, a CatB 

inhibitor. LAL activity was measured in the absence and presence of the LAL inhibitor lalistat (100 

µM) as the difference between these values (17). 

Cholesterol and triglyceride assays. Total cholesterol content was measured with Cholesterol 

Assay kit per manufacturer’s instructions. Samples of mouse pancreas and liver, cell pellet 

homogenates, subcellular fractions, isolated mitochondria, and serum were diluted in the reaction 

buffer containing cholesterol probe and incubated at 37 °C for 1 h in the dark. To measure total 

cholesterol, the samples were subjected to digestion with cholesterol esterase. To measure non-

esterified cholesterol, the esterase was omitted from the assay. 

Triglycerides (TAG) content was measured using Triglyceride Assay kit. Tissue samples were 

homogenized in 10% (w/v) NP-40 aqueous solution, subjected to two heating/cooling cycles to 

solubilize triglycerides, and centrifuged to remove insoluble material. Supernatants were diluted 

with water and mixed with lipase-containing reaction mix per manufacturer's instructions.  

For measurement of free fatty acids (FFA), lipids were extracted from tissue or isolated 

mitochondria using chloroform:methanol (2:1 v/v). FFA content was measured by enzymatic 

assay using HR kits.  

Fluorescence intensity (for cholesterol) and absorbance (for TAG) were measured in a Tecan 

microplate reader. Each measurement was in duplicate, and the values were normalized per mg 

total protein in the sample. 

LDL uptake was measured as in (18). Isolated acinar cells were incubated in serum-free 

199 medium for 2 h at RT, washed with PBS, and incubated with 5 μg/mL DyLight550-labeled 

LDL for additional 2 h at 37 °C. Then, cells were resuspended in a lysis buffer; cell debris were 

removed by centrifugation, and the fluorescent signal in cell lysate was measured in a Typhoon 

imager at Ex/Em = 540/570 nm and normalized to total protein in the lysate. 



Cytokine/chemokine measurements. Samples were prepared as in (19). Briefly, tissue was 

homogenized in the presence of 25 U/ml benzonase endonuclease, and protease inhibitors 

cocktail and incubated on ice, and cell debris were removed by centrifugation at 4 °C. Cytokines 

and chemokines were measured in the supernatants with Luminex® 200™ Multiplexing Instrument 

using mouse 32-plex Cytokine/Chemokine panel, and normalized per total protein in the sample. 

 Pancreatitis responses were measured as previously described (1-7). Serum amylase and 

lipase were measured in a Hitachi 707 analyzer. Acinar cell vacuolization and necrosis were 

quantified on H&E stained pancreatic tissue sections; at least 1000 acinar cells/mouse were 

analyzed in several high-power fields. ATP was measured in tissue homogenates using 

bioluminescence assay (3-5).  

 Amylase secretion was assayed as in (1,2), by measuring the amount of amylase both in the 

incubation medium and in cells with the Phadebas amylase assay kit. 

Serum markers of liver damage. Plasma concentrations of aspartate aminotransferase and 

alanine aminotransferase were determined by corresponding assay kits per manufacturer’s 

instructions. 
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Supplemental Table 1 

Human pancreatitis tissue 

Code Age/Sex Procedure Diagnosis/Reason for surgery 
Presumed explanation for 

pancreatitis in sampled section 

CP1 66/F Whipple Autoimmune pancreatitis, type 2 Autoimmune pancreatitis, type 2 

CP2 73/F Enucleation Well differentiated Pancreatic 
Neuroendocrine Tumor, Grade2 

Pancreatitis associated with 
obstruction caused by PNET 

CP3 61/M Whipple Chronic pancreatitis 
(unclear etiology) 

Chronic pancreatitis of unclear 
etiology (no support for 

autoimmune) 

CP4 71/M Whipple Chronic pancreatitis (unclear 
etiology) presenting as mass 

lesion 

Chronic pancreatitis of unclear 
etiology (no support for 

autoimmune) 

CP5 21/F Distal 
pancreatectomy 

Chronic pancreatitis with duct 
stricture (unclear etiology) 

Chronic pancreatitis with duct 
stricture, unclear etiology (no 

support for autoimmune) 

CP6 69/F Distal 
pancreatectomy 

Low grade IPMN Pancreatitis associated with 
obstruction caused by IPMN 

CP7 46/M Whipple Chronic pancreatitis (unclear 
etiology) 

Chronic pancreatitis of unclear 
etiology (no support for 

autoimmune) 

CP8 67/M Distal 
pancreatectomy 

Benign congenital cyst Pancreatitis associated with 
obstruction caused by benign 

congenital cyst 

CP9 75/F Whipple Well differentiated Pancreatic 
Neuroendocrine Tumor, Grade1 

Pancreatitis associated with 
obstruction caused by PNET 

CP10 59/M Whipple Chronic pancreatitis (unclear 
etiology) 

Chronic pancreatitis of unclear 
etiology (no support for 

autoimmune) 

CP11 71/M Whipple Moderately differentiated 
pancreatic adenocarcinoma 

Pancreatitis associated with 
obstruction caused by PDAC 



 

No pancreatitis tissue 

 

Code Age/Sex Procedure Diagnosis/ Reason for surgery Sampled section 
 

NP1 60/M Whipple Ampullary adenocarcinoma 
 

Uninvolved histologically normal 
pancreas 

NP2 80/M Whipple Ampullary adenocarcinoma 
 

Uninvolved histologically normal 
pancreas 

NP3 40/F Whipple Well differentiated Pancreatic 
Neuroendocrine Tumor, Grade 1 

Uninvolved histologically normal 
pancreas 

NP4 68/M Distal 
pancreatectomy 

Well differentiated Pancreatic 
Neuroendocrine Tumor, Grade 1 

Uninvolved histologically normal 
pancreas 

NP5 51/M Whipple Well differentiated Pancreatic 
Neuroendocrine Tumor, Grade 1 

Uninvolved histologically normal 
pancreas 

NP6 39/F Whipple Well differentiated Pancreatic 
Neuroendocrine Tumor, Grade 1 

Uninvolved histologically normal 
pancreas 

NP7 67/M Distal 
pancreatectomy 

Well differentiated Pancreatic 
Neuroendocrine Tumor, Grade 1 

Uninvolved histologically normal 
pancreas 

NP8 40/M Whipple Well differentiated Pancreatic 
Neuroendocrine Tumor, Grade 1 

Uninvolved histologically normal 
pancreas 

NP9 41/M Distal 
pancreatectomy 

Well differentiated Pancreatic 
Neuroendocrine Tumor, Grade 2 

Uninvolved histologically normal 
pancreas 

NP10 71/M Whipple Well differentiated Pancreatic 
Neuroendocrine Tumor, Grade 2 

Uninvolved histologically normal 
pancreas 

 

Note:  All samples were taken > 1 cm away from any associated lesion. All samples were evaluated 

and placed in formalin fixative at the time of intraoperative evaluation. 

 

  



Supplemental Figures 

 
Figure S1. Immunofluorescence colocalization of markers of early (TfR) or recycling (Rab11) endosomes 
with the LE/Ly marker LAMP2 in Gnptab-/- pancreas. Quantitative analysis of these images is presented in 
Figure 3E-H. 
 
 
 
 

 

  



 
 

Figure S2. Neutral lipids accumulate in LE/Ly and autophagic compartments of Gnptab-/- pancreas. 
Characteristics of neutral lipid metabolism were measured in (A–C,F,G) pancreatic tissue of WT, Gnptab-/- (KO) 
and Atg5Δpan mice, and (D,E) WT and KO acinar cells treated with Bafilomycin A1 (BafA1; 20 nM). (A) EM showing 
lipid inclusions in KO pancreas. (B–E) Tissue or cells were stained with BODIPY 493/503 for neutral lipids; 
BODIPY fluorescence intensity was quantified with Volocity software, normalized to the number of nuclei (DAPI) 
in the field, and expressed relative to WT control. In (C), each symbol corresponds to 20-30 cells in a different 
field (n=5-6 fields from 3 mice of each strain). In (E), each symbol corresponds to 10-15 cells in a different field 
(n=6-7 fields from 3 WT and 3 KO cell preparations). (F,G) Perilipins (PLINs) were analyzed by immunoblot; their 
band intensities were densitometrically quantified, normalized to GAPDH in the same sample and, further, to WT. 
Each symbol represents an individual mouse (n=3 mice of each strain). Each lane on tissue IB represents an 
individual mouse; ERK1/2 or GAPDH serve as loading control. Values are mean ± SEM. *p<0.05, **p<0.01, 
***p<0.001 vs the same parameter in WT tissue or (E) control/untreated WT cells. Significance was determined 
by 2-tailed Student’s t test (G) or 1-way ANOVA followed by Tukey’s multiple comparisons test (C,E). Scale bars: 
5 µm (A) and 10 µm (B,D).  

  



 
 
Figure S3. Colocalization of neutral lipids stain with markers of autophagic (LC3 puncta) and LE/Ly 
(LAMP1) compartments in Gnptab-/- pancreas. WT and KO pancreatic tissue sections were stained with 
BODIPY 493/503 for neutral lipids. Colocalization of BODIPY with LC3 (A–C) or LAMP1 (D–F) was quantified 
with Volocity software using Manders-Costes coefficients. Each symbol corresponds to 20-30 cells in a 
different field (n=6-10 fields from 3 mice of each strain). Values are mean ± SEM. ***p<0.001 vs the same 
parameter in WT tissue; 2-tailed Student’s t test. Scale bars: 10 µm.  
 

 

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S4. Gnptab ablation depletes non-esterified (free) cholesterol in acinar cell plasma membrane and 
zymogen granules. Colocalization of the free-cholesterol probe filipin with markers of (A) plasma membrane 
(cadherin; pan-cadherin Ab) and (B) zymogen granules (amylase) in acinar cells was visualized with confocal 
microscopy. Quantitative analysis of these images is presented in Figure 4J-L. Scale bars: 10 µm. 
 

 

 
 
 
 
 



 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5. Gnptab ablation perturbs non-esterified (free) cholesterol localization in acinar cell 

endolysosomal system. Filipin colocalization with markers of (A) LE/Ly (NPC1) and (B) early endosomes 

(EEA1) in acinar cells was visualized with confocal microscopy. Quantitative analysis of these images is 

presented in Figure 4M,N. Scale bars: 10 µm. 

 
 
  



 
 
Figure S6. Gnptab ablation does not perturb the endolysosomal system and does not alter cholesterol 
content in liver. (A–H,J) IB analysis of markers/mediators of late endosomes/lysosomes (LAMP2, Rab7, CatB), 
cholesterol trafficking (NPC1, NPC2), autophagy (LC3, p62, EPG5), and lipid droplets (PLINs). In (A), CatB 
immunoblot shows bands corresponding to the proform, intermediate/single-chain (sc) and mature/double-chain 
(dc) forms. (B–H,J) Protein band intensities in liver (A) and pancreas (see immunoblots in Figures 1, 2, 4, and 
S2) were densitometrically quantified, normalized to ERK or GAPDH in the same sample, and expressed relative 
to WT. (I) Triglycerides (TAG), free fatty acids (FFA), total (TC) and free (FC) cholesterol contents in liver were 
measured by enzymatic assays. Values are mean ± SEM from 3-4 mice of each strain; each symbol represents 
an individual mouse. *p<0.05, **p<0.01, ***p<0.001 vs the same tissue in WT. Significance was determined by 
2-tailed Student’s t test (F,J) or 1-way ANOVA followed by Tukey’s multiple comparisons test (B–E,H).  
 
 
 
 
 
 
 
 
 
 
 



 
Figure S7. Gnptab ablation does not increase colocalization of early endosomes and neutral lipids with 

LE/Ly compartment in liver. Immunolabeling for LAMP2 and EEA1, and BODIPY 493/503 staining for neutral 

lipids in KO liver. Scale bars: 10 µm. 

 

 
 
 
 
 

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S8. Inflammatory cell infiltration in pancreas of Gnptab-/- mice. Representative IHC staining for 
markers of macrophages (F4/80), neutrophils (myeloperoxidase; MPO), and T-cells (CD3) in WT and KO 
pancreas. Quantification of these data is shown in Figure 5F. 



 

Figure S9. Simvastatin improves cerulein pancreatitis. Mice received daily i.p. injections of simvastatin (Sim; 

20 mg/kg) or vehicle (see Figure 10), and on day 4 were subjected to cerulein pancreatitis (CER-AP). (A) 

Pancreas histopathology (H&E staining; scale: 10 µm). (B) IB analysis of markers/mediators of autophagy (LC3, 

p62), ER stress (CHOP), and the MLN64/STARD3 protein mediating cholesterol transfer from LE/Ly to 

mitochondria. Each IB lane represents an individual mouse; ERK1/2 is the loading control. The narrow black line 

indicates that lanes are on the same gel but not contiguous. Ub, ubiquitylated proteins. (C) Pancreatitis 

responses. Values are mean ± SEM from 7-13 mice for each condition. ***p<0.001 vs saline control. ###p<0.001 

vs CER-AP alone (no simvastatin). Significance was determined by 1-way ANOVA followed by Tukey’s multiple 

comparisons test.  

 

 


