Supporting Information for

Spray-Capillary Based Capillary Electrophoresis Mass Spectrometry for Metabolite Analysis in Single Cells

Lushuang Huang¹, Mulin Fang¹, Kellye A. Cupp-Sutton¹, Zhe Wang¹, Kenneth Smith², and Si Wu^{1*}

- 1. Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
- 2. Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104

*To whom correspondence should be addressed: Si Wu, Email: si.wu@ou.edu

Abstract

Single-cell capillary electrophoresis mass spectrometry (CE-MS) is a promising platform to analyze cellular contents and probe cell heterogeneity. However, current single-cell CE-MS methods often rely on offline microsampling processes and may demonstrate low sampling precision and accuracy. We have recently developed an electrospray-assisted device, spray-capillary, for low-volume sample extraction. With the spray-capillary, low-volume samples (pL~nL) are drawn into the sampling end of the device, which can be used directly for CE separation and online MS detection. Here, we re-designed the spray-capillary by utilizing a capillary with a <15 μ m tapered-tip so that it can be directly inserted into single cells for sample collection and on-capillary CE-MS analysis. We evaluated the performance of the modified spray-capillary by performing single-cell microsampling on single onion cells with varying sample injection time and direct MS analysis or online CE-MS analysis. We have demonstrated, for the first time, online sample collection and CE-MS for the analysis of single cells. This application of the modified spray-capillary device facilitates the characterization and relative quantification of hundreds of metabolites in single cells.

Table of Contents

Table of Contents				
Figure S1.	Triplicate sample extraction from A. cepa single cells using the modified spray-capillary			
device				
Figure S2.	Comparison between blank and onion sample			
Figure S3.	MS/MS spectra of phenylalanine, malic acid, and glucose			
Figure S4.	MS/MS spectra of (A) nystose (DP4) with sodium adduct, (B) sucrose with potassium adduct,			
(C) arginine	e, and (D) tyrosine			
Figure S5.	CE separation of standard metabolites and comparison with same metabolites from onion			
extracts				
Table S1.	Characterization of metabolites using proposed spray-capillary CE-MS			
system				
Table S2.	Relative migration time comparison between standard metabolites and corresponding			
onion meta	bolites			

Supplementary Figures:

Figure S1. Triplicate sample extraction from *A. cepa* single cells using the modified spray-capillary device. (A) Total ion chromatograms from three replicate single cell injections; (B) the summed spectrum of the eluted peak from each analysis. The spray-capillary used is a 360 μ m O.D X50 μ m I.D. long capillary (50 cm in length) with a tapered tip at the sample inlet end. For sample injection, the electrospray voltage was 3 kV, and the sample injection time was 5 s (NL: normalization level).

Figure S2. Comparison between control (buffer) and normal (onion) trial. (A) Normalized base peak chromatogram of control and onion trial. (B) Normalized averaged spectrum of control trial and onion trial. NL: normalization level.

Figure S3. MS/MS identification of (A) phenylalanine, (B) glucose with sodium adduct, and (C) malic acid with sodium adduct.

Figure S4. MS/MS spectra of (A) nystose (DP4) with sodium adduct, (B) sucrose with potassium adduct,

(C) arginine, and (D) tyrosine.

Figure S5. CE separation of standard metabolites and comparison with same metabolites from onion extracts.

Metabolite	Replicate #	Peak area	RSD (Peak area)	Relative migration time	RSD
	R1	2.98E5		1	х
Malic acid $[C, H, O, (+Na^+)]$	R2	2.62E5	17.0%	1	N/A
	R3	3.66E5		1	
	R1	2.62E5		0.664	
Phenylalanine $[C_0H_{12}NO_0(+H^+)]$	R2	5.20E5	35.3%	0.728	4.89%
	R3	5.49E5		0.717	
	R1	1.08E7		0.752	
Cycloalliin	R2	9.72E6	16.3%	0.806	3.85%
	R3	1.33E7	-	0.802	
	R1	1.64E7		0.824	
Glucose	R2	1.40E7	16.8%	0.867	2.63%
[0611206(114)]	R3	1.96E7		0.858	
Methyl cysteine	R1	1.58E5		0.748	
sulfoxide	R2	1.49E5	3.78%	0.801	3.79%
$[C_4H_9NO_3S(+H^+)]$	R3	1.48E5		0.798	
	R1	7.67E4		0.459	
Adenosine $[C_{10}H_{10}N_{10}O_{10}(+H^{+})]$	R2	7.82E4	10.7%	0.540	8.61%
	R3	6.39E4		0.529	

 Table S1. Characterization of metabolites using spray-capillary CE-MS system.

Table S2. Relative migration time comparison between standard metabolites and corresponding onion metabolites.

Triala	Deulieste #	Relative migration time		
Triais	Replicate #	Phenylalanine	Glucose	
	Repl	0.755	0.884	
Standard metabolites mixture	Rep2	0.760	0.870	
	Rep3	0.748	0.864	
Average (Standards)	N/A	0.754	0.872	
RSD (Standards)	N/A	0.80%	1.18%	
	Repl	0.717	0.858	
Onion extracts	Rep2	0.664	0.826	
	Rep3	0.730	0.864	
Average (Onion extracts)	N/A	0.703	0.849	
RSD (Onion extracts)	N/A	4.97%	2.41%	