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1 The Model

1.1 Model Terminology

• Assume we are interested in M classes of observations (symptoms scales or substance use indicators), indexed m =
1, ...,M . These classes of observations may either be binary, or continuous and bounded on [L(m), U(m)]

• Assume we have n participants, indexed i = 1, ..., n, such that the ith participant has N(i) observations, indexed
j = 1, ..., N(i).

• Let yij denote the jth observation on participant i. The class of yij is denoted by mij , and the calendar time at which
it was taken is denoted tij . Let Yi denote the vector of all observations yij taken on participant i.

• For each observation j on participant i, let Xij denote a row vector of Kfixed covariates for fixed effects at the time of
that observation. Let Xi denote the N(i)×Kfixed matrix of covariates for participant i where the jth row is Xij

• For each observation j on participant i, let Zij denote a row vector of Krandom covariates for random effects at the
time of that observation. Let Zi denote the N(i)×Krandom matrix of covariates for participant i where the jth row is
Zij . We assume that the covariates for random effects are a subset of the covariates for fixed effects.

• We define XM
i to be a transformation of Xi as follow: for m = 1, ...,M , let Xm

i be a N(i)×Kfixed matrix where the
jth row is {

Xij ifmij = m

0 ifmij 6= m

Then XM
i is the column union of each of the Xm

i .

This implies that XM
i is a N(i)×

(
Kfixed ×M

)
matrix such that, for j = 1, ..., N(i) and k = 1, ...,Kfixed:

XM
i,j,k+(mi,j−1)×Kfixed

= Xi,j,k

While all other elements of XM
i are zero.

In constructing XM
i , we have defined a matrix that has each value in Xi exactly once, in a column corresponding to

the class of the jth observation and the covariate.

• Similarly, we define ZM
i to be a transformation of Zi - the column union of matrices Zm

i whose jth row is;{
Zij ifmij = m

0 ifmij 6= m

This implies that ZM
i is a N(i)×

(
Krandom ×M

)
matrix such that, for j = 1, ..., N(i) and k = 1, ...,Krandom:

ZM
i,j,k+(mi,j−1)×Krandom

= Zi,j,k

While all other elements of ZM
i are zero.

1.2 Definition of Latent Variables

1.2.1 Continuous Symptom Scales - a Tobit Model

We represent observations for continuous symptom scales using a Tobit model, which postulates that there is an unbounded
latent variable, y′ij such that:

• If the latent variable is less than the lower bound for the symptom scale - y′ij ≤ L(mij) - then we observe yij = L(mij).

• If the latent variable is greater than the upper bound for the symptom scale - y′ij ≥ U(mij) - then we observe
yij = U(mij).

• If the latent variable falls within the bounds of the symptoms scale - L(mij) < y′ij < U(mij) - then we observe yij = y′ij .
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1.2.2 Binary Indicators - a Probit Model

We represent observations for binary indicators using a Probit model, which postulates that there is an unbounded latent
variable, y′ij such that:

• If y′ij < 0 then we observe the indicator to be negative: yij = 0.

• If y′ij ≥ 0 then we observe the indicator to be positive: yij = 1.

1.3 The Distribution for Latent Variables

The vector of all latent variables for participant i (for both continuous and binary observations) is denoted Y ′i . We specify
that Y ′i follows a Multivariate Normal distribution:

Y ′i ∼Multivariate-Normal
(
XM

i β, ZiΓ(ZM
i )T + Φi + Ei

)
(1)

Where β is a vector of fixed effects, and XM
i denotes the matrix of covariates for those fixed effects for participant i at

all times observations are taken.

The variance-covariance matrix has three components:

1. ZM
i Γ(ZM

i )T incorporates the random effects, where Γ is the variance-covariance matrix for the random effects, and
ZM

i are the covariates for random effects

2. Φi encodes a continuous autoregressive process that governs how observations for participant i are correlated over time.

3. Ei is a matrix of measurement errors.

These elements are described in greater detail below.

1.3.1 Fixed Effects

We define βk,m to be the fixed effect for the kth covariate (k ∈ 1, ...,Kfixed) for the mth class of observations, where there
are Kfixed covariates for fixed effects. We define β to be the vector of all Kfixed × M fixed effects such that element
k + (m− 1)×Kfixed of β is βk,m for k = 1, ...,Krandom and m = 1, ...,M

Each βk,m gets a weakly-informative Normal prior with mean 0:

• When the class m of the observation is continuous, the standard deviation of the prior is half the span from the lower
to upper bound of the scale:

βk,m ∼ Normal

(
0,
[U(m)− L(m)

2

]2)

• When the class m of the observation is binary, the standard deviation of the prior is 1:

βk,m ∼ Normal(0, 1)

1.3.2 Random Effects

Conceptually, we postulate that αi,k,m denotes a random effect for participant i for the kth covariate (where k ∈ 1, ...,Krandom)
and the mth class of observations, where there are Krandom covariates for random effects. In actuality, we marginalize over
the α’s so that instead of having to estimate each αi,k,m, we only have to estimate their covariance matrix.

Let αi be the vector of all Krandom ×M random effects for participant i such that element
[
k + (m− 1)×Krandom

]
of

αi is αi,k,m for k = 1, ...,Krandom and m = 1, ...,M .
We give αi a Multivariate-Normal prior, which allows random effects across covariates and observation classes to covary.

We take the mean for each random effect to be zero, since all covariates for random effects are also used as covariates for
fixed effects.

αi ∼Multivariate-Normal(0,Γ)

We fold the random effects into the distribution for Y ∗i αis as follows:

Y ′i = XM
i β +ZM

i αi + error

Using the simplified term error to encompass both the measurement error and autoregressive error components, where
we assume error ∼Multivariate-Normal(0,Σ).
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Since αi ∼Multivariate-Normal(0,Γ),

Y ′i ∼Multivariate-Normal
(
XM

i β,ZM
i Γ(ZM

i )T + Σ
)

This allows us to avoid estimating each participants αi by marginalizing them out and estimating the variance-covariance
matrix Γ only.

In formulating the prior for Γ, we decompose it into a correlation matrix, Θ, and a vector of Krandom ×M standard
deviations, λ:

Γ = λΘλT (2)

where element
[
k + (m− 1)×Krandom

]
of λ is λk,m, representing the standard deviation αi,k,m.

• For observations of class m where m is binary, we give λk,m (k = 1, ...,Krandom) a weakly-informative Half-Normal
prior with scale parameter equal to 1:

λk,m ∼ Half -Normal(1)

• For observations of class m where m is continuous, we give λk,m weakly-informative Half-Normal prior with scale
parameter equal to half the span from the lower to upper bound of the scale:

λk,m ∼ Half -Normal

([U(m)− L(m)

2

]2)

• We give Θ a Lewandowski-Kurowicka-Joe (LKJ) prior:

Θ ∼ LKJ(0.25)

1.3.3 Continuous Autoregressive Error

We define P to be a M ×M variance-covariance matrix where Pm1,m2
is the covariance between observations of two classes,

m1 and m2, when they are taken at the same time. We also define a continous autoregressive coefficient, ρ such that the
covariance between observations of two classes taken at different times, t1 and t2, is Pm1,m2

× ρ|t2−t1|
From P and ρ we construct Φi, a N(i) × N(i) variance-covariance matrix which represents the covariance of the N(i)

observations on participant i as a function of their separation in time. For j1 = 1, ..., N(i) and j2 = 1, ..., N(i):

Φi,j1,j2 = Pm1,m2
× ρ|ti,j1−ti,j2 |

In formulating the prior for P , we decompose it into a correlation matrix, Ψ, and a vector of M standard deviations, π:

P = πΨπT (3)

• For observations of class m where m is binary, we give πm a weakly-informative Half-Normal prior with scale parameter
equal to 1:

πm ∼ Half -Normal(1)

• For observations of class m where m is continuous, we give πm weakly-informative Half-Normal prior with scale param-
eter equal to half the span from the lower to upper bound of the scale:

πm ∼ Half -Normal

([U(m)− L(m)

2

]2)

• We give Ψ a Lewandowski-Kurowicka-Joe (LKJ) prior:

Ψ ∼ LKJ(0.25)
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1.3.4 Measurement Error

We allow measurement errors for different classes of observations taken at the same time to be correlated by defining an
M ×M covariance matrix, E of measurement errors, such that Em1,m2

represents the covariance between contemporaneous
measurement errors for scales m1 and m2.

We create the N(i) × N(i) participant-specific measurement error matrix, Ei from E such that for j1 = 1, ..., N(i) and
j2 = 1, ..., N(i):

Ei,j1,j2 =

{
Emij1

,mij2
if = ti,j1 = ti,j2

0 if = ti,j1 6= ti,j2

In formulating the prior for E, we decompose it into an M ×M correlation matrix, Σ, and a vector of M standard
deviations, ν:

E = νΣνT (4)

• For observations of class m where m is binary, we set νm = 1. (Allowing the standard deviations to vary for all three
components of error - random effects, autoregressive error, and measurement error - would introduce an identifiability
problem, so we fix the measurement error at 1).

• For observations of class m where m is continuous, we give νm weakly-informative Half-Normal prior with scale param-
eter equal to half the span from the lower to upper bound of the scale:

νm ∼ Half -Normal

([U(m)− L(m)

2

]2)

• We give Σ a Lewandowski-Kurowicka-Joe (LKJ) prior:

Σ ∼ LKJ(0.25)
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2 Making Predictions from a Fitted Model

Because fitting the model is computationally expensive, we developed a computationally efficient method to predict new
symptom scores and binary indicators from a fitted MCMC chain.

At each of the R iterations of the chain, we use the sampled model parameters to formulate a multivariate normal distribu-
tion for each participant that links latent variables corresponding to prior observations to the latent variables corresponding
to future observations. For each iteration, we simulate a number (B) of values of prior latent variables consistent with
observed prior values; we condition on each of the B simulated sets of values to derive B predictive, multivariate normal
distributions for the future.

We aggregate the R×B multivariate normal distributions for each set of simulated values at each iteration of the chain
into a mixture of multivariate normal distributions, which constitutes our prediction distribution for a new participant.

2.1 Terminology for Predictions

• As before, we are dealing with M classes of observations (symptoms scales or substance use indicators), indexed
m = 1, ...,M . These classes of observations may either be binary, or continuous and bounded on [L(m), U(m)]

• We are given n participants for whom we have N(i) prior observations, indexed j = 1, ..., N(i). Each observation, yij
is of class mij , taken at calendar time tij . We define Yi to be the vector of all N(i) prior observations on participant i.

• For each participant, i, we are given matrices of covariates for Kfixed fixed effects, Xi and covariates for Krandom

random effects, Zi, which we transform into matrices XM
i and ZM

i as described in Section 1.1: “Model Terminology”

• For each participant i, we desire to make N∗(i) predictions, indexed j∗ = 1, ..., N∗(i). Each observation is to be of class
mij∗ at time tij∗ . The N∗(i) desired predictions correspond to matrices of covariates for fixed and random effects X∗i
and Z∗i , which we transform into matrices X∗Mi and Z∗Mi .

• We also presume that we are given an MCMC chain consisting of R iterations. For each iteration r = 1, ..., R, we have
the following parameters, corresponding to the parameters defined in 1.3: “The Distribution for Latent Variables”

– β[r] - A vector of Kfixed ×M fixed effects

– Γ(r) - A (Krandom×M)× (Krandom×M) variance-covariance matrix for the M random effects for each covariate

– P(r) and ρ(r) - An M×M variance-covarience matrix and scalar continuous autoregressive coefficients, respectively,
that govern the covariance of observations as a function of separation in time

– E(r) - An M ×M variance-covariance matrix for measurement errors

2.2 Making Predictions

2.2.1 Recap of Latent Variables

Recall that our model handles observations of class m using a Tobit model when class m is continuous and a Probit model
when class m is binary.

This postulates that for each yij there is a corresponding unbounded latent variable, y′ij . When mij denotes a continuous
class of observations:

yij =


L(mij) ify′ij ≤ L(mij)

U(mij) ify′ij ≥ U(mij)

y′ij ifL(mij) < y′ij < U(mij)

When mij denotes a binary class of observations:

yij =

{
0 ify′ij < 0

1 ify′ij ≥ 0

2.2.2 The Multivariate Distribution for Latent Variables

For each participant i and iteration r of the MCMC, we construct:

Y ′i ∼Multivariate-Normal
(
XM

i β(r), ZM
i Γ(r)(ZM

i )T + Φ
(r)
i + E(r)i

)
(5)

Where Φ
(r)
i is constructed from P(r) and ρ(r) as described in Section 1.3.3: “Continuous Autoregressive Error” and E(r)i

is constructed from E(r), as described in Section 1.3.4: “Measurement Error”
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2.2.3 Simulating Unobserved Latent Variables from Observations

We observe some latent variables directly - the observations of continuous scales where the observed values fall between the
lower and upper bounds for the scale. Based on this, for each participant i, we partition Yi into two subsets:

• Y o
i is the vector of all observations yij where the class mij of the observation is continuous and L(mij) < yij < U(mij).

This represents the subset of observations on participant i where we directly observe the latent variable as y′ij = yij

• Y u
i is the vector of all observations yij where the class mij of the observation is binary or yij = L(mij) or yij = U(mij).

This represents the subset of observations on participant i where the latent variable is unobserved
(
y′ij 6= yij

)
Y o′
i and Y u′

i represent the corresponding partition of Y ′i . We note that by definition, Y o′
i = Y 0

i . Based on equation
(5), and using the properties of the Multivariate Normal distribution, we can derive the conditional distribution of Y u′

i given
Y o′
i . Further, we know that the values of each element of Y u′

i are bounded as follows:

• When the class of the observation mij is continuous and yij = L(mij), y
′
ij ≤ L(mij)

• When the class of the observation mij is continuous and yij = U(mij), y
′
ij ≥ U(mij)

• When the class of the observation mij is binary, and the observed indicator is negative, y′ij < 0

• When the class of the observation mij is binary, and the observed indicator is positive, y′ij ≥ 0

Using the distribution Y u′
i |Y o′

i , we simulate values for each element of Y u′
i from a truncated multivariate normal

distribution according to these bounds.
We repeat this procedure some number (B) of times; each time, this procedure gives us a complete set of the prior latent

variables Y ′i .

2.3 Deriving the Predictive Distribution from Prior Latent Variables

If we define :

• Y ∗i to represent the set of observations for which we wish to make predictions for participant i

• Y ∗′i to represent the corresponding latent variables

• Ŷ ′i =

[
Y ∗′i

Y ′i

]
to be the joint vector of Y ∗′i and Y ′i

• X̂M
i =

[
X∗Mi

XM
i

]
- to be the row union of covariates for fixed effects for future and prior observations for participant i

• ẐM
i =

[
Z∗Mi

ZM
i

]
- to be the row union of covariates for random effects for future and prior observations for participant i

We can define a joint multivariate distribution for the latent variables corresponding to both future and prior observations:

Ŷ ′i ∼Multivariate-Normal
(
X̂M

i β(r), ẐM
i Γ(r)(ẐM

i )T + Φ̂
(r)
i + Ê

(r)

i

)
(6)

Where Φ̂
(r)
i is constructed from P(r) and ρ(r) for the set of both future and prior observation times, analagous to the

construction of Φ
(r)
i as described in Section 1.3.3: “Continuous Autoregressive Error” and Ê

(r)

i is constructed from E(r),

analagous to the construction of E(r)i described in Section 1.3.4: “Measurement Error”
For each iteration of the MCMC chain and each of the B sets of simulated latent variables for that iteration, we can use

equation (6) to derive the conditional distribution of Y ∗′i given Y ′i . This yields a Multivariate Normal distribution which
represents the predictive distribution for the latent variables corresponding to future observations for the given iteration of
the chain and simulated prior latent variables.

We aggregate the R×B multivariate normal distributions as a mixture, which we use as our predictive distribution. To
make predictions for a particular outcome at a particular time, we consider the mixture of marginal normal distributions for
the one latent variable corresponding to that outcome:

• To predict a continuous outcome, we derive the mean (or median) and credible interval for the corresponding latent
variable from the mixture, and truncate if any of those values exceeds the upper limit or falls below the lower limit of
the scale

• To predict the probability of a binary outcome happening, we calculate the probability that the corresponding latent
variable is ≥ 0 across the mixture

• To predict the probability that a continuous outcome is above some threshold, we calculate the probability that the
corresponding latent variable is ≥ that threshold across the mixture
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3 Additional Figures for Evaluating Predictive Performance

Figure S1: Distribution of Outcomes Used for Validation*

a. PHQ in the NNDC (n=648) b. PHQ in the JHHCC (n=1,166)

a. GAD-7 in the NNDC (n=636) b. GAD-7 in the JHHCC (n=592)

a. ASRM in the NNDC (n=602) b. AUDIT-C in the JHHCC (n=1,197)

*Includes only the outcomes used in validating the prediction algorithm.
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Figure S2: Calibration Plots for Continuous Outcomes

a. PHQ in the NNDC b. PHQ in the JHHCC

a. GAD-7 in the NNDC b. GAD-7 in the JHHCC

a. ASRM in the NNDC b. AUDIT-C in the JHHCC

The size of each point is proportional to the number of observations which have corresponding predicted (rounded to the
nearest tenth) and observed values. A gamma smoother is applied to each plot.
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Figure S3: Distribution of Predicted Outcomes When the True Outcome was Observed vs. Missing*

a. PHQ in the NNDC b. PHQ in the JHHCC

a. GAD-7 in the NNDC b. GAD-7 in the JHHCC, excluding predictions of zero

a. ASRM in the NNDC b. AUDIT-C in the JHHCC

*Only for outcomes where ¿20 observations were missing. This excludes the AUDIT-C score and heroin and cocaine use
indicators from the JHHCC.
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4 Additional Figures regarding MCMC Fitting

Figure S4: Trace Plots for Key Variables in Fitted Model for NNDC*

*Shown for the fit to the 1st of 5 validation sets
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Figure S5: Trace Plots for Key Variables in Fitted Model for CFAR (Part 1)*

*Shown for the fit to the 1st of 5 validation sets

12



Figure S6: Trace Plots for Key Variables in Fitted Model for CFAR (Part 2)*

*Shown for the fit to the 1st of 5 validation sets
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Figure S7: Posterior Mean Values for Key Variables Across Five Validations for NNDC (Part 1)
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Figure S8: Posterior Mean Values for Key Variables Across Five Validations for NNDC (Part 2)
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Figure S9: Posterior Mean Values for Key Variables Across Five Validations for CFAR (Part 1)
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Figure S10: Posterior Mean Values for Key Variables Across Five Validations for CFAR (Part 2)
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