
Body Shape Matters (Online Supplementary Appendix)

Suyong Song1*, Stephen Baek2,

1 Department of Economics & Finance, University of Iowa, Iowa City, Iowa, United
States
2 Department of Industrial and Systems Engineering, University of Iowa, Iowa City,
Iowa, United States

*suyong-song@uiowa.edu

Abstract

In this supplementary appendix, we provide more detailed results and additional
analyses to the findings in the main text.

Data

The survey of the U.S. sample was conducted from 1998 to 2000 and carried out in 12
different locations that were selected to obtain subjects approximately in proportion to
the proportion of the population in each of the four regions of the U.S. Census. The
dataset contains detailed demographics of subjects, anthropometric measurements done
with a tape measure and caliper, and digital 3D whole-body scans of subjects. Some of
the 2,383 subjects in the database have missing demographic and anthropometric
information; we have excluded these from our study. In addition, subjects who elected
not to disclose and/or were not aware of their income, race, education, were removed
from this study. In the analysis, we divide the sample by gender to take into account
the differential treatment across genders.

Tables S.1-S.2 provide summary statistics of the variables in the database for males
and females, respectively. The data has a single question about family income (grouped
into ten classes). Average family income is $76,085 for males and $65,998 for females.
The differences in average family income across genders would be because the male
sample includes more married people than the female sample. Median family income is
slightly lower than the mean family income, which amounts to $70,000 for males and
$52,500 for females. For males, on average, reported height is 179.82 centimeters and
measured height is 178.26 centimeters, which shows a tendency of over-reporting. The
gap is larger when median reported height (180.34 centimeters) and measured height
(177.85 centimeters) are compared. We observe a similar pattern in the female sample:
reported height is 164.96 centimeters and measured height is 164.22 centimeters on
average; median reported height is 165.1 centimeters and median measured height is 164
centimeters.

The males’ average reported weight is 86.03 kilograms and the average of the
measured weight is 86.76 kilograms. The median of two measurements are the same.
For females, reported weight is 67.88 kilograms and measured weight is 68.81 kilograms
on average. Median reported weight is 63.49 kilograms and median measured weight is
64.85 kilograms. In both subsamples, the standard errors of the weight are large at
approximately 17 kilograms. BMI has been commonly used as a screening tool for
determining whether a person is overweight or obese. According to the Centers for
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Disease Control and Prevention (CDC), the standard weight status categories
associated with BMI ranges for adults are as follows: below 18.5 (underweight),
18.5-24.9 (normal or healthy weight), 25.0-29.9 (overweight), 30.0 and above (obese).
BMI is calculated as weight in kilograms divided by height in meters squared. We refer
reported BMI (measured BMI) to the one based on reported height and weight
(measured height and weight). In the tables, height, weight and BMI are those
measured by professional tailors at the survey sites. For both genders, reported BMI is
slightly larger than measured BMI on average.

In addition to the bio-metric measurements, the data contains other variables for
individual characteristics and socio-economic backgrounds. Education grouped into nine
categories is 16.29 years for males and 15.75 years for females on average. Experience is
calculated as potential experience = age− education− 6 and its mean is 17.54 years for
males and 18.62 years for females. Fitness is defined as exercise hours per week. Its
mean and median are 4.24 hours and 2.5 hours, respectively, for males. For females, its
mean and median are 3.74 hours and 2.5 hours, respectively.

The data also include the number of children. Marital status is classified as three
groups: single, married, divorced/widowed. Occupation consists of white collar,
management, blue collar, and service. Race has four groups, including White, Hispanic,
Black, and Asian. Birth region is grouped into five groups, including Midwest,
Northeast, South, West, and Foreign. The majority in the dataset are white collar
married white males and females born in the Midwest. As we will discuss later, the data
also contains 40 body measures that include height and weight. The list of body
measures are provided in Table S.3.

Reporting Errors in Height and Weight

The following equation estimates the personal background that explains reporting error
in height and weight:

Reporting ErrorHi = πXi + µHeighti + εi, (S.1)

Reporting ErrorWi = πXi + µWeighti + εi, (S.2)

where Xi is a set of covariates, including family income, age, age squared, occupation,
education, marital status, fitness, race, and birth region. Heighti is the true height in
millimeters, and Weighti is the true weight in kilograms. We found dependence between
reporting errors and some covariates. Table S.4 reports the estimation results. The
standard errors are estimated by bootstrapping and are reported inside the parentheses.
In equation (S.1), the coefficient of the true height is not statistically significant for
both genders. We observe different results across genders. For males, family income is
negatively correlated with the reporting error in height at the 1% significance level. Age
squared is positively correlated with the reporting error. Hispanic males are more likely
to under-report their height than White males. Males who were born in the Northeast
are more likely to over-report their height than those from the Midwest. On the other
hand, the coefficient of family income is not statistically significant for females. Older
females are more likely to under-report their height. The estimation results are
summarized in Fig S.1.

In equation (S.2), true weight is negatively correlated with the reporting error in
weight (at the 1% significance level) for both genders: heavier people have a tendency to
under-report their weight. For females, interestingly the coefficient of fitness is
statistically significant at the 5% significance level and it is negatively correlated with
the reporting-error in weight. Thus, females who spend more time on exercise have a
tendency to under-report their weight. However, we find little evidence that other

July 9, 2021 Supplementary Information 2



Fig S.1. Personal background and reporting errors in height. Estimated
coefficients and bootstrapped 90% confidence bands are reported. Note that the unit for
height is converted into centimeter (cm).

Fig S.2. Personal background and reporting errors in weight. Estimated
coefficients and bootstrapped 90% confidence bands are reported.

personal background are correlated with reporting error in weight. The estimation
results are summarized in Fig S.2.

Conditional quantile function is a useful tool to estimate heterogeneity in a
conditional distribution. It also measures the proportion of reporting errors that are
positive or negative. Fig S.3-S.4 present the estimation of the conditional quantiles of
the reporting errors in height and weight conditional on the true measures, namely,
Qτ [Reporting ErrorH | Height] and Qτ [Reporting ErrorW |Weight] for τ ∈ (0, 1), with
their 95% confidence bands, respectively. We estimate the conditional quantiles using
nonlinear polynomial regression. The figures display the median and the 10%, 25%,
75%, and 90% quantiles across genders. In Fig S.3, the results show that there is
heterogeneity in the conditional distribution of the reporting error in height for both
genders. Over-reporting of height is more pronounced for males than females. We notice
that more than 75% of the sample of the males over-report their height. Interestingly,
the median regression lines in both genders are approximately parallel with the
horizontal line, which implies that the conditional median of the reporting error is
independent of the true height. Bollinger also found that median regressions for earnings
will be more robust to the reporting error than mean regressions [1]. Thus, it would be
more natural to impose a restriction on the conditional quantile of the reporting error of
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Fig S.3. Conditional quantile of reporting errors in height conditional on
true height.

Fig S.4. Conditional quantile of reporting errors in weight conditional on
true weight.

height than the conditional mean (e.g., Hu and Schennach [2] and Song [3]).
Fig S.4 also displays apparent heterogeneity in the conditional distribution for both

genders. It shows that, for heavier than average people, the under-reporting of weight is
more pronounced for females than males. We notice that within this group, almost 75%
of the females under-report their weight. The median regressions in both genders are
dependent on the level of the measured weight. This indicates that there are substantial
nonclassical errors in the reported weight; therefore, a restriction on the conditional
quantile may not be valid.

Estimation of the Association between Physical
Appearance and Labor Market Outcomes

Height, Weight, and Reporting Errors

Most papers in the literature estimate the relationship between body shapes and family
income by replacing body shapes with their observed proxies, such as height or weight.
However, these measurements are hardly accurate to fully describe body shapes.
Furthermore, including only height or weight without controlling for the other, as in the
literature, could create an omitted variable problem. For instance, consider two people
who have the same height but different weight. Comparing only height will not identify
the difference in their body shapes. Thus, we consider the following two regression
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equations:

Family Incomei = αXi + β1Heighti + εi, (S.3)

Family Incomei = αXi + β1Heighti + β2Weighti + εi, (S.4)

where Xi is a set of controls, including experience, squared experience, race, occupation,
education, marital status, and number of children. We can test the importance of
controlling for weight by comparing the estimated coefficients from the two equations.
In addition, as mentioned, the data contains measurements on height and weight, both
reported by subjects, and measured by on-site measurers. Therefore, by comparing
estimates of measured ones with their reported counterparts, we can see the effect of
reporting errors on the estimation results. Table S.5 reports the estimation results of
reported height and weight. Table S.6 provides estimation results for measured height
and weight.

The hypothesis that the coefficient on height is zero is tested across gender. The
results for both genders are presented in each tables. Equation (S.3) of Table S.5 does
not include reported weight. The column for males shows that education is statistically
significant in the income equation. The coefficient of the reported height is positive and
statistically significant at the 10% significance level. The column for females is
somewhat different than that for males: the coefficient of experience, experience2, and
education are statistically significant. In addition, the coefficient on the reported height
is positive and statistically significant at the 5% significance level. In equation (S.4), we
add the reported weight to the set of regressors. The column for males shows that the
coefficient of the reported height becomes statistically insignificant, and the coefficient
of the reported weight is also insignificant. However, in the column for females, the
coefficient of the reported height is still positive and statistically significant, but the
coefficient on the reported weight is insignificant.

In Table S.6, we use the measured height and weight to estimate the income
equation. Interestingly, the coefficients on the height for males in both equations are
positive and statistically significant at the 1% significance level. Their magnitudes are
larger than those from Table S.5. When the measured weight is added, its coefficient is
still insignificant for males. For females, the coefficients on the measured height are
statistically significant in both equations, and their magnitudes are larger than those
from Table S.5. When the measured weight is added, its coefficient becomes significant
at the 10% significance level, which shows a negative association between family income
and weight. Thus, we confirm apparent reporting errors in height and weight.
Particularly, the impacts of the reporting errors on the estimation results are more
severe in males than females. These reporting errors introduce attenuation bias into the
estimates. Furthermore, the estimation results from two equations (S.3-S.4) are
different. It shows that using height only as a proxy to body shapes might be too
simple to describe the delicate figures of the physical appearance. We refer to the main
text for more results based on BMI.

To further investigate the role of the measurement errors on the body types, we run
the following regression equation:

Family Incomei = αXi + βBodyi + εi, (S.5)

where Bodyi is a set of body measurements that include 40 measurements of various
parts of the body. A full list of the measurements is provided in Table S.3. As these are
more sophisticated than simple measurements of height and BMI, it is less likely that
the measurement errors on body type are prevalent.

Fig S.5 presents the estimation results. Except height and weight, for brevity, we
only report measures of body parts that are statistically significant. Interestingly, we
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Fig S.5. Various measures and family income. Estimated coefficients and
bootstrapped 90% confidence bands are reported for male (left) and female (right). Note
that units for all measurements, except weight, are converted into centimeters (cm).

found eight statistically-significant body measurements for males and four for females.
For instance, in the sample of males, Acromial Height (Sitting), Chest Circumference,
and Waist Height (Preferred) have positive associations with the family income, while
Arm Length (Shoulder-to-Elbow), Buttock (Knee Length), Elbow Height (Sitting),
Subscapular Skinfold, Waist Circumference (Preferred) are negatively correlated with
the family income. For females, Shoulder Breadth is positively correlated with the
family income. However, the coefficients on Face Length, Hand Length, Neck Base
Circumference are all negative. The most distinctive result is that the coefficients on
height and weight for both genders are statistically insignificant in the regression. This
implies that there are useful information on body types embedded into various body
measures. The body shapes or types cannot be fully captured by simple measures such
as height or weight.

Moreover, interactions between different body measurements are possible, as they
have close relationships in constructing a body shape. Therefore, we consider the
original regressors (Xi and Bodyi in equation (S.5)) and interaction terms of Bodyi as a
set of regressors. This gives 797 covariates, which makes the OLS regression
inconsistent. We note that OLS is consistent under some regularity conditions only if
the number of observations is larger than the number of covariates. To mitigate the
issue of high-dimensional data, we use the following Lasso regression, which is valid
under a sparsity assumption:

min
ψ

 1

2N

N∑
i=1

(Family Incomei − ψZi)2 + λ

p∑
j=1

|ψj |

 , (S.6)

where Z is a vector of covariates, including the interaction terms with size p = 797 and
λ ∈ [0, 1) is a regularization parameter. We construct the lasso fit using 10-fold
cross-validation. Fig S.6 plots mean-squared-error (MSE) over the sequence of the
regularization parameter λ for each gender. For males, the minimum MSE is 0.231 at
λ = 0.024 and the minimum MSE plus one standard error is 0.241 at λ = 0.047. For
females, the minimum MSE is 0.216 at λ = 0.017 and the minimum MSE plus one
standard error is 0.228 at λ = 0.058. The regression results show that many interaction
terms are statistically significant. To save the space, we omit the results here. When
equation (S.5) is re-estimated with these interaction terms (so-called “post-Lasso”), it
obtains higher adjusted R squared (0.393 for males and 0.470 for females) than those in
Fig S.5. Thus, it is highly likely that these body measures are interrelated. However,
constructing stylized body types based on these relevant body measures is not
straightforward and a nonstandard problem.
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Fig S.6. MSE and λ in lasso.

Graphical Autoencoder

Mathematically, human body shapes can be represented as curved surfaces, or more
formally manifolds M(i) embedded in R3, where i is an index identifying each
individual. A manifold is a topological space that locally looks like Euclidean space near
each point. The statistical models that this study considers are, in a generic form, the
regression of an economic variable Y with respect to a manifold-structured regressor M
and other covariates X:

Y = φ(M, X; θ) + ε, (S.7)

where φ is a known function up to unknown parameter θ and ε is an error term. Here, a
problem rises regarding the manifold regressor M, as the regressor M is an abstract,
geometric object and not a usual vector variable, as in other typical economic and
statistical models. In other words, there is no statistical model that naturally accepts
the manifold regressor M, unless M is somehow converted into a vector form.

Owing to the above bottleneck, one may consider measuring a few geometric
dimensions, such as lengths and girths, and use those measurements to encode body
shapes. However, as our study shows, such simplistic measurements are not an accurate
characterization of complex geometric objects, such as human body shapes. Instead,
data driven parameterizations such as in Wang, [7] Baek and Lee, [4] and Pishchulin et
al. [8] provide more comprehensive and reliable codification of body shapes; however,
many of these works assume that the human body shape distribution is linear, leading
to inaccurate encoding of body shapes [5, 6].

In this study, we employ a data-driven, nonlinear parameterization of body shapes
achieved via a graphical autoencoder. An autoencoder is a certain type of artificial
neural network that possesses an hourglass shaped network architecture. An
autoencoder can be thought of as two multilayer perceptron (MLP) models cascaded
sequentially, where the first MLP codifies a high-dimensional input into a lower
dimensional embedding (encoder) and the second MLP reconstructs the original input
back from the encoded embedding (decoder). Because of the dimensional bottleneck
created in the middle, the neural network is promoted to search for the most effective
way of compressing the high dimensional input into the lower dimensional embedding.

Our proposed concept of a graphical autoencoder is an extension of such notion of
autoencoders to manifold-structured data (see Fig 4 for a schematic overview). Similar
to many geometric data analysis applications, we discretize a manifold M to a
triangular mesh, achieving piece-wise linear approximation of the original surface. A
triangular mesh is a graph G = {V, E ,F}, where V is a set of vertices/nodes, E are
edges interconnecting the vertices, and F are triangular facets. We equip the meshes
G1,··· ,N with a semantic correspondence structure, such that the graph elements of the
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same index correspond to the same body part location across all meshes G1,··· ,N . This
process is commonly called “registration” or “correspondence matching” in computer
graphics and geometry processing literature and can be achieved via methods such as
Zuffi and Black [9]; Wei et al. [10]; and Sun et al. [11, 12].

In this setting, the graphical autoencoder is defined as follows:

p = (f1 ◦ f2 ◦ · · · ◦ fm)(V ∈ V), (encoder)
V = (g1 ◦ g2 ◦ · · · ◦ gm)(p). (decoder)

(S.8)

Here, each of the layers f1 · · · fm and g1 · · · gm are modeled as a simple perceptron:

fi(h) or gi(h) = σ

∑
j

WT
i h+ bi

 , (S.9)

where Wi are neural weights and bi are bias. σ is the activation function, where we
empirically decide to be rectified linear unit (ReLU) activation for f1 · · · fm−1 and
g1 · · · gm−1. We set linear activation for the terminal layers fm and gm (i.e. no
rectification).

Finally, we train the graphical autoencoder to minimize the mean square error
between the original mesh and the reconstructed mesh:

min
θf ,θg

‖V − g(p)‖, (S.10)

where p = f(V ) by definition, θf and θg are the model parameters of f and g
respectively, and V is the list of vertex coordinates of a graphical model.

Note that the mean square error is not an ideal metric for shape dissimilarity. For
example, it is widely known that the mean square error is not invariant to posture
changes or other isometric transformations (e.g. rotations, parallel translations, etc.),
implying that the two models with the exact same body shape but different postures or
orientation may be deemed as different under the mean square error metric. However,
instead of seeking an alternative metric, we employ the following provisional steps to
maintain a reasonable computational load:

First, all scan data were normalized to have the same position, orientation, and
posture. The centroid of each individual scan was set to (0,0,0). The anterior-posterior
(AP) axis and the height (inferior-superior) axis were aligned with the z-axis and the
y-axis, respectively. The body postures (joint angles) were adjusted to a standard “A”
posture. The skeletal landmarks available in the CAESAR dataset were used for such
joint angle alignment. Second, the geometric autoencoder was trained with randomly
corrupted inputs, similar to the denoising autoencoders [13]. The random corruption
(noise) added to the 3D scan data allows the network to develop more robust features.
In a similar spirit, we also added dropout layers [14], with the dropout rate of 30%.
Such stochastic perturbations help the autoencoder develop strong and robust shape
descriptors. Lastly, we regularized the network weights with the L2 regularizer to
promote generalizable shape descriptors.

Empirically, the above provisions (i.e. data normalization, random corruption, and
weight regularization) were effective in overcoming the limitations of the mean squared
error. We tested the network through multiple training sessions with different initial
network parameters. For each training session, we not only monitored the trend of the
loss function but also inspected the graphical rendering of reconstructed 3D models.
The training results were consistent both quantitatively and qualitatively from such
observations.
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Fig S.7. Result of training graphical autoencoder with the entire CAESAR
dataset. The abscissa is the number of epochs for the training and the ordinate is the
model loss in terms of MSE. The left shows the loss on training dataset (training loss),
while the right shows the loss on validation dataset (validation loss). The accuracy did
not show any significant improvement after 1,000 epochs for all cases, and thus, we
removed it from the figure for better visualization.

Graphical Autoencoder on CAESAR Dataset

The first experiment was conducted to test the ability of the graphical autoencoder in
embedding the geometric information underlying in the data. To achieve this, we
applied the aforementioned graphical encoder to the entire CAESAR dataset, with
varying embedding dimension d from 1 to 20, as reported in Fig S.7. The embedding
accuracy was below 3e−4m2 in most cases. Particularly, when the dimension d was 3, it
showed the lowest MSE, in both training and validation losses, which justifies
estimating d = 3 as the intrinsic dimension. As shown in Fig S.8, when the sample was
divided into males and females, we found d = 2 for males and d = 3 for females.

For the meaning of the embedded parameters in the third dimension, the first
component, P1, discerned to be related to height of a person and P2 to the body volume
(obesity/leanness). Interestingly, as P3 increases the body shape became more feminine,
(namely, more prominent chest and hip-to-waist ratio) and, conversely, as it decreases
the body shape became more masculine with less prominent chest and curves (see
Fig S.9- S.13).

Endogenous Obesity

One hurdle in estimating the relationship between physical appearance and income is
the endogeneity concern associated with the body types, such as obesity and stature.
To resolve the issue of endogenous obesity, we use the proxy variables approach, in
which observed proxies to the unobserved common determinants of obesity and income
control for the possible endogeneity in obesity. A set of the observed proxies includes
fitness, car size, and birth state. Fitness is measured as hours of exercise per week. Car
size is classified as two groups: Sedan (compact, economy, intermediate, full size, luxury,
sports car) and Non-sedan (SUV, minivan, station wagon, truck, van). Birth state is
classified as five groups: Foreign, West, Midwest, South, and Northeast. We choose
these variables as relevant proxies to the unobserved common determinants of obesity,
as fitness and car size could be related to personality and individual preference to body
types, and birth state could reflect local and childhood nutrition environments that are
correlated with individual obesity. To control for endogeneity in obesity, we assume the
conditional independence of obesity and unobserved determinants of family income,
conditional on the observed proxies, as commonly used in the literature on treatment
effects.

We estimate equation (7) in the main text by controlling for the various subsets of
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Fig S.8. Result of training graphical autoencoder separately on each
gender. The abscissa is the number of epochs for the training and the ordinate is the
model loss in terms of MSE. The left shows the loss on training dataset (training loss)
while the right shows the loss on validation dataset (validation loss).

the proxy variables. For comparison, we use measured Height, BMI, and hip-to-waist
Ratio in place of P1, P2, and P3, respectively. The estimation results are reported in
Table S.11. The estimated coefficients of height are similar to those in Table S.8 for
both genders (i.e., columns for equation (4) in the main text). In particular, the
coefficient of height is still positive in the equation for both genders. On the other hand,
the estimated coefficient of BMI for females becomes negative and significant in the
female subsample.

Table S.12 reports the estimation results for the main text equation (7) with P1, P2,
and P3 instead. Notably, fitness and car size are not statistically significant; however,
birth state (Northeast) is statistically significant. When all proxy variables are included,
the estimated coefficient of P1 is 0.054 for males. It is statistically significant at the 1%
significance level. Thus, taller males tend to have higher family income. However, we do
not find a statistically meaningful relationship between male obesity and the family
income. For females, the P2 measurement is negatively associated with the family
income, and its coefficient is statistically significant at the 1% significance level. Thus,
we find that female obesity matters for the family income in a negative sense; however
their stature and hip-to-waist ratio are not associated with family income. The results
are qualitatively similar to those from Table S.10, where obesity is assumed to be
exogenous.

Endogenous Stature

Here, we conjecture that P1 or stature would possibly be the endogenous regressor. To
address this issue, we look for a set of valid instrumental variables (IV). Our
identification strategy is to assume that unobserved determinants of Shoe size, Pants
size, and Jacket Size for males (or Blouse Size for females) are uncorrelated with
individual cognitive and noncognitive abilities. Given the condition, we adopt these
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Fig S.9. Body shape parameters derived from the graphical autoencoder.
3D body shape models for male (left) and female (right) are arranged in accordance
with their body shape parameters, with increments of -3σ, -1.5σ, 0, 1.5σ, and 3σ with
respect to the mean in each direction, where σ is the s.d. of each parameter.

unobserved size determinants or variations as valid IVs and incorporate the
instrumental variables or control functions (CF) approach into the economic model
based on the graph convolution method.

Fig S.14 shows a graphical depiction of the causal diagram (see e.g., Pearl [15] and
Chalak and White [16]). Complete circles denote observed variables and dashed circles
denote unobserved determinants. Arrows denote direct causal relations. A line without
arrows denotes dependence between two variables. The primary parameter of interest is
the association between body type and family income. However, body type (stature) is
endogenous because of the dependence of body type determinants and cognitive and
noncognitive abilities. Shoe size, jacket (blouse) size, and pants size are determined by
body type as well as unobserved determinants, such as personal size preference. We
assume that such unobserved size determinants are uncorrelated with ability and that
they are excluded from family income. Given these conditions, they can serve as
legitimate IVs to identify the causal relation. Indeed, it is plausible to assume that
these variables are legitimate IVs. First, they are unlikely to be correlated with the
unobserved determinants of family income, such as cognitive and noncognitive abilities.
For instance, it is natural to assume that highly capable people do not necessarily wear
bigger shoes or pants given their foot length or waist circumference. Furthermore, it is
unlikely that these IVs directly cause the family income. Second, as shown in the
estimation results below, they are also strongly correlated with the body type.

As each size determinants or variations are unobserved, we estimate them from the
projection of the observed size on the most relevant body part. In practice, we consider
the projection of the reported shoe size, pants size and jacket (or blouse size) on the
measured foot length, waist circumference, and chest circumference, respectively. The
residuals from each projection are used as the estimated size determinants or variations
(analogous to the ‘residuals as instruments’ in Hausman and Taylor [17]).

We consider the following first-step reduced form equation:

P1i = δXi + γ1Shoe Size Determinantsi

+ γ2Jacket Size/Blouse Size Determinantsi (S.11)

+ γ3Pants Size Determinantsi + νi,
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Fig S.10. Relationship between body shape parameters and the classical
body measurements for males. The straight line displays the linear fit. The
R-squared is reported in the parentheses.

where Shoe Size Determinantsi is the estimated individual i’s variation or determinants
in shoe size and Jacket Size/Blouse Size Determinantsi is the estimated variation in
jacket size for males (or blouse size for females), and Pants Size Determinantsi is
variation in pants size, and where Xi are a set of exogenous regressors and νi is
idiosyncratic shocks to the P1i. By construction, νi is the component that generates the
endogeneity. From the reduced-from equations (S.11), we estimate the control function
ν̂i. In the second-step, we then estimate the income equation by adding the control
function as follows:{

Family Incomei = αXi + β1P1i + β2P2i + πν̂i + εi if male,

Family Incomei = αXi + β1P1i + β2P2i + β3P3i + πν̂i + εi if female.
(S.12)

As ν̂ corrects for the sources of the endogeneity, we can consistently estimate the
parameters associated with the physical appearances. Another advantage of the control
functions approach is that we can test whether the physical appearances are endogenous
by checking if π = 0.

Table S.14 reports estimation results for the equations (S.11–S.12). In the columns
for the equation (S.11), all IVs are statistically significant and positively correlated with
stature in both genders. Experience is also positively associated with individual’s
stature and the relation is nonlinear. People who were born in foreign countries or the
Northeast are likely to be shorter than those born in the Midwest. For males, education
is negatively correlated with stature. Asian people are less likely to be taller than White
people. For females, Hispanic and Asian people are less likely to be taller than White
people.

In the columns for the equation (S.12), the estimated coefficient of P1 is 0.097 for
males, which is larger than that in Table S.12. It is statistically significant at the 5%
significance level. Thus, taller males tend to have higher family income. Interestingly,
we do not find a statistically significant relationship between male obesity and family
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Fig S.11. Relationship between body shape parameters and the classical
body measurements for females. The straight line displays the linear fit. The
R-squared is reported in the parentheses.

income. We estimate that one standard deviation increase in P1 measurement is
associated with $0.097× 70, 000 = $6, 790 increase in the family income for a male who
earns $70, 000 of median family income. This is equivalent to $ 0.097

6.8 × 70, 000 = $998.5
increase in family income per centimeter. Note that for males, one standard deviation in
P1 is equivalent to 6.8 centimeters in height and one standard deviation in P2 is
equivalent to 4.07kg/m2 in BMI.

The estimation results for the covariates resemble those in previous tables. As shown
in the literature on the returns to education, education has a positive impact on family
income. Its estimated coefficient is 0.046 and it is statistically significant at the 1%
significance level. Males born in the Northeast tend to have higher family income than
those born in the Midwest. Interestingly, the estimated coefficient of ν̂1 is statistically
insignificant. Thus, we find no strong evidence that P1 is a endogenous regressor.

For females, the estimated coefficient of P1 is negative and the estimated coefficient
of P3 is positive, but they are not statistically significant. The P2 measurement is
negatively associated with family income. Its coefficient is −0.069, and it is statistically
significant at the 1% significance level. Thus, we find that female obesity is negatively
correlated with her family income, but her stature or hip-to-waist ratio is not. One
standard deviation decrease in P2 measurement is associated with
$0.069× 70, 000 = $4, 830 increase in family income for a female who earns $70, 000
family income. This can be interpreted as $ 0.069

5.17 × 70, 000 = $934.2 increase per one
unit of BMI. Note that for females one standard deviation in P1 is equivalent to 6.8
centimeters in height and one standard deviation in P2 is equivalent to 5.17kg/m2 in
BMI.

For females, experience is positively correlated with family income. As commonly
reported in the literature on the wage equation, the experience displays a quadratic
functional form. Education has a positive impact on family income and its coefficient is
statistically significant at the 1% significance level, which is similar to the finding for
males. Similarly, females born in the Northeast tend to have higher family income than
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Fig S.12. The third body shape parameter P3 for females. The third
parameter tends to capture the hip-to-waist ratio of the body shape among the female
subsample.

those born in the Midwest. The estimated coefficient of ν̂ is statistically significant.
Thus, we find substantial evidence that stature is endogenous in the female’s income
equation.

For comparison, we apply the control functions approach to income equations, where
height, BMI, and hip-to-waist ratio are used in place of the extracted body features.
The corresponding reduced-form and structural equations are the same as the equations
(S.11–S.12). Table S.13 reports the estimation results. For males, we estimate that one
centimeter increase in height is associated with $0.01× 70, 000 = $700 increase in family
income for a male who earns $70, 000 of median family income. The estimated
relationship is smaller than that when the extracted features from the deep learning are
used. For females, pants size is not associated with height in the first step regression.
The estimated coefficient of ν̂ is significant in the female sample, which implies evidence
of endogenous female height. For females, interestingly, coefficients of height, BMI, and
hip-to-waist ratio are all insignificant. Thus, we do not find strong evidence of the
association between body shape and family income when using height, BMI, and
hip-to-waist ratio. Consequently, we observe that the estimation results with the
classical measurements are volatile across different regression models—OLS, proxy
variable approach, and control functions approach. However, those with the
deep-learned body parameters are very stable across different models, and interestingly,
capture gender differentials in the impact of body types on income.
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Variable Mean Median S.D. Min Max
Family Income ($) 76,085 70,000 41,470 7,500 150,000

Reported Height (mm) 1,798.2 1,803.4 82.5 1,498.6 2,108.2

Reported Weight (kg) 86.0 83.9 17.3 48.5 188.2

Reported BMI (kg/m2) 26.5 25.8 4.6 14.0 59.5

Height (mm) 1,782.6 1,778.5 78.1 1,497.0 2,084.0

Weight (kg) 86.8 83.9 17.5 45.8 181.4

BMI (kg/m2) 27.2 26.4 4.8 17.4 55.1

Experience (years) 17.5 17.0 10.2 0 47.0

Education (years) 16.3 16.0 2.5 12.0 24.0

# of Children 1.3 1.0 1.4 0 7.0

Fitness (hours) 4.2 2.5 3.0 0.5 10.0

Variable # of Samples Variable # of Samples

Marital Status (Single) 240 Race (White) 644

Marital Status (Married) 473 Race (Hispanic) 18

Marital Status (Div./Wid.) 61 Race (Black) 68

Birth Region (Foreign) 159 Race (Asian) 44

Birth Region (Midwest) 275 Occupation (White Collar) 461

Birth Region (Northeast) 106 Occupation (Management) 144

Birth Region (South) 106 Occupation (Blue Collar) 101

Birth Region (West) 128 Occupation (Service) 6

# of Total Observations 774

Table S.1. Summary statistics (male).
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Variable Mean Median S.D. Min Max
Family Income ($) 65,998 52,500 38,853 7,500 150,000

Reported Height (mm) 1,649.6 1651.0 76.1 1,320.8 1,930.4

Reported Weight (kg) 67.9 63.5 16.9 37.2 172.3

Reported BMI (kg/m2) 24.9 23.3 5.9 12.9 57.8

Height (mm) 1,642.2 1,640.0 71.3 1,382.0 1,879.0

Weight (kg) 68.8 64.9 17.3 39.2 156.5

BMI (kg/m2) 25.5 23.8 6.1 15.2 57.1

Experience (years) 18.6 19.0 10.8 0 50.0

Education (years) 15.8 16.0 2.1 12.0 24.0

# of Children 1.0 0 1.2 0 6.0

Fitness (hours) 3.7 2.5 2.7 0.5 10.0

Variable # of Samples Variable # of Samples
Marital Status (Single) 248 Race (White) 644

Marital Status (Married) 407 Race (Hispanic) 11

Marital Status (Div./Wid.) 134 Race (Black) 88

Birth Region (Foreign) 105 Race (Asian) 46

Birth Region (Midwest) 318 Occupation (White Collar) 607

Birth Region (Northeast) 103 Occupation (Management) 52

Birth Region (South) 122 Occupation (Blue Collar) 49

Birth Region (West) 141 Occupation (Service) 81

# of Total Observations 789

Table S.2. Summary statistics (female).
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Variables (mm)
Acromial Height, Sitting Head Length

Ankle Circumference Hip Breadth, Sitting

Arm Length
(Spine to Wrist)

Hip Circumference, Maximum

Arm Length
(Shoulder to Wrist)

Hip Circumference Max Height

Arm Length
(Shoulder to Elbow)

Knee Height

Armscye Circumference
(Scye Circumference Over Acromion)

Neck Base Circumference

Bizygomatic Breadth Shoulder Breadth

Chest Circumference Sitting Height

Bust/Chest Circumference Under Bust Height

Buttock-Knee Length Subscapular Skinfold

Chest Girth at Scye
(Chest Circumference at Scye)

Thigh Circumference

Crotch Height Thigh Circumference Max Sitting

Elbow Height, Sitting Thumb Tip Reach

Eye Height, Sitting Triceps Skinfold

Face Length
Total Crotch Length

(Crotch Length)

Foot Length Vertical Trunk Circumference

Hand Circumference Waist Circumference, Preferred

Hand Length Waist Front Length

Head Breadth Waist Height, Preferred

Head Circumference Weight (kg)

Table S.3. List of various body measures.
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Variable
Error in Height (Eq. (S.1)) Error in Weight (Eq. (S.2))

Male female Male female

Intercept
114.481***

(36.056)
41.826

(38.067)
8.574**
(3.438)

4.056*
(2.329)

Height
(mm)

-0.006
(0.011)

0.004
(0.019)

Weight
(kg)

-0.056***
(0.018)

-0.040***
(0.015)

Family Income
-5.847***
(2.738)

-0.105
(1.810)

-0.477
(0.365)

-0.112
(0.194)

Age
-1.067
(0.728)

-1.801*
(0.920)

0.074
(0.111)

0.018
(0.061)

Age2
0.014*
(0.008)

0.021**
(0.011)

-7.6e-4
(0.001)

-1.0e-6
(7.1e-4)

Occupation
(Management)

-1.401
(4.335)

-2.376
(6.439)

-0.566
(1.105)

-0.172
(0.592)

Occupation
(Blue Collar)

-0.398
(4.924)

-4.486
(6.960)

-0.181
(1.115)

0.211
(0.573)

Occupation
(Service)

3.736
(4.938)

2.051
(5.863)

-1.444
(1.241)

-0.698
(0.549)

Education
-0.612
(0.378)

-0.393
(0.471)

-0.039
(0.050)

-0.065
(0.043)

Marital Status
(Married)

5.146
(6.544)

-1.538
(3.527)

0.185
(0.511)

-0.285
(0.535)

Marital Status
(Div./Wid.)

-2.960
(5.293)

-1.026
(3.790)

-0.003
(0.483)

-0.761
(0.596)

Fitness
0.146

(0.311)
0.682

(0.423)
0.020

(0.054)
-0.075**
(0.031)

Race
(Hispanic)

-9.340*
(5.558)

6.936
(6.252)

-0.036
(0.975)

0.045
(0.948)

Race
(Black)

-2.383
(5.788)

3.050
(7.302)

-0.066
(0.974)

-0.610
(0.723)

Race
(Asian)

-2.506
(6.554)

11.208
(7.640)

-1.143
(0.916)

-0.670
(0.636)

Birth Region
(Foreign)

1.597
(2.469)

1.277
(2.792)

0.119
(0.376)

-0.008
(0.279)

Birth Region
(Northeast)

6.668*
(3.728)

0.546
(2.612)

0.019
(0.559)

0.344
(0.234)

Birth Region
(South)

4.893
(4.043)

-1.405
(2.807)

-0.425
(0.504)

-0.151
(0.388)

Birth Region
(West)

1.562
(2.754)

-0.617
(2.841)

-0.438
(0.628)

-0.009
(0.239)

R̄2 0.011 0.009 0.034 0.070
F -statistic vs. constant model 1.47 1.42 2.50 4.33

p-value 0.094 0.114 0.001 6.4e-09
N 778 793 776 792

Table S.4. The association between reporting error in height/weight and personal background.
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Variable
Income (Eq. (S.3)) Income (Eq. (S.4))

Male Female Male Female

Intercept
9.108***
(0.517)

8.747***
(0.510)

9.259***
(0.529)

8.666***
(0.521)

Reported Height
(mm)

4.0e-4*
(2.2e-4)

5.3e-4**
(2.1e-4)

2.3e-4
(2.7e-4)

6.5e-4***
(2.2e-4)

Reported Weight
(kg)

0.002
(0.001)

-0.002
(0.001)

Covariates X X X X

R̄2 0.410 0.407 0.334 0.410
F -statistic vs. constant model 31.3 43.8 29.2 40.7

p-value 1.9e-62 6.1e-84 5.4e-62 3.7e-83
N 790 801 788 799

Table S.5. The association between reported height/weight and family income.

Variable
Income (Eq. (S.3)) Income (Eq. (S.4))
Male Female Male Female

Intercept
8.608***
(0.509)

8.573***
(0.535)

8.775***
(0.505)

8.466***
(0.539)

Height
(mm)

6.8e-4***
(2.2e-4)

6.4e-4***
(2.4e-4)

5.0e-4**
(2.5e-4)

7.9e-4***
(2.5e-4)

Weight
(kg)

0.002
(0.001)

-0.002*
(0.001)

Covariates X X X X

R̄2 0.338 0.412 0.339 0.414
F -statistic vs. constant model 32.0 44.2 29.9 41.4

p-value 1.0e-63 1.0e-84 2.1e-63 1.4e-84
N 791 802 791 802

Table S.6. The association between height/weight and family income.
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Variable
Income (Main Text Eq. (2)) Income (Main Text Eq. (3)) Income (Main Text Eq. (4))

Male Female Male Female Male Female

Intercept
9.685***
(0.332)

9.747***
(0.393)

9.668***
(0.336)

9.746***
(0.389)

8.965***
(0.523)

8.885***
(0.544)

Reported BMI
0.005

(0.004)
-0.005
(0.003)

-0.007
(0.009)

-0.019***
(0.007)

0.005
(0.005)

-0.004
(0.003)

Reported Height
(mm)

3.9e-4*
(2.1e-4)

5.2e-4**
(2.3e-4)

Reported Weight
(kg)

0.004*
(0.002)

0.005**
(0.002)

Covariates X X X X X X

R̄2 0.332 0.407 0.334 0.410 0.334 0.410
F -statistic vs. constant model 31.1 43.1 29.2 40.6 29.2 40.7

p-value 4.5e-62 7.7e-83 5.7e-62 4.9e-83 5.4e-62 3.7e-83
N 788 799 788 799 788 799

Table S.7. The association between reported BMI and family income.

Variable
Income (Main Text Eq. (2)) Income (Main Text Eq. (3)) Income (Main Text Eq. (4))

Male Female Male Female Male Female

Intercept
9.678***
(0.345)

9.751***
(0.382)

9.678***
(0.342)

9.768***
(0.384)

8.499***
(0.511)

8.737***
(0.537)

BMI
0.006

(0.004)
-0.005*
(0.003)

-0.018**
(0.009)

-0.024***
(0.007)

0.005
(0.004)

-0.005*
(0.003)

Height
(mm)

6.6e-4***
(2.2e-4)

6.3e-4***
(2.4e-4)

Weight
(kg)

0.007***
(0.002)

0.007**
(0.003)

Covariates X X X X X X

R̄2 0.332 0.410 0.339 0.414 0.338 0.414
F -statistic vs. constant model 31.2 43.8 29.9 41.4 29.9 41.4

p-value 2.1e-62 5.2e-84 1.7e-63 1.5e-84 2.3e-63 1.4e-84
N 791 802 791 802 791 802

Table S.8. The association between BMI and family income.
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Variable
Income (Main Text Eq. (5)) Income (Main Text Eq. (6)) Income (Main Text Eq. (7))

Male Female Male Female Male Female

Intercept
8.608***
(0.492)

8.573***
(0.534)

9.680***
(0.347)

9.751***
(0.386)

8.499***
(0.513)

8.490***
(0.625)

Height
(mm)

6.8e-4***
(2.1e-4)

6.4e-4***
(2.4e-4)

6.6e-4***
(2.2e-4)

6.2e-4**
(2.4e-4)

BMI
0.006

(0.004)
-0.005*
(0.003)

0.005
(0.004)

-0.004
(0.003)

Hip-to-waist
Ratio

0.002
(0.002)

Covariates X X X X X X

R̄2 0.338 0.412 0.332 0.410 0.338 0.413
F -statistic vs. constant model 32.0 44.2 31.2 43.8 29.9 38.5

p-value 1.0e-63 1.0e-84 2.1e-62 5.2e-84 2.3e-63 2.1e-83
N 791 802 791 802 791 799

Table S.9. The association between BMI/height/hip-to-waist-ratio and family income.

Variable
Income (Main Text Eq. (5)) Income (Main Text Eq. (6)) Income (Main Text Eq. (7))

Male Female Male Female Male Female

Intercept
9.823***
(0.309)

9.629***
(0.392)

9.841***
(0.307)

9.620***
(0.392)

9.823***
(0.317)

9.638***
(0.382)

P1
0.052***
(0.020)

0.033*
(0.018)

0.052***
(0.019)

0.024
(0.020)

P2
2.0e-4
(0.002)

-0.056***
(0.017)

-0.002
(0.019)

-0.052***
(0.018)

P3
0.014

(0.020)

Covariates X X X X X X

R̄2 0.337 0.410 0.330 0.415 0.336 0.415
F -statistic vs. constant model 31.9 43.8 31.0 44.7 29.5 38.9

p-value 1.6e-63 5.4e-84 6.9e-62 1.9e-85 9.4e-63 3.0e-84
N 791 802 791 802 791 802

Table S.10. The association between body-type parameters and family income.
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Variable
Income (Main Text Eq. (7)) Income (Main Text Eq. (7)) Income (Main Text Eq. (7))

Male Female Male Female Male Female

Intercept
8.482***
(0.511)

8.626***
(0.585)

8.510***
(0.513)

8.804***
(0.571)

8.521***
(0.501)

8.711***
(0.596)

Height
(mm)

6.5e-4***
(2.1e-4)

5.8e-4**
(2.4e-4)

7.2e-4***
(2.0e-4)

5.2e-4**
(2.3e-4)

6.9e-4***
(2.2e-4)

5.6e-4**
(2.4e-4)

BMI
0.006

(0.004)
-0.005*
(0.003)

0.005
(0.004)

-0.007**
(0.003)

0.005
(0.004)

-0.007**
(0.003)

Hip-to-waist
Ratio

0.001
(0.002)

0.001
(0.002)

0.002
(0.002)

Covariates X X X X X X

Fitness
0.005

(0.006)
-0.004
(0.006)

0.004
(0.006)

-0.001
(0.006)

0.006
(0.006)

-5.9e-4
(0.006)

Car Size
(Sedan)

-0.012
(0.033)

-0.014
(0.037)

-0.006
(0.033)

-0.016
(0.037)

Birth State
(Foreign)

0.022
(0.043)

-0.025
(0.059)

Birth State
(Northeast)

0.109*
(0.057)

0.125**
(0.051)

Birth State
(South)

0.009
(0.061)

0.047
(0.046)

Birth State
(west)

0.029
(0.052)

-0.011
(0.051)

R̄2 0.336 0.414 0.335 0.413 0.335 0.413
F -statistic vs. constant model 27.5 35.9 24.8 32.3 19.9 26.3

p-value 7.2e-62 3.6e-82 9.9e-59 1.7e-77 3.4e-56 4.5e-75
N 786 792 759 757 750 754

Table S.11. The association between BMI/height/hip-to-waist-ratio and family income - Proxy variable
approach.
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Variable
Income (Main Text Eq. (7)) Income (Main Text Eq. (7)) Income (Main Text Eq. (7))

Male Female Male Female Male Female

Intercept
9.819***
(0.315)

9.638***
(0.403)

9.937***
(0.303)

9.669***
(0.367)

9.912***
(0.303)

9.680***
(0.378)

P1
0.054***
(0.019)

0.020
(0.020)

0.054***
(0.019)

0.016
(0.019)

0.054***
(0.019)

0.019
(0.019)

P2
0.002

(0.018)
-0.059***
(0.017)

-0.007
(0.019)

-0.070***
(0.018)

-0.004
(0.018)

-0.071***
(0.018)

P3
0.005

(0.020)
0.004

(0.020)
0.009

(0.019)

Covariates X X X X X X

Fitness
0.004

(0.006)
-0.004
(0.006)

0.004
(0.006)

-0.002
(0.006)

0.006
(0.006)

-0.001
(0.006)

Car Size
(Sedan)

-0.017
(0.060)

-0.014
(0.036)

-0.011
(0.033)

-0.016
(0.037)

Birth State
(Foreign)

0.021
(0.046)

0.021
(0.057)

Birth State
(Northeast)

0.111**
(0.054)

0.123**
(0.051)

Birth State
(South)

0.014
(0.059)

0.055
(0.048)

Birth State
(west)

0.032
(0.051)

-0.010
(0.050)

R̄2 0.334 0.416 0.332 0.418 0.333 0.418
F -statistic vs. constant model 27.2 36.4 24.5 33.0 19.7 26.9

p-value 2.5e-61 3.3e-83 5.3e-58 4.3e-79 1.5e-55 1.1e-76
N 786 795 759 760 750 757

Table S.12. The association between body-type parameters and family income - Proxy variable approach.

Variable
Height (1st-step Eq. (S.11)) Income (2nd-step Eq. (S.12))

Male Female Male Female

Intercept
1832.318***

(32.212)
1634.629***

(27.136)
7.785***
(1.104)

10.674***
(1.294)

Height
(mm)

0.001*
(5.9e-4)

-6.4e-4
(7.5e-4)

BMI
0.004

(0.004)
-0.005
(0.003)

Hip-to-waist
Ratio

0.002
(0.002)

ν̂
-6.0e-4
(6.5e-4)

0.001*
(8.0e-4)

Shoe Size
13.502***

(4.958)
19.847***

(4.187)

Jacket Size
(Blouse Size)

10.132***
(1.309)

7.425***
(1.874)

Pants Size
8.372***
(2.384)

1.010
(1.416)

Covariates X X X X

Proxy Variables X X X X

R̄2 0.228 0.203 0.327 0.404
F -statistic vs. constant model 10.7 10.1 17.0 24.1

p-value 3.39e-29 9.4e-28 5.8e-47 1.1e-68
N 660 716 660 716

Table S.13. The association between BMI/height/hip-to-waist-ratio and family income - Control function
approach.
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Variable
P1 (1st-step Eq. (S.11)) Income (2nd-step Eq. (S.12))

Male Female Male Female

Intercept
0.546

(0.410)
-0.181
(0.347)

9.945***
(0.336)

9.735***
(0.365)

P1
0.097**
(0.049)

-0.074
(0.056)

P2
6.5e-4
(0.019)

-0.069***
(0.018)

P3
0.009

(0.020)

ν̂
-0.058
(0.055)

0.101*
(0.058)

Shoe Size
0.159**
(0.062)

0.193***
(0.053)

Jacket Size
(Blouse Size)

0.118***
(0.016)

0.099**
(0.025)

Pants Size
0.123***
(0.030)

0.040**
(0.020)

Covariates X X X X

Proxy Variables X X X X

R̄2 0.217 0.203 0.325 0.408
F -statistic vs. constant model 10.1 10.2 16.9 24.6

p-value 1.9e-27 8.1e-28 1.4e-46 6.9e-70
N 660 718 660 718

Table S.14. The association between body-type parameters and family income - Control function approach.
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