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1. Volume conductor model (VCM) to generate E-field

We used the pipeline based on SimNIBS [1] to simulate E-field. The basic schema was shown in Figure S1, 

which included data preprocessing, segmentation, building volume conductor model, generating E-field by 

using the finite-element method et.al. 

 S1 Fig: The schema of VCM to generate E-field 

Here, we use the mri2mesh command to reconstruct a tetrahedral head mesh from T1w structural MR images 

which will build a volume conductor model. Then, the command dwi2cond was employed to integrate 

conductivities from diffusion MR images into the VCM to calculate E-field by using the finite element 

method. It worth noting that we focus on the process that was shown in the dashed box in this study owing 

to time-consuming by FEM. In fact, it can be done offline to build VCM. 

2. About training data for model C-20 and C-60

It includes two parts of the training data for C-20 and C-60: primary eigenvector of the conductivity tensor 

(PEC) and dA/dt. The PEC contains the anisotropic information from the conductivity tensor and the dA/dt 

caused by the selected coil means the peak temporal change of the vector potential. It worth noting that the 

PEC can be obtained offline and we need one PEC for each subject. One slice of the norm of PEC and dA/dt 

can be seen in Figure S2. 

Diffusion 
MRI

T1w
MRI

Registration Diffusion Tensor 
Extraction

Conductivity 
Tensor 

Construction

Segmentation Volume
conductor Model

Finite Element 
Mesh Generation

E-fieldFinite Element 
Modeling



S2 Fig: One slice of the norm of PEC (Left) and dA/dt (Right) 

It can be seen that the PEC has the anatomy structure from T1w MRI and the conductivity information 

extracted from diffusion MRI. Meanwhile, the dA/dt encoded the information on the location and direction 

of the coil. Moreover, it also has the property of the selected coil. 

2. Further visualization of results

In this part, we will show some results that did not contain in main manuscript. 

2.1 Results in volume space 

We can see that the estimation of E-filed by VCM and C-60 in Figure S1 respectively. It can be seen that 

the estimated E-field from VCM is a little sharper than from C-60, especially in the edge of the brain 

tissue. 



S3 Fig: The magnitude of E-field (mV/m) from VCM (the first column) and C-60 (the second column), 

and absolute error (the last column) on the EEG positions Fpz, C5 and P5 of one subject in the volume 

level. 

In Figure S4, it can be seen the distribution of topographical based on various metrics. It was shown that the 

performance tested by model C-60 was much better than T1-20 on the five metrics, e.g: TOC and EPD. 

Except for EPD, the other metric result demonstrated that there is some trend in the EEG positions by T1-20 

and C-20. 



S4 Fig: The distribution of TOC, EPD, Correlation, MAE, MRE and MDE on EEG position with T1-20 

and C-60 models on volume space 

In the Figure S5, it demonstrated the histogram by five metrics on 52 EEG positions. 



(a) The distribution of TOC on three models 

(b) The distribution of EPD on three models 



(c) The distribution of Correlation on three models 

(d) The distribution of MAE on three models 

(e) The distribution of MRE on three models 



(f) The distribution of MDE on three models 

S5 Fig: The distribution of various metric on three trained DNN models 

2.2 Results in surface space 

The figure S6 shows the estimation of E-filed in the rostral middle frontal surface from three different 

subjects with C-60. We can also find that it still has the high similarity between VCM and C-60 except for 

the EEG positions, which indicates that the model can predict the E-field on any brain positions, although, 

all of the training data is sampled from EEG position. 



S6 Fig: The magnitude of E-field from VCM (the first column) and C-60 (the middle column), and the 

absolute difference between VCM and C-60 (the last column) on the rostral middle area of three subjects. 

It can be seen that the E-field prediction from the trained network C-60 is close to the result by using VCM, 

especially for the position of peak norm E. Although, all of the training data is sampled from EEG position, 

there is no much influence of the prediction performance on the region of rostral middle frontal. 

Figure S7 shows the distribution of average dice coefficient, average correlation coefficients, mean relative 

error, mean absolute error, mean distance error and maximum peak value between VCM and C-60 in the 

rostral middle area. We can see that most positions have high performance in the rostral middle area. 

Interestingly, some positions with relatively high errors usually happened in the edge of gray matter. 



S7 Fig: The distribution of TOC, Correlation, MRE, MAE (mV/m), EPD (mm) and maximum peak 

value (mV/m) between VCM and C-60 in the rostral middle area of a subject.  

2.3 Performance tested on different epoch by three models 

The figure S8 were shown the TOC, MAE, MRE and correlation on various epoch on five testing subject, in 

which each subject has 4056 samples. It can be seen that the performance will be improved as the epoch 

increased. Moreover, it is obvious that the model C-20 is better that T1-20, which indicated the effectiveness 

to consider the conductivity in training our 3D-MS-Res-U-net. 



 S8 Fig: The mean absolute error and correlation on testing data. 

In this study, we introduced a volume-to-volume neural network, named 3D-MS-Res-U-net. The inputs are 

PEC and dA/dt with the size of 180*220*120*3 and 180*220*120*3, respectively. The output is the E-field, 

whose size is 180*220*120*3. The architecture of the network consists of 31 3D-convolution layers with 

batch normalization (BN)[2], leaky rectified linear units (LeakyReLU [3]), and up-samping. The details of 

the proposed neural network can be found in Table S8. 

S8 Table: The detail of 3D-MS-Res-U-net architecture 

Number Layers Feature Size Parameters 

0 Input 180*220*120*6

1 Conv3d 180*220*120*16 2,592 

2 LeakyReLU 180*220*120*16

3 Conv3d 180*220*120*16 6,912 

4 Dropout&LeakyReLU 180*220*120*16

5 Conv3d 180*220*120*16 6,912 



6 LeakyReLU&BN&LeakyReLU 180*220*120*16

7 Conv3d 90*110*60*32 13,824 

8 BN*LeakyReLU 90*110*60*32

9 Conv3d 90*110*60*32 27,684 

10 Dropout&BN&LeakyReLU 90*110*60*32

11 Conv3d 90*110*60*32 27,684 

12 BN*LeakyReLU 90*110*60*32 

13 Conv3d 45*55*30*64 55,296 

14 BN*LeakyReLU 45*55*30*64 

15 Conv3d 45*55*30*64 110592 

16 Dropout&BN&LeakyReLU 45*55*30*64 

17 Conv3d 45*55*30*64 110592 

18 Dropout&BN&LeakyReLU 45*55*30*64 

19 Conv3d 23*28*15*128 221,184 

20 BN&LeakyReLU 23*28*15*128 

21 Conv3d 23*28*15*128 442,368 

22 Dropout&BN&LeakyReLU 23*28*15*128 

23 Conv3d 23*28*15*128 442,368 

24 BN&LeakyReLU 23*28*15*128 

25 Conv3d 12*14*8*256 884,736 

26 BN&LeakyReLU 12*14*8*256 

27 Conv3d 12*14*8*256 1,769,472 

28 Dropout&BN&LeakyReLU 12*14*8*256 

29 Conv3d 12*14*8*256 1,769,472 

30 BN&LeakyReLU&Upsample 24*28*16*256 

31 Conv3d 24*28*16*128 884,736 

32 BN&LeakyReLU 24*28*16*128 

33 Conv3d 23*28*15*128 16,384 

34 BN&LeakyReLU 24*28*16*128 

35 Conv3d 23*28*15*256 1,749,472 

36 BN&LeakyReLU 24*28*16*128 

37 Conv3d 23*28*15*128 32,768 



38 BN&LeakyReLU&Upsample 46*56*30*128 

39 Conv3d 46*56*30*64 221,184 

40 BN&LeakyReLU 46*56*30*64 

41 Conv3d 45*55*30*128 442,368 

42 BN&LeakyReLU 45*55*30*128 

43 Conv3d 45*55*30*64 8,192 

44 BN&LeakyReLU&Upsample 90*110*60*32 

45 Conv3d 90*110*60*32 55,296 

46 BN&LeakyReLU 90*110*60*32 

47 Conv3d 90*110*60*64 110,592 

48 BN&LeakyReLU 90*110*60*64 

49 Conv3d 90*110*60*32 2048 

50 BN&LeakyReLU&Upsample 90*110*60*32 

51 Conv3d 180*220*120*16 13,824 

52 BN&LeakyReLU 180*220*120*16 

53 Conv3d 180*220*120*32 27,648 

54 BN&LeakyReLU 180*220*120*32 

55 Conv3d 180*220*120*3 96 

56 Conv3d 45*55*30*3 384 

57 Upsample 90*110*60*3 

58 Conv3d 90*110*60*3 192 

59 Upsample 180*220*120*3 

60 Conv3d 180*220*120*3 9 

61 Output 180*220*120*3 

In this study, a volume-to-volume neural network architecture named 3D-MS-Res-U-net is introduced to 

predict the E-field. In the Table S1, it included the name of each layer and the output size of feature maps. It 

worth noting that feature maps from the 6th, 12th, 16th, and 22th layer are concatenated to 51th, 45th, 39th and 

31th layer, respectively, by long skip connections. Moreover, additional deeply supervised layers from 56th 

and 58th are added into the U-net architecture, which help pass the multi-scale features extracted from early 

stage to later stage, see the Figure 1 in the main manuscript.  



2.4 Performance demonstration on the video 

In the video, we can see the point on the scalp that represents the coil, and the corresponding the E-field can 

be visualized at the same time. It was shown that the effectiveness of our proposed method. 

S9 Fig: One slice of the video. The maximum value of E-field is 1.8V/m in the video, and the yellow 

point means the current coil on the scalp. 
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