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this paper. We have individually addressed the reviewers’ comments and concerns.  
 
Our responses are given in blue and the revisions in the manuscript are highlighted in 
yellow. We hope that these changes meet and exceed your expectations for publication. 
 
On behalf of myself and all the co-authors. 
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Reviewer #1:  
 

The manuscript left me with mixed feeling. It contains a good idea, but in its current 
state, it is unsuitable for publication. 
 
First, the bad news: The authors use a DNN for approximate computation of a 
problem with known physics-based solution. They do not, however, compare their 
results to existing fast computation methods, but rather provide their ‘accuracy’ 
without any reference or comparison with either existing methods or requirements 
of the application the authors suggest the method to be used. The approach of 
using DNN to replace physics-based models is also questionable, see point 30 
which paraphrases authors own critique of the earlier DNN work by (Yokota et al., 
2019). 

 
Thank you very much for your valuable suggestions. We have carefully revised the 
manuscript to address all your comments and concerns. We would like to clarify that the 
goal of the DNN-based method is not to replace FEM approaches. These FEM methods 
will always remain the “gold standard”. However, once validated, the DNN-based methods 
can potentially be useful to accelerate the prediction of E-field where fast computation is 
required (e.g. fast targeting in a TMS clinic). Regarding the difference between our work 
and that of (Yokota et al., 2019), our method was developed to predict whole-brain electric 
field without restriction (or limitation) on the position or type of TMS coil. Further, the 
dimension of the predicted E-field of our method is 180x220x120x3 (i.e. whole brain)  
whereas the dimension of the output data by the method in (Yokota et al., 2019) is 
72x144x24x1 (partial brain coverage). Thus, only a small subset of the brain region is 
predicted by the method of Yokota et al.  
 
We have revised the manuscript to remove the comments on real-time prediction. We 
added the following sentence in Line 141 to address the difference from (Yokota et al., 
2019): 
Different from the method in [21], the proposed DNNs not only predict vector E-field maps 
but also predict it in the whole brain as opposed to scalar E-field maps in a small region. 
In particular, the dimension of the output data of the proposed DNNs is 180x220x120x3, 
whereas dimension of the output of the method in [21] is 72x144x24x1.  
 
We added the following sentences in the Discussion in Line 472: 
Moreover, the prediction speed is still slower than the fast quadrature method [18] and the 
DNN based method [17] though the predicted E-field by these methods is only in a smaller 
region of the brain. Further improvement in prediction speed in needed in situations when 
real-time visualization of E-field is required. For example, to predict 20 coil positions per 
second requires that the prediction time be reduced to less than 0.05 s. A potential method 
to improve the prediction speed is to reduce the field of view of the E-field or to only predict 
E-field on brain surfaces, which will be explored in our future work.  
 



Then, the good news: their result with ‘T1-20’ model is interesting. This is an 
application where the DNN-based approach may shine. They did reach almost full 
accuracy of their approximate solver (with full input data) with limited input data. 
This should be the main result: with DNN, we can estimate the induced electric 
field of an anisotropic VCM without having to measure the anisotropy (which is 
expensive for subject-specific models). However, even with this change, the 
authors must perform additional comparisons. The accuracy of approximate DNN 
model must be compared to that of isotropic physics-based model. See my point 
31. This alone is a reason I will currently have to suggest rejection, but most 
certainly with an option to resubmit. 

 
We appreciate your helpful suggestion and the insightful viewpoint. Following your 
suggestion, we have trained a new DNN, named T1-iso20, that uses T1w MRI and the dA/dt 
maps as input to predict the E-field simulated with isotropic models. The T-iso20 model 
was trained using the same amount of data as the T1-aniso20 and C-20 models. The first 
column of Table 1 in below summarizes the performances of the T1-iso20 model on brain 
surfaces. Overall, T1-iso20 has similar performance as the T1-aniso20 model which 
predicts anisotropic model-based E-field maps using T1w MRI.  
 
Table 1: Target overlapping coefficient (TOC), E-field peak distance (EPD) error [mm], Correlation, 

Mean Absolute Error (MAE) [V/m] and Mean Relative Error (MRE) and Mean directional error (MDE) 

between the VCM and DNNs on gray matter region of the whole brain for T1-iso20, T1-aniso20, C-20 

and C-60 and the rostral middle frontal area for C-60 on brain surfaces. 

Mean (SD) 

EEG positions Non-EEG 
positions 

T1-iso20 T1-aniso20 C-20 C-60 C-60 

TOC 0.894(0.045) 0.906(0.024) 0.946(0.012) 0.956(0.009) 0.962(0.007) 

EPD (mm) 3.9591(6.68) 3.736(6.055) 1.638(3.951) 1.394(3.663) 1.300(3.167) 

Correlation 0.983(0.038) 0.986(0.008) 0.995(0.004) 0.997(0.004) 0.997(0.0015) 

MAE 0.018(0.006) 0.017(0.005) 0.010(0.002) 0.008(0.001) 0.008(0.001) 

MRE 0.154(0.059) 0.152(0.062) 0.089(0.014) 0.077(0.013) 0.077(0.009) 

 

 
The results for volume space-based evaluations are provided in Table 2 below. T1-iso20 
and T1-aniso20 models also have similar performances. We note that NRMSE in the table 
denotes the normalized root-mean-square error between vector E-field maps which is 
added following your comment #36. We evaluated the NRMSE for whole-brain E-field 
maps and the E-field around the target regions. Similarly, we computed the mean 
directional error (MDE) for both whole-brain E-field and the target regions. 



 
Table 2: Performance of the models using independent HCP datasets. The evaluation metrics include the 

target overlapping coefficient (TOC), the E-field peak distance (EPD) error, the Correlation, the Normalized 

root-mean-square error (NRMSE) and the Mean directional error (MDE) between the VCM and DNNs on 

gray matter region of the whole brain for T1-iso20, T1-aniso20, C-20 and C-60 and the rostral middle frontal 

area for C-60 in the volume space. 

 

EEG positions Non-EEG 

positions 

T1-iso20 T1-aniso20 C-20 C-60 C-60 

TOC 0.874(0.033) 0.878(0.027) 0.905(0.014) 0.914(0.012) 0.931(0.008) 

EPD (mm) 8.225(8.539) 8.709(8.789) 5.588(7.112) 4.977(6.546) 3.842(5.671) 

Correlation 0.978(0.026) 0.977(0.008) 0.984(0.003) 0.986(0.003) 0.989(0.001) 

NRMSE 0.264(0.0744) 0.277(0.083) 0.205(0.019) 0.187(0.017) 0.217(0.019) 

NRMSE 

(target) 
0.154(0.033) 0.153(0.031) 0.107(0.010) 0.097(0.009) 0.104(0.007) 

MDE 13.455(3.338) 13.770(4.039) 9.969(1.133) 9.117(0.977) 10.814(0.930) 

MDE (target) 6.688(2.545) 6.605(1.299) 4.841(0.426) 4.474(0.368) 4.957(0.412) 

 

Further, to ensure that the model is really robust to change of coil, the tested coil 
model should be fundamentally different from the teaching coil model. Now they 
are two figure-of-eight coils with fairly similar sizes (one step down in size). The 
testing coil could be, e.g., a circular coil or an H-coil. 

 
Following your suggestion, we applied the C-60 model to predict the E-field simulated using 
the Magstim-70mm-circular coil in addition to the previously used MagVenture-MC-B70 
coil. The results are summarized in Table 3 below.  
 
Table 3: Performance of the C-60 model using different coils for the HCP and Ernie dataset.  The 

evaluation metrics include the Target overlapping coefficient (TOC), the E-field peak distance (EPD) 

error, the Correlation, the Normalized root-mean-square error (NRMSE) and the Mean directional error 

(MDE) in the volume space. 

 

 Magstim-70mm-Fig8 MagVentur-MC-B70 Magstim-70mm-Circ 

TOC HCP 0.914(0.012) 0.909(0.012) 0.890(0.012) 



Ernie 0.905(0.011) 0.895(0.015) 0.8858(0.014) 

EPD (mm) 
HCP 4.977 (6.546) 4.789(6.636) 6.257(6.174) 

Ernie 7.591(8.588) 7.236(8.951) 18.451(12.620) 

Correlation 
HCP 0.986(0.003) 0.986(0.003) 0.985(0.003) 

Ernie 0.982(0.004) 0.981(0.004) 0.9806(0.005) 

NRMSE 
HCP 0.187(0.017) 0.312(0.045) 0.244(0.056) 

Ernie 0.3375(0.117) 0.511(0.194) 0.1123(0.3503) 

NRMSE 
(target) 

HCP 0.097(0.009) 0.116(0.012) 0.105(0.016) 

Ernie 0.121(0.016) 0.156(0.018) 0.1418(0.019) 

MDE 
HCP 9.117(0.977) 11.534 (1.966) 12.432(3.357) 

Ernie 15.985(4.415) 18.382 (9.776) 18.3903(5.973) 

MDE 
(target) 

HCP 4.474(0.368) 4.965(0.494) 4.407(0.592) 

Ernie 5.474(0.889) 5.935(1.096) 5.2675(1.0954) 

 

Figure 4 illustrates the simulated and the predicted E-field maps by the C-60 model for the 
three types of TMS coils placed at the same position of a testing subject of the HCP dataset. 
The E-field maps corresponding to the Magstim-70mm-Fig8 and MagVenture-MC-B70 
coils have similar E-field distributions in target regions because the two coils have similar 
structure and size. But the results for MagVenture-MC-B70 have higher prediction error 
especially for brain areas outside of the target areas. The last row of Figure 4 shows that 
the predicted E-field map for the Magstim-70mm-Circular coil has similar distributions as 
the simulation results, though the C-60 was trained based on the Magstim-70mm-Fig8 coil. 
 



 

Figure 4: The magnitude [V/m] of E-field from VCM (the first column) and C-60 (the middle 
column), and the absolute difference between VCM and C-60 (the last column) for three types 
of TMS coils placed at the same position of a testing subject of the HCP dataset. 

 
We hope our effort on the new experiments and the results are helpful to address your 
concerns and meet your expectation on the revision. 
 

Finally, it seems that the authors have used the SimNIBS with incorrect parameters 
(omit the T2 images, which is needed to correctly predict the thickness of the skull 
in the modelling pipeline). Thus, much of the results need to be re-computed. 

 
Thanks for pointing out this limitation of our approach. In SimNIBS preprocessing, both T1w 
and T2w MRI can be used by FreeSurfer to improve brain parcellation results and provide 
more accuracy E-field maps. Thus, it is potentially useful to use both T1w and T2w in DNN 
models to improve the prediction of E-field maps. But to examine the difference between 
the results based on only T1w and using both T1w and T2w MRI requires several months of 
computation time for simulating 101,400 E-files maps and several months for model 
training. Thus, we will explore it in our future work. We also have added the following 
sentences in Line 484 about the limitations: 
Second, the trained DNN models not only depend on the type of coils, imaging protocols 
but also the data processing methods. In particular, tissue segmentations in this study were 
obtained based on T1w MRI, but more accurate results can be obtained by using both T1w 
and T2w MRI. Thus, further development and training of the DNN models are needed to 
integrate different tissue segmentation approaches for more accurate prediction results. 
 

I will begin with minor technical observations: 



The authors, for no apparent reason, limit availability of their data. Their data 
availability statement has arbitrary requirement of “The data that support the findings 
of this study are available from the corresponding author upon *reasonable* request.” 
The authors provide no legal or ethical reason to limit access in this manner. 

 
We shared the trained models and the python scripts used for training and evaluation via 
our Github link: https://github.com/LipengNing/Efield, which was added to the data 
availability statement. We note that simulated and predicted E-field maps take more than 
40 TB storage space which makes it possible to be shared directly. Since all the training 
and testing MRI data are based on the public database from Human Connectome Project 
and the Ernie dataset provided by SimNIBS, the results can be reproduced without sharing 
the original data.  
 

I further wonder why this work is submitted to PLOS ONE and not into some of the 
more specialized journals on neurostimulation methods. 

 
We had submitted the manuscript to other specialized journals related to neurostimulation, 
yet the handling editor considered the topic was not appropriate for that journal. We believe 
PLOS ONE is a suitable journal for this paper since it has more diverse audiences. 
 

The abstract: 
1. First sentence: TMS, in addition to being a ‘neuromodulation’ method is a 

‘neurostimulation’ method. The latter is more descriptive, as neuromodulation is 
possible also with the subthreshold stimulation methods. 
 

Thanks. We changed “neuromodulation’” to “neurostimulation” in the first sentence 
following your suggestion. 
 

2. The second sentence is misleading: “Due to the complex structure of the brain and 
the electrical conductivity variation across different tissues, it is difficult to exactly 
identify the brain region stimulated by TMS, which is important to improve the 
treatment efficacy and understand the underlying mechanism.” 
Even based on this work, this computation is very straightforward with readily 
available toolkits to compute this. Further, this work, at best tries to reproduce the 
accuracy of these existing methods. Hence, calling this problem difficult is 
misleading. 

 
Thanks. We have revised the sentence as following: Due to the complex structure of the 
brain and the electrical conductivity variation across subjects, identification of subject-
specific brain regions for TMS is important to improve the treatment efficacy and 
understand the mechanism of treatment response. 
 

3. The “relative long computation time” is an incorrect claim. Realistic VCM models 
have been solved in under 25 ms, a further factor of 10 faster than the approximate 



solver shown in this work. And, compared to fast FEM implementations (such as 
the 3-second computation in Yokota et al., 2019) the authors speedup does not 
make a fundamental difference. 
This is because the authors fail to define what they mean with “real-time 
computation”. Their computation speed is much lower than in any of the previous 
three methods for ‘real-time computations’ (the local spherical models, the previous 
magnitude-only isotropic-VCM DNN, or a hardware-accelerated, fast-quadrature, 
isotropic-5C-VCM BEM). 
The authors current computation speed of 240 ms = 4.2 computations per second 
= 4.2 frames per second is still too slow for neuronavigation (where the operator 
needs a smooth feedback, at minimum at least 15 frames per second, i.e. below 
67 ms, and ideally >30 or >60 frames per second, i.e., 33 ms and 17 ms, 
respectively). The spherical model rans readily at these speeds, as did the earlier 
DNN which computed the fields in 10–30 ms (Yokota et al., 2019), or the real-time 
BEM which computed the fields in 15–23 ms based on it computing 46–65 coil 
positions per second (Stenroos & Koponen, 2019). In the current performance 
bracket, the model does not provide a quantitative improvement over the fast FEM 
solvers (about 3 s, not the number suggested in the work at 30-60 s), but is 
quantitatively too slow for the suggested ‘real-time’ application by a factor of at 
least 4. 
 

Thanks for pointing out this problem. We have completely revised the manuscript to 
remove the “real-time” descriptions of this approach. In Discussion and Conclusions, we 
added the following paragraph about limitations on the prediction speed compared to prior 
works. 
 
The prediction of a whole-brain E-field volume using the trained neural networks took about 
0.24 s. In practice, additional time is needed to apply rigid transformation to the dA/dt map 
according to the coil position which is expected to take much shorter computation time. 
Moreover, the prediction speed is still slower than the fast quadrature method [18] and the 
DNN based method [17] though the predicted E-field by these methods have relative lower 
dimensions. Further improvement in prediction speed in needed in situations when real-
time visualization of E-field is required. For example, to predict 20 coil positions per second 
required the prediction time should be reduced to less than 0.05 s. A potential method to 
improve the prediction speed is to reduce the field of view of the E-field or to only predict 
E-field on brain surfaces, which will be explored in our future work.  
 
We would like to point out that our method was developed for whole-brain E-field prediction 
for different positions of coil position. The dimension of output data of our method is 
180x220x120x3 whereas the dimension of the output data by the method in (Yokota et al., 
2019) is 72x144x24x1, which is the main reason for difference in prediction speed.   
 
 



4. Abbreviation FEM (finite element method) should be defined before its first use in 
the abstract. 
 

It is introduced in Line 25.  
 

Introduction: 
5. Line 42: the TMS coil current is pulsed, not oscillating (which suggests a continuous 

stimulation instead of discrete pulses). Even at highest repetition rates, the duty 
cycle of TMS is less than 1%, and typically it is much less than 0.1%. 
 

We changed oscillating to ‘pulsed’ in Line 40.  
 

6. Line 52: the “multi-sphere method” is commonly known as “local sphere model”. 
This is also the case for the provided reference by the authors. Further, instead of 
the text-book chapter, the local spherical model should probably be attributed to its 
source, based on the book (Ilmoniemi et al., 1996), or as that work, similarly to the 
cited text-book chapter, is not readily available, their journal publication (Ilmoniemi 
et al., 1999). 

 
We changed “multi-sphere model” to “local sphere model” and added the journal 
publication (Ilmoniemi et al., 1999), i.e., reference [6], in Line 49.  
 

7. Line 53: TMS-specific BEM should be attributed to more correct, older references 
such as (Salinas et al., 2009) or (Nummenmaa et al., 2013). 
 

We added both references in Line 49, which are now references [8] and [9]. Thanks for the 
suggestions.  
 

8. Line 54: TMS-specific FEM, similarly to above, should be attributed correctly 
(Miranda et al., 2003). 

 
The suggested reference was added as [10] in Line 50. 
 

9. Line 54: remove word “sophisticated”, as it does not apply only to FEM VCM. The 
BEM VCM are equally, or sometimes even more sophisticated given the recent 
advanced in fast-multipole methods. 
 

The word “sophisticated” was removed. 
 

10. Further, related to the claim “but also anisotropic tissue conductivity, which cannot 
be done by other methods” (line 56), the authors glossed over FDM methods which 
can model the anisotropy (e.g., De Geeter et al., 2011). The authors further failed 
to justify why the anisotropy in particular is of such a high importance (given the 
uncertainty conductivity values, for both isotropic and anisotropic case). 



 
The sentence in Line 50 was revised to below: the FEM method is based on a volume 
conductor model (VCM) of head tissue which not only is able to characterize complex 
tissue structure, brain geometry but also anisotropic tissue conductivity that can potentially 
improve the model precision especially in white matter regions [13][14].  
 

11. Line 66: BEM is not an accelerating algorithm! 
 

We revised the sentence in Line 61 as below: To overcome the limitations, several 
computation algorithms [20][21][22]have been developed to reduce the simulation time. 
 

12. Further, the sentence in line 66 should contain both (Stenroos & Koponen, 2019) 
and (Yokota et al., 2019), the existing real-time solvers. 

 
The suggested references were added as [22] and [21] in Line 61. 
 

13. Finally, I do not see any fundamental reason why (Laakso & Hirata, 2012) could 
not include also the anisotropy. It is an FEM after all. They likely followed the 
common convention in TMS-stimulation literature of omitting the anisotropy as we 
do not really know the anisotropic conductivity tensor. (As the authors also admit 
when they slightly latter use one of the three rules of thumb, none of which is even 
based on the physics, of deriving the anisotropic conductivity values from the DTI 
data and the not-that-accurately-known isotropic conductivity value.) 

 
We removed the part of sentence that the method (Laakso & Hirata, 2012), i.e. [20] does 
not include anisotropic conductivity. 
 

14. Line 74: The authors again claim their method capable of real-time simulation in 
clinical and research setting despite it being too slow for the suggested real-time 
neuronavigation use. 
 

We have revised the sentence and removed the word “real-time”.  
 

15. Line 85: Overselling, every existing physics-based computation method (spherical 
models, FEMs, FDMs, BEMs) predicts the three-dimensional vector E-field: “In 
particular, our approach predicts the three-dimensional vector E-field instead of its 
magnitude.” The sole method that does not, is the previous DNN method by 
(Yokata et al., 2019). 

 
We have revised this sentence. We had emphasized that our method is used to overcome 
the limitations of the previous DNN based method in (Yokata et al., 2019). Below are the 
revised sentences that are now in Line 76: 
In this work, we propose a new deep-learning framework that overcomes the limitations of 
previous method in [21]. First, our approach predicts the three-dimensional vector E-field 



instead of its magnitude. Second, our method can be used to predict E-field with the TMS 
coil placed at different positions over the whole brain. Third, our method uses the change 
of vector potential, i.e., the dA/dt map, of the TMS coil as input to predict E-field. Thus, the 
trained DNN can be applied to predict E-field for different types of coils. 
 

16. Line 88: Advertising a weakness of the method as its strength. The ‘C-20’ and ‘C-
60’ require much more time-consuming and costly DTI dataset of each individual 
TMS subject, compared to just T1 (and in most cases T2 for best quality) MRI. It is 
not a strength to require the extraordinarily high-resolution input files of the HCP, 
but a limitation: “Furthermore, both diffusion-MRI based conductivity tensors and 
T1w MRI, which integrate anisotropic conductivity of brain tissues, are used to 
predict the E-field.” 

 
We agree that the need for diffusion MRI is a limitation in applications. We have revised 
the sentences in Line 81 to below: 
We have developed four deep neural networks (DNNs) that use different types of imaging 
data to predict vector E-field. Similar to the method in [21], the first two DNNs were trained 
based on T1w MRI images to predict E-field simulated using isotropic or anisotropic tissue 
conductivity tensors, respectively. The other two DNNs take the anisotropic tissue 
conductivity maps derived from diffusion MRI as the input to predict the E-field maps. By 
comparing the prediction results of the four DNNs, we can examine if the additional 
information provided by diffusion MRI can enhance the prediction accuracy. 
 

17. Line 90: Overselling similarly to point 15. All but the previous DNN method allow 
straightforward change of the coil model. 
 

The corresponding sentence “the magnetic field of the TMS coil was used as a part of input 
instead of using only the position and orientation” is now removed. 
 

18. Lines 106–116: there are results at the end of introduction? 
The methods or metrics such as “target overlapping coefficient” are not defined 
here! This paragraph is entirely impossible to read for a person who has not read 
the rest of the work before returning here. It should be removed! 
Oh, one final thing on this part: the 9-degree error is NOT much lower than a 13-
degree error. They are about equal, and both are HORRIBLY BAD VALUES for 
such a simple quantity that can be modelled with physics-based models instead of 
DNN. 
13-degree error is comparable to a one-shell model, and 9-degree error to omitting 
the whole of white matter altogether (Stenroos & Koponen, 2019). This means that 
the “approximate DNN model with anisotropy” performs worse than much simpler 
and faster conventional physics-based models. This is despite requiring much 
more input data! 



Considering this performance, or lack of thereof, the authors use FAR TOO BOLD 
words such as “the rich information” (line 114) and “ultra-short computation time” 
(line 114). 
Further, if the computation time is from the extraordinarily expensive high-end GPU, 
it should not be used to describe the suitability to “clinical setting” (line 115). 
PS. It is computation time, not computation time. This error repeats throughout the 
work. 

 
We apologize about the confusions about the results in introduction. We removed the last 
paragraph of introduction about results. 
 
 

Material and methods (at this point, I will shorten my observations, as I have written 
a tad overly long response already). 
19. Line 124: define “the minimal processing pipeline” (reference or description) 

 
We added more information and the reference about the preprocessing of diffusion MRI. 
The revised sentence is below:  
The HCP diffusion MRI datasets were preprocessed with corrections for head motion and 
distortions and were co-registered with T1w MRI [28]. 

 
20. Line 125: define “the native space” (the native space of what, a description) 

 
We meant to say the native space of the subject. For clarity, we changed it to “T1w MRI” 
as in our response to your previous comment. 
 

21. Line 126: questionable use of SimNIBS. The VCM construction should be given 
both T1 and T2 images for better performance. 
 

We agree that using T1w and T2w can enhance the accuracy of tissue segmentation, thus 
improving the accuracy of the simulation results. We will continue developing and training 
our DNNS to make it possible to integrates both T1w and T2w MRI in our future work. We 
added more comments in Line 483 about the limitations of the method:  
Second, the trained DNN models not only depend on the type of coils, imaging protocols 
but also the data processing methods. In particular, tissue segmentations in this study were 
obtained based on T1w MRI, but more accurate results can be obtained by using both T1w 
and T2w MRI. Thus, further development and training of the DNN models are needed to 
integrate different tissue segmentation approaches for more accurate prediction results. 
 

22. Line 126: Which SimNIBS version it was, and why there is no reference? 
 

It was version 3.0.8. We added the information in Line 106 and Line 192. 
 



23. Line 128: Unnecessary sentence “We note that another command headreco 
can also be used to generate head models which may lead to different simulation 
results [Nielsen et al. 2018].” 
 

This sentence was removed.  
 
24. Instead of unnecessary sentences like in point 23, the previous sentences 
should contain all relevant modelling parameters. (The work further glosses over 
the entire problem with selection of conductivity parameters, despite being about 
anisotropic conductivity, which is finicky to the choice of the isotropic baseline 
values.) 

 
We added the following sentence in Line 113 about model parameters:  
The scalar-valued tissue conductivity for white matter, gray matter, CSF, bone and scalp 
were set as 0.126, 0.275, 0.1654, 0.01 and 0.465 S/m, respectively, which were the default 
values in SimNIBS. Moreover, the distance from the coil to the scalp was 4 mm which was 
also the default value. 
 

25. Line 137: You seem to provide exact details on version of MATLAB, but for 
some reason omit them from SimNIBS at all points. 
 

The version number of SimNIBS 3.0.8 is added in Line 106 and Line 192. That was the 
latest version when we started our project and was used throughout the project. 
 

26. Line 146: what does this sentence about the “average degree between the 
nearest handle directions being about 4.6 degrees” even mean? 
 

We apologize for the confusion. The sentence in Line 119 was revised to below:  
In order to generate E-field maps with different coil centers and orientations, we sampled 
the position of the coil from the positions of the EEG 10-10 system and with the coil handle 
directed to 78 different directions with approximately 4.6o angular resolutions. 
 

27. Line 165: grossly incorrect statement. Just having the T1 image (or even the 
correct set for good VCM, i.e., T1 and T2) has nothing to do with not computing the 
direction of the E-field! Is this the reason for the ridiculous claim of point 15? The 
anisotropy has a (small compared to just the much larger isotropic conductivity 
differences) effect on the field directions. It is not a fundamental reason for the field 
directions. I refer now to sentence: “We note that the T1w MRI was used in [Yokota 
et al., 2019] to predict only the magnitude of the E-field since T1w MRI does not 
contain diffusion information about the axon orientation.” 

 
We meant to say that the diffusion tensors provide information about the direction of 
anisotropic tissue conductivity which is potentially helpful in the DNN method to enhance 
the precision of the predicted E-field. To avoid confusion, we removed this sentence. 



 
28. Line 169: “field” not “filed”. 
 

Fixed. 
 

29. Line 169: I assume you refer to the spatial distribution of the change of the 
vector potential (dA/dt) at the beginning of the TMS pulse, and not peak temporal 
changes! 

 
Corrected, see Line 163. Thanks. 
 

30. Line 177-179: The authors critique of (Yokota et al., 2019) could also be said 
about their own work! Let me paraphrase: “Thus, the DNN in (THE AUTHORS) is 
not a solver for the forward model but also needs to learn the well-known underlying 
physics of electromagnetic induction, which may reduce the prediction accuracy.” 
This is basically my main critique of both this work and the work of (Yokota et al., 
2019). 
In their current state, both methods are FAR LESS accurate than any PHYSICS-
BASED solvers. And, in the case of the present manuscript, they are also slower 
than properly implemented fast physics-based solvers. The approximation by 
(Yokota et al., 2019) was at least momentarily the fastest approach with more 
complex than spherical geometry, before being caught up and surpassed by the 
fast BEM solvers. 

 
We have removed this sentence. We agree that the output of DNN is only an approximation 
of the simulation results. Here, we meant to point out a major difference between our 
method and the (Yokota et al., 2019) that our method used the dA/dt map as an input to 
the DNN. As for the prediction speed, the method in (Yokota et al., 2019) was devised to 
optimize prediction speed with smaller FOV and scalar output with the dimension of output 
data being 72x144x24x1, whereas our method used a much larger FOV with vector E-field 
prediction with the dimension of output data being 180x220x120x3 for whole-brain 
estimation and explored the difference between different types of images.  
 
We added the following sentence in Line 141:  
Different from the method in [21], the proposed DNNs not only predict vector E-field maps 
but also predict it in the whole brain as opposed to scalar E-field maps in a small region. 
In particular, the dimension of the output data of the proposed DNNs is 180x220x120x3, 
whereas dimension of the output of the method in [21] is 72x144x24x1. 
 

31. But, then the positive. Line 194: you actually, should the result survive through 
the proper cross-validation against the error for a SimNIBS model without the DTI 
data, try to make things that are not possible with a physics-based model. 
The ‘T1-20’ model approximates the DTI dataset without needing one. 



This result, however, will need to be compared to the computation against a 
physics-based model without the DTI data. As, if the physics-based model has 
prediction errors smaller than 13 degrees, then it is both faster & more accurate 
than the proposed DNN-based model. Such comparison is missing, and without it, 
I will suggest rejection. 
The approximation of the DTI data is only true if the ‘T1-20’ can perform better than 
just using a physics-based solver without the data. (For which the error is likely 
much less than 10 degrees.) 

 
We appreciate your positive comment and insightful viewpoint. Yes, it is indeed a potential 
advantage of the DNN method to use T1w MRI to predict anisotropic conductivity-based 
results. Accordingly, we added the following sentence in Line 493:  
It is also a potentially useful tool to use only anatomical images, e.g., T1w MRI, to predict 
E-field based on anisotropic conductivity tensors when diffusion MRI is not available in 
clinical settings, though further improvements in prediction accuracy are needed. 
 
Regarding the angular error, we previously computed the angular error in whole brain. 
Since the E-field in brain tissue far from the coil has much weaker magnitude, minor 
prediction error can lead to significant angular differences. Thus, we also added the 
evaluation for angular error in the target region, as shown in Table 2. The angular error for 
T1-aniso20 model is 6.605o in target regions which is similar to the 6.688o for the T1-iso20 
model to predict E-field maps with isotropic conductivity. The angular error for the C-20 
model is about 4.851o.  
  

32. Line 231-233, rewrite this sentence to make sense of it. 
 
The revised sentence is now in Line 186 as below:  
We first initialized the network weights using the method proposed in [37]. We then used 
the RAdam (Rectified Adam) [38] optimizer for network training with modulate parameters 
β1 = 0.9, β2 = 0.999 and the initial learning rate lr = 0.002. Step learning rate strategy was 
employed with the initial lr decayed by gamma=0.5 after every 5 epochs. 
 

33. Line 282: on scalp, not on skull. 
 
Fixed. We changed “skull” to “scalp” 
 

34. Line 293: between E-field distributions, not between the brain regions. 
 
Fixed. We changed “brain regions” to “E-field distributions”. 
 

35. Line 303: why is the word reference in quotation marks? Remove them. 
 

Fixed. The quotation marks were removed. 
 



36. Line 306-310: This error metric is incorrect, and underestimates the relevant 
prediction error. The correct method is to compute the magnitude of the vector 
difference (similarly to previous works with physics-based models). 
 
Your method gives an error of 0 even if you would have predicted the field direction 
incorrectly by 180 degrees. (See the point about testing the coil with a different 
type of TMS coil, such as circular coil.) 
 

We separated evaluated the magnitude differences (MAE and MRE) and angular 
differences (MDE) between the predicted and simulated E-field distributions. Following 
your suggestion, we added a new measure, i.e., the normalized root mean-square error 
(NRMSE), to compare the vector E-field according to the following definition 

𝑁𝑅𝑀𝑆𝐸	 = !
"
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where N denotes the number of voxels 𝐸&and 𝐸'  denote the predicted and reference 
vector E-field. The equation was added in Line 293.  

 
37. Line 324: Comparing apples to oranges. The computation speed for the DNN 
is told with two flagship GPUs, and the computation speed for the (not exactly 
optimized for speed) FEM is told with an undisclosed hardware (probably no GPU 
acceleration). 

 
We removed the following sentence “on the other hand, the time needed to simulate the 
corresponding training data using FEM was about 30 to 60 second.” 
 

38. Line 327: Repeating the incorrect claim that 240 ms computation is ‘real time”. 
The authors never mention what they actually mean with that. They give example 
of neuronavigation, for which such computation speed is too slow. 

 
We removed the sentence: Thus, the trained neural network was able to significantly 
reduce the time for E-field simulation making it useful for real-time neuronavigation. 
 
 

39. Line 339: Significantly as in statistical significance? Or, some other significance? 
If using the latter used criteria of visual indistinguishability, both are equally good, 
or rather bad. Further, line 342: I saw not even a statistically significant difference 
between the results of C-20 and C-60? 

 
We revised these sentences to below: 
Overall, the T1-iso20 and T1-aniso20 models had similar performances in predicting E-
field maps with isotropic and anisotropic conductivity, respectively. The C-20 model 
overperformed the T1-iso20 model with higher TOC and correlation measures and lower 
EPD, MAE and MRE measures, indicating that conductivity maps provide better 
performance than T1w MRI to predict E-field maps. The C-60 model had similar 



performance as the C-20 indicating that using datasets from 20 subjects can provide 
reliable training results which is consistent to conclusions in [21]. The performance of the 
C-60 model at non-EEG positions that were no included in the training dataset was similar 
to the performance at EEG positions. In particular, the EPD was about 1.3 mm indicating 
that C-60 provided high accuracy for localizing TMS targets on brain surfaces. 
 

40. Table is on line 345: Why is the angle error omitted from this table? 
Only the magnitude of E-field was mapped to brain surfaces. But the angular error was 
only evaluated in volumetric space as shown in Tables 2 and 3.  
 

41. Line 354: what exactly do you mean with “almost visually indistinguishable”? 
 
We meant to say that results in first column and the second column of Figure 3 were similar. 
We have removed this sentence to avoid confusions.  
 

42. Line 362, figure 3: Is this the difference of fields or difference of magnitude of 
fields? If former, there is 10% errors in the fields? If latter, well… 

 
The mean relative error was summarized in Table 1. Overall, the mean relative error is 
about 7.7% but some regions were about 10% or higher. We added the following sentence 
in Line 343: 
Though the MRE was about 7.7% over the entire brain surface, the relative error in some 
regions was 10% or higher. 
 

43. Line 382: The angle errors are humongous. They are comparable to far simpler 
head models, not to some simple approximation. Compared to the approximation 
errors due to the fast quadrature of (Stenroos and Koponen, 2020), where the 
angle error was < 0.1 degrees, the 9 degree and the 13 degree errors are unusable. 
 

We added the following sentences in Line 463 regarding the limitations on angular error  
The angular error of the C-20 and C-60 models in target regions were about 4.841 and 
4.474 degrees which were lower compared to the 6.688 degree for T1-iso20 and 6.605 
degrees for T1-aniso20. But the angular errors were much higher than the fast quadrature 
method [22]. Thus a different training strategy may be needed to improve the angular 
precision of the DNN models, which will be explored in our future work. 
 

44. Line 393, table 2: the location error is also 10 mm even for the ‘C-60’. Such 
larger error is unusable for neuronavigation! Also, based on this table, is the angle 
error rather not 14 degrees and not 13 degrees? 

 
We notice that our previous approach for computing E-field peak distance in the volume 
space was sensitive to outliers. We improve the estimation algorithm by using the average 
value of 3x3x3 neighboring voxels to determine the position of peak values of the E-field 



maps. For the non-focal E-field distributions corresponding to the Magstim-70mm-Circular 
coil, the target position was determined as the average coordinate of the top 200 voxels.  
Accordingly, we added the following sentence in Line 267: 
To reduce the influence of outliers on EPD in the volume space, we took the average value 
of the E-field magnitude in 3x3x3 neighboring voxels within the gray matter region as 
magnitude of a voxel to determine the location of the peak value of E-field maps for 
Magstim-70mm-Fig8 and MagVenture-MC-B70 coils. For the less focal E-field 
corresponding to the Magstim-70mm-circular coil, the location of the target was determined 
as the average position of the top 200 voxels with the highest E-field magnitude in the gray-
matter region. 
 
The updated results are shown in Tables 1 to 3. We added the following sentences in Line 
458 about the limitations for targeting accuracy:  
The experimental results showed that the target overlap ratio of the C-60 model on brain 
surfaces was 95.6% and the E-field peak distance was 1.3 mm and the correlation 
coefficient was about 0.997. The distance error increased in the volume space to about 
11.3 mm. The T1-iso20 and T1-aniso20 models had reduced targeting accuracy with the 
E-field peak distance on brain surfaces being 3.959 mm 3.736 mm, respectively, and 8.225 
mm, 12.601 mm in volume spaces. The angular error of the C-20 and C-60 models in target 
regions were about 4.841 and 4.474 degrees which were lower compared to the 6.688 
degree for T1-iso20 and 6.605 degrees for T1-aniso20. But the angular errors were much 
higher than the fast quadrature method [22]. Thus a different training strategy may be 
needed to improve the angular precision of the DNN models, which will be explored in our 
future work.  
 

45. Line 407, table 3: the EPD, the correlation error, and the MDE are all unusably 
large! Such errors seem about the same as the error of a local sphere model? 
Compare to results of (Stenroos & Koponen, 2019). 
 

The following sentence was added in Line 465:  
But the angular errors were much higher than the fast quadrature method (Stenroos and 
Koponen, 2019). Thus, a different training strategy may be needed to improve the angular 
precision of the DNN models, which will be explored in our future work. 
 
We note that the errors in (Stenroos & Koponen, 2019) were evaluated at much fewer 
positions, i.e., N=900, at cortical regions of interest. Thus, we think it should be a fair 
comparison with the surface-based evaluation in Table 1 where the correlation for C-60 
was 0.997 and the distance error was 1.394 mm. 
 

Discussion and conclusions: 
46. Line 430: “novel advantages” what does this even mean? 

 
We removed “novel” in the sentence. 
 



47. Line 431: this is not a new feature: “First, it can be applied to predict E-field 
vector volumes with arbitrary coil positions and orientations” 

 
Thanks. We revised the summary in Line 427 to below:  
Our method has several major differences compared to the DNN method in [21]. First, our 
method uses the dA/dt map of the magnetic coil to predict vector E-field. Thus, the trained 
DNN model can be applied to predict E-field maps for different TMS coils. Second, we 
proposed a novel architecture of neural networks, i.e., 3D-MSResUnet, to improve the 
prediction accuracy by combination of residual module and multi-scale feature maps into 
3D-U-net architecture. Third, our method used anisotropic conductivity maps to improve 
the prediction accuracy of E-field maps. 
 

48. Line 433: with angle error close to 10 degrees, I would not exactly call this 
accurate: “to accurately predict the magnitude and the direction of E-field.” 

 
We removed “accurately” in the sentence. 
 

49. And, then line 439, compare to point 31. Basically, you show that your DNN is 
worse than a physics-based model, and not fundamentally faster. “Our work shows 
that deep learning can be further used as a solver for the forward model for 
estimating whole-brain E-field in TMS.” 
I would like to point out that you have far more than 10 times more computational 
power than the fast-multigrid method by (Laakso and Hirata, 2012), which took just 
3 s in (Yokota et al., 2019). 

 
And, you do not even compare to such fast solver (~3 s), but rather compare your 
GPU-accelerated computation time to a not-optimized for real-time FEM without 
any GPU acceleration (30-60 s). 

 
We removed this sentence. We agree that current prediction speed is far from being real-
time. But it is not a fair comparison with the method by (Laakso and Hirata, 2012) and 
(Yokota et al., 2019) since our method predicts 3-dimensional E-field distributions within a 
much larger FOV. We believe the prediction speed of our method can be enhanced by 
using faster GPU computing resources or reducing the FOV or only predicting E-field on 
brain surfaces, which will be explored in our future work. We have added more comments 
in Line 473 about the prediction speed. The following are the added sentences:  
The prediction of a whole-brain E-field volume using the trained neural networks took about 
0.24 s. In practice, additional time is needed to apply rigid transformation to the dA/dt map 
according to the coil position which is expected to take much shorter computation time. 
Moreover, the prediction speed is still slower than the fast quadrature method [22] and the 
DNN based method [21] though the predicted E-field by these methods have relative lower 
dimensions. Further improvement in prediction speed in needed in situations when real-
time visualization of E-field is required. For example, to predict 20 coil positions per second 
required the prediction time should be reduced to less than 0.05 s. A potential method to 



improve the prediction speed is to reduce the field of view of the E-field or to only predict 
E-field on brain surfaces, which will be explored in our future work. 
 

50. Line 444-448: No you did not show this. What was your reference model 
compared to which you showed that the FEM was accurate in its prediction? Did 
you test for the sensitivity of your solution to your input parameters (which you 
failed to disclose), or even just the model resolution? 

 
We changed the discussion in Line 436 on conductivity map vs T1w MRI to below:  
The experimental results show that the T1-aniso20 model can use T1w MRI to predict E-
field maps based on anisotropic conductivity with similar performance as the T1-iso20 
model for predicting E-field based on isotropic models. While using T1w MRI to predict E-
field based on anisotropic models is an advantage compared to physics-based FEM 
method, the prediction accuracy is worse than the results of C-20 that uses anisotropic 
conductivity tensors for E-field prediction. But the dependence the C-20 and C-60 models 
on diffusion tensors limits their applications in situations when diffusion MRI is not available. 
 

51. Line 467: 9 degree error in volume is not similar in direction. It is horribly badly 
off. 

We removed the word “similar” and revised the sentence in Line 463 to:  
The angular error of the C-20 and C-60 models in target regions were about 4.841 and 
4.474 degrees which were lower compared to the 6.688 degree for T1-iso20 and 6.605 
degrees for T1-aniso20. But the angular errors were much higher than the fast quadrature 
method [22]. Thus a different training strategy may be needed to improve the angular 
precision of the DNN models, which will be explored in our future work. 
 
 

52. Line 470: 13.7 degrees is not “as low as” but rather horribly bad prediction. 
 

We removed “as low as” and revised the sentences as provided in our response to 51. 
 

53. Line 473: how is this work applicable to clinical setting? Where do we get all 
the DTI data, and the computational resources? 

 
We added the following sentence in Line 438 regarding the limitations of C-20 and C-60 
on the dependence of DTI and the potential advantage of using T1w MRI: 
While using T1w MRI to predict E-field based on anisotropic models is an advantage 
compared to physics-based FEM method, the prediction accuracy is worse than the results 
of C-20 that uses anisotropic conductivity tensors for E-field prediction. On the other hand, 
the dependence the C-20 and C-60 models on diffusion tensors limits their applications in 
situations when diffusion MRI is not available. 
 

54. Line 478: the computation time (not computation time) is not ultra-short. 
 



We revised the paragraph on prediction speed. The updated text is below: 
The prediction of a whole-brain E-field volume using the trained neural networks took about 
0.24 s. In practice, additional time is needed to apply rigid transformation to the dA/dt map 
according to the coil position which is expected to take much shorter computation time. 
Moreover, the prediction speed is still slower than the fast quadrature method [22] and the 
DNN based method [21] though the predicted E-field by these methods have relative lower 
dimensions. Further improvement in prediction speed in needed in situations when real-
time visualization of E-field is required. For example, to predict 20 coil positions per second 
required the prediction time should be reduced to less than 0.05 s. A potential method to 
improve the prediction speed is to reduce the field of view of the E-field or to only predict 
E-field on brain surfaces, which will be explored in our future work. 
 

55. Line 480: visualization in real-time might indeed be useful (not quite essential), 
but your work fails to deliver such speeds, unlike previous ‘real-time methods’ 
 

The updated text was provided in our response to 54. 
 

56. Line 483: Probably soon tenth repetition of this same line does not make it true. 
Please, do not oversell your work. 

 
The entire paragraph was revised with the updated sentences provided in our response to 
54. 
 

57. Line 487: Fundamental problem with understanding physics-based models. A 
FEM and a BEM will produce practically identical E-field predictions, e.g., (Gomez 
et al., 2020), and thus the DNN should not change based on which physics-based 
model it is trained on. This is the whole reason for physics-based models. We get 
the SAME result with a BEM as with a FEM, or an FDM (given adequate resolution 
for each). 
This is why DNN is also inherently problematic for this type of problem. You 
essentially try to make it learn very well-known physics, instead of actually just 
using said physics to compute the result. 

 
We meant to say that the DNN were trained to predict the E-field simulated with anisotropic 
conductivity. Since we have now added the results for isotropic conductivity, we revised 
the entire paragraph. Below is the updated text. 
Finally, we note that the DNN methods have several limitations. First, the neural networks 
were trained to predict E-field simulated with fixed values for tissue conductivity, i.e., 
specific values of conductivity for different tissue types, a specific coil and specific imaging 
protocols, which are limitations compared to physics-based FEM algorithms. Second, the 
trained DNN models not only depend on the type of coils, imaging protocols but also the 
data processing methods. In particular, tissue segmentations in this study were obtained 
based on T1w MRI, but more accurate results can be obtained by using both T1w and T2w 
MRI. Thus, further development and training of the DNN models are needed to integrate 



different tissue segmentation approaches for more accurate prediction results. Third, the 
DNN models were only trained based on data from health subjects whereas physics-based 
FEM algorithms have more broad applications for patients with tumors or lesions. Thus, 
the goal of the DNN-based method is not to replace FEM approaches. But the DNN-based 
methods can potentially be useful to accelerate the prediction of E-field in situations when 
their performances are validated.  
 
 

58. Line 490: There were other far more important fixed parameters than distance 
to scalp (which your dA/dt –based approach should in any case be fairly robust on). 
But then again, this revisits points 31, 57, etc. 
 
DNN is fundamentally wrong tool for solving the forward problem. (The ‘T1-20’ to 
predict the DTI-FEM result is interesting, however. That is, if you compare it to no-
DTI FEM to see if it can actually perform better.) 

 
The updated text is provided in the above response to 57. We appreciate your viewpoint 
on using T1w to predict DTI-FEM. Following your suggestion, we have trained a new model 
T1-iso20 to predict non-DTI FEM. We added the following sentence to point out a potential 
advantage of DNN:  
It is also a potentially useful tool to use only anatomical images, e.g., T1w MRI, to predict 
E-field based on anisotropic conductivity tensors when diffusion MRI is not available in 
clinical settings, though further improvements in prediction accuracy are needed.  
 

59. Line 490: for example, you now fix the conductivity parameters. And, of course 
you model only works for ‘normal’ brains. This makes the method unsuitable for, 
e.g., neuronavigation of persons with lesions etc. (which is where the physics-
based models excel). 

 
We agree. Below is the updated text in Line 488 regarding the limitations: 
Third, the DNN models were only trained based on data from health subjects whereas 
physics-based FEM algorithms have more broad applications for patients with tumors or 
lesions 
 

60. Line 490: based on what data is the DNN expected to be robust against the 
change of the long list of parameters you fail to mention at any point in the 
manuscript? 

 
We removed this sentence.  
 
  



Reviewer #2 
This paper introduces a novel U-net architecture for realtime Efield analysis of TMS. 
The manuscript is well written and their methods technically sound. However, some 
important issues need to be addressed: 
Since they are claiming this is accurate they should mathematically define all of 
their error metrics. 

 
Thanks. We have defined each metrics. The target overlapping coefficient (TOC) was 
defined as 

𝑇𝑂𝐶	 = ()&
()&*+&*+"

    (1) 

where the TP, FP and FN mean true positive, false positive and false negative between 
the prediction E-Field and the reference E-Field. 
The E-field peak distance (EPD) was defined as  

𝐸𝑃𝐷 = ‖𝑃𝑒𝑎𝑘(𝐸&) − 𝑃𝑒𝑎𝑘(𝐸')‖,  (2) 

where 𝐸&and 𝐸'  denote the predicted and reference E-field and the 𝑃𝑒𝑎𝑘() function 
obtains the coordinate of the voxel at the gray matter region or the vertex at brain surface 
with the maximum magnitude. To reduce the influence of outliers on EPD, we took the 
average value of the E-field magnitude in 3x3x3 neighboring voxels within the gray matter 
region as magnitude of a voxel to determine the location of the peak value. 
The E-field similarity, i.e., correlation, was commutated as 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛	 = ,-.(‖$!‖,‖$"‖)
2345(‖$!‖)345(‖$"‖)

,  (3) 

where	‖𝐸&‖ and	‖𝐸'‖ denote the magnitude of the predicted and the reference E-field, 
respectively. 
The mean absolute error (MAE) and mean relative error (MRE) were defined as 
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where K denotes the number of vertices on the surface. 
Following your comment 1) below and Comment # 36 of Reviewer #1, we added the 
following normalized root-mean-square error (NRMSE) to compare vector E-field maps: 
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where N denotes the number of voxels. 
The mean directional error (MDE) was defined as 
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1) The authors do not compare to standard error metrics like L2, pointwise error 
like in https://doi.org/10.1016/j.brs.2019.09.015 . Also, others like RDM. What 
is the relative performance to existing methods. 



 
Thanks for pointing out this metric. We added the normalized root mean-squared error 
(NRMSE) metric provided above which is the same as the L2 metric in the suggested 
reference. 
 
We computed NRMSE for whole-brain and the target regions. The updated results are 
provided in Tables 2 and 3.  
 
 

2) How long does it take to compute dA/dt?;this should be included in computation 
time. 

 
Thanks for your comment. dA/dt is provided from the selected coil. A rigid transformation 
is needed to transform the dA/dt to the selected position. Since the transformation 
parameters are provided based on the coil position, the rigid transformation takes much 
shorter computation time than the prediction time. We added the following sentence in Line 
470:  
In practice, additional time is needed to apply rigid transformation to the dA/dt map 
according to the coil position which is expected to take much shorter computation time.   
 

3) This method has not been trained with different coils, how do we know the 
trained network will generalize to other coils? 

The DNNs were trained based on Magstim-70mm figure-8 coil. We tested its performance 
for MagVenture MC B70 (figure-8) coil and Magstim circular 70 mm coil. The results are 
provided in Table 3, see below.  
 
 
We note that the DNNs can be further trained using the simulated data from different coils. 
Results from this work can be used as initial parameters to expedite the training procedure. 
 

4) In a sense when you move the coil the dA/dt is moved; this is equivalent to 
moving the brain. So their claim that passing these maps changes something 
needs a deeper rationale. 
 

A main difference between our method and (Yokota et al. 2019) is that our method uses 
dA/dt map as an additional input to predict the E-field whereas (Yokota et al. 2019) only 
uses the coil position as input. Since the two coils can be placed at the same position to 
generate different E-field, the method by (Yokota et al. 2019) intrinsically require different 
DNN models for different coils. An advantage of using dA/dt map to predict E-field is that 
the dA/dt maps can characterize differences between the coils. Thus, a single DNN model 
can be potentially applied to multiple coils. We added the first sentences in Line 215: 
We note that a major difference between the proposed approach and the method in [21] is 
the inclusion of the dA/dt map as a input to the DNN. Thus, the DNN model can produce 
different E-field maps for different coils at the same positions. In our experiment, the DNNs 



were trained based on simulated E-field using a Magstim-70mm-Figure8 [39] TMS coil. To 
examine the  performance for other coils, we applied the C-60 model to predict E-field 
maps for the MagVenture-MC-B70 coil, which has a similar Figure-of-Eight shape as the 
trained coil and the Magstim-70mm-Circular coil [40]. 
 

5) is the DNN computing both primary plus secondary E-field or just secondary? 
 

It is the total E-field simulated using the finite-element method provided by the SimNIBS 
software.  


