Rates of SARS-CoV-2 transmission and vaccination impact the fate of vaccine-resistant strains

Simon A. Rella¹, Yuliya A. Kulikova², Emmanouil T. Dermitzakis^{3*}, Fyodor A. Kondrashov^{1*}

¹Institute of Science and Technology Austria, 1 Am Campus, Klosterneuburg, 3400, Austria

²Banco de España, Calle Alcala 48, 28014 Madrid, Spain

³Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland

*Corresponding authors, ETD <u>Emmanouil.Dermitzakis@unige.ch</u>, FAK <u>fvodor.kondrashov@ist.ac.at</u>

Supplementary Figures and Legends

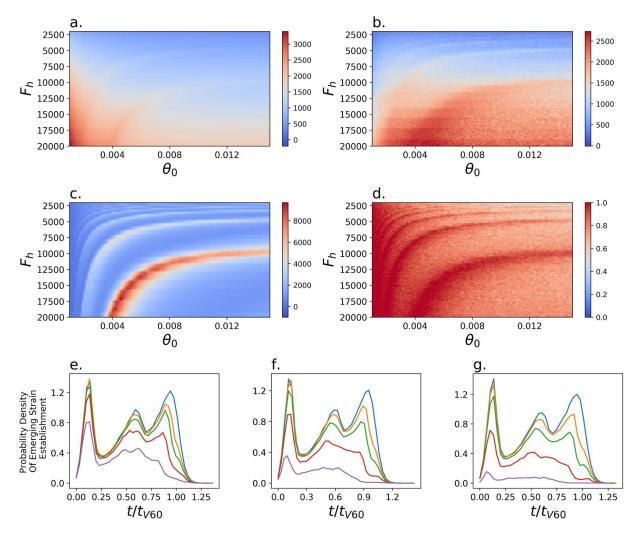


Figure S1 Impact of the rate of vaccination and initiation of low rate of transmission on model dynamics for $\bf p=10^{-5}$. The cumulative death rate from the $\bf a$, wildtype and $\bf b$, resistant strains, $\bf c$, the number of wildtype-strain infected individuals at t_{v60} , the point in time when 60% of the population is vaccinated and $\bf d$, the probability of resistant strain establishment. $\bf e-\bf g$, Probability density that the resistant strain emerges as a function of time since the start of the simulation, t, rescaled by the time at which 60% of the individuals are vaccinated, t_{v60} , summed across simulations with θ (0.001 through 0.015), F_h (2,000 through 20,000). The impact of the extraordinary low transmission period centered at $t/t_{v60} = 1$ on the likelihood of emergence of the resistant strain as a function of the duration of that period, T (colour-coded), and the intensity of the reduction of transmission $\bf e$, $\beta_l = 0.055$, $\bf f$, $\beta_l = 0.03$, $\bf g$, $\beta_l = 0.01$.

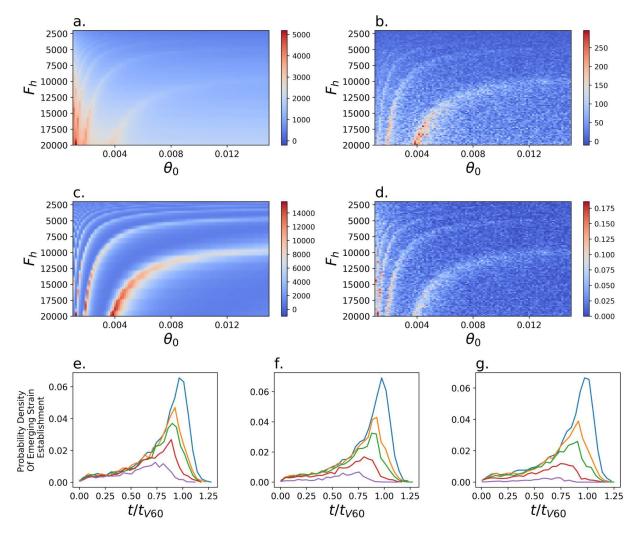


Figure S2 Impact of the rate of vaccination and initiation of low rate of transmission on model dynamics for $p = 10^{-7}$. The cumulative death rate from the $\bf a$, wildtype and $\bf b$, resistant strains, $\bf c$, the number of wildtype-strain infected individuals at t_{v60} , the point in time when 60% of the population is vaccinated and $\bf d$, the probability of resistant strain establishment. $\bf e-\bf g$, Probability density that the resistant strain emerges as a function of time since the start of the simulation, t, rescaled by the time at which 60% of the individuals are vaccinated, t_{v60} , summed across simulations with θ (0.001 through 0.015), F_h (2,000 through 20,000). The impact of the extraordinary low transmission period centered at $t/t_{v60} = 1$ on the likelihood of emergence of the resistant strain as a function of the duration of that period, T (colour-coded), and the intensity of the reduction of transmission $\bf e$, $\beta_l = 0.055$, $\bf f$, $\beta_l = 0.03$, $\bf g$, $\beta_l = 0.01$.

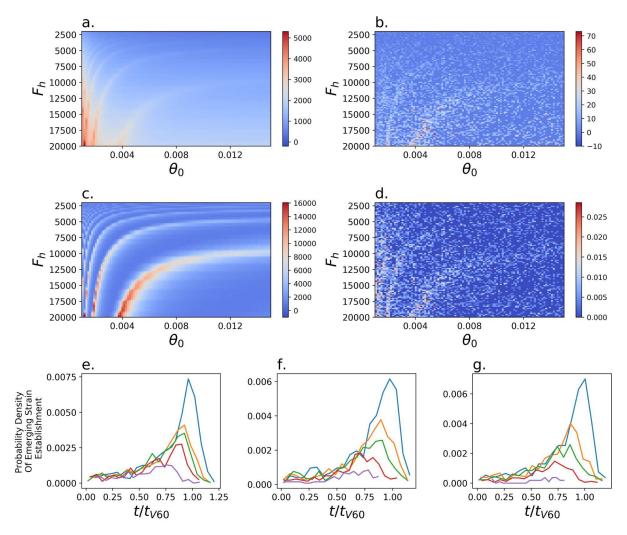


Figure S3 Impact of the rate of vaccination and initiation of low rate of transmission on model dynamics for $p = 10^{-8}$. The cumulative death rate from the a, wildtype and b, resistant strains, c, the number of wildtype-strain infected individuals at t_{v60} , the point in time when 60% of the population is vaccinated and d, the probability of resistant strain establishment. e-g, Probability density that the resistant strain emerges as a function of time since the start of the simulation, t, rescaled by the time at which 60% of the individuals are vaccinated, t_{v60} , summed across simulations with θ (0.001 through 0.015), F_h (2,000 through 20,000). The impact of the extraordinary low transmission period centered at $t/t_{v60} = 1$ on the likelihood of emergence of the resistant strain as a function of the duration of that period, T (colour-coded), and the intensity of the reduction of transmission e, $\beta_l = 0.055$, f, $\beta_l = 0.03$, g, $\beta_l = 0.01$.

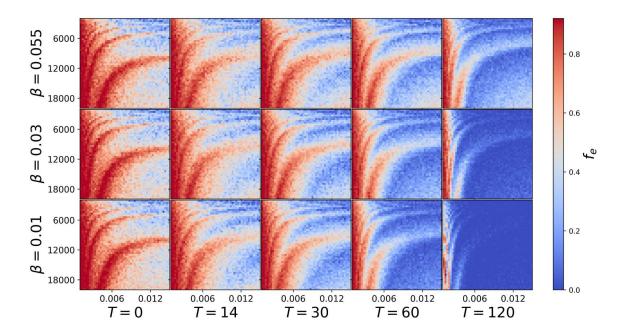


Figure S4 The probability of establishment of the resistant strain for $p = 10^{-5}$. The influence of low transmission period centered at $t/t_{v60} = 1$ on probability of establishment of the resistant strain as a function of the duration of that period, T, and the intensity of the reduction of transmission, β .

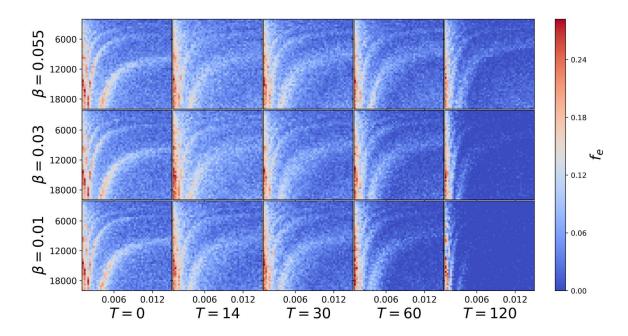


Figure S5 The probability of establishment of the resistant strain for $p = 10^{-6}$. The influence of low transmission period centered at $t/t_{v60} = 1$ on probability of establishment of the resistant strain as a function of the duration of that period, T, and the intensity of the reduction of transmission, β .

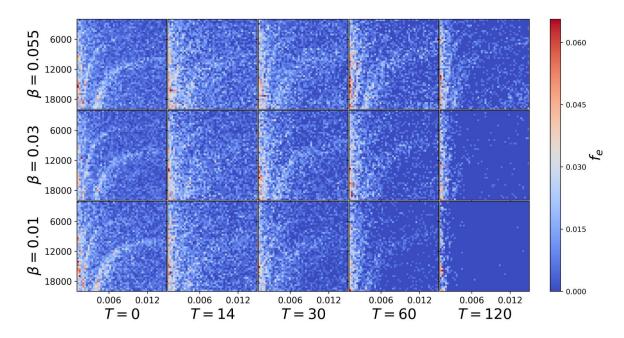


Figure S6 The probability of establishment of the resistant strain for $p = 10^{-7}$. The influence of low transmission period centered at $t/t_{v60} = 1$ on probability of establishment of the resistant

strain as a function of the duration of that period, T, and the intensity of the reduction of transmission, β .

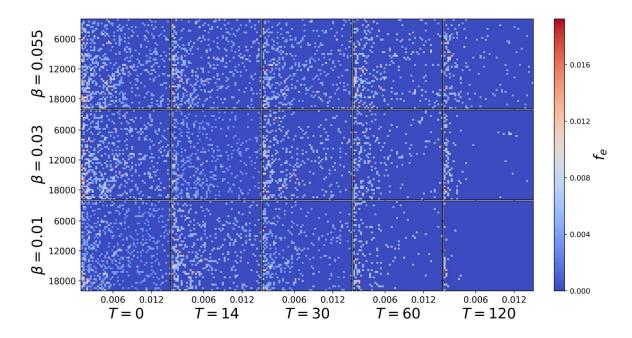


Figure S7 The probability of establishment of the resistant strain for $p = 10^{-8}$. The influence of low transmission period centered at $t/t_{v60} = 1$ on probability of establishment of the resistant strain as a function of the duration of that period, T, and the intensity of the reduction of transmission, β .



Figure S8 Impact of the rate of vaccination and initiation of low rate of transmission on model dynamics for $p = 10^{-5}$ and exit from low transmission at $F_1 = F_h/8$. The cumulative death rate from the **a**, wildtype and **b**, resistant strains, **c**, the number of wildtype-strain infected individuals at t_{v60} , the point in time when 60% of the population is vaccinated and **d**, the probability of resistant strain establishment.

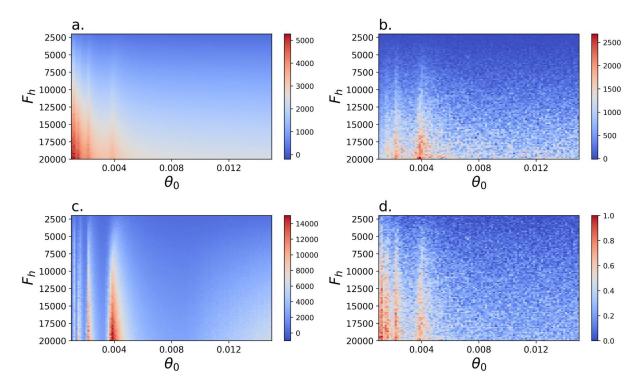


Figure S9 Impact of the rate of vaccination and initiation of low rate of transmission on model dynamics for $p = 10^{-6}$ and exit from low transmission at $F_1 = F_h/8$. The cumulative death rate from the **a**, wildtype and **b**, resistant strains, **c**, the number of wildtype-strain infected individuals at t_{v60} , the point in time when 60% of the population is vaccinated and **d**, the probability of resistant strain establishment.

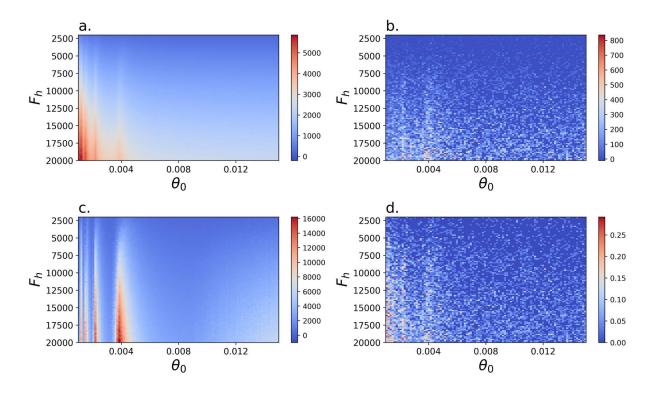


Figure S10 Impact of the rate of vaccination and initiation of low rate of transmission on model dynamics for $p = 10^{-7}$ and exit from low transmission at $F_l = F_h/8$. The cumulative death rate from the **a**, wildtype and **b**, resistant strains, **c**, the number of wildtype-strain infected individuals at t_{v60} , the point in time when 60% of the population is vaccinated and **d**, the probability of resistant strain establishment.

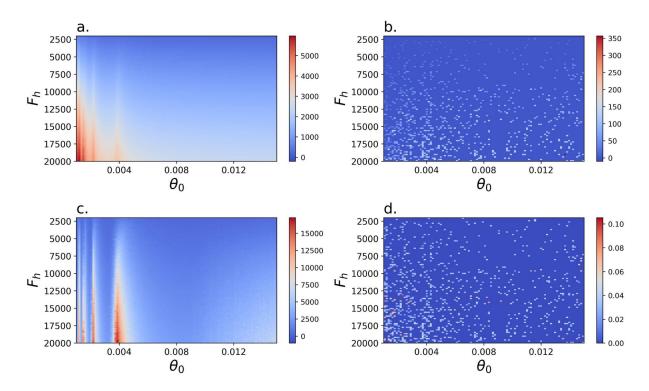
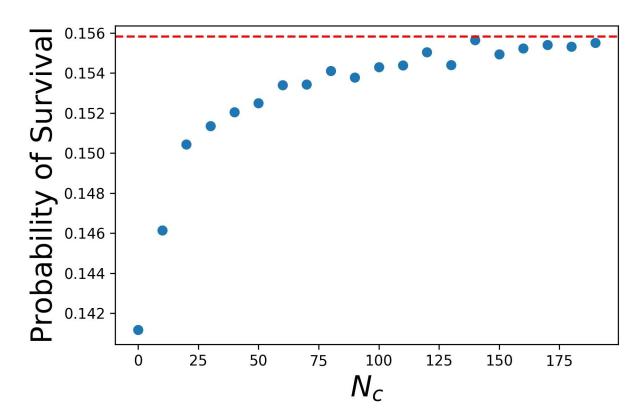



Figure S11 Impact of the rate of vaccination and initiation of low rate of transmission on model dynamics for $p = 10^{-8}$ and exit from low transmission at $F_1 = F_h/8$. The cumulative death rate from the **a**, wildtype and **b**, resistant strains, **c**, the number of wildtype-strain infected individuals at t_{v60} , the point in time when 60% of the population is vaccinated and **d**, the probability of resistant strain establishment.

Figure S12. The fraction of surviving strains after T=200 days in 10^7 runs, first initialized with I_{wt} = 200 infected individuals. The red dashed line shows the expected fraction of surviving strains, as computed with **eq. 13**. The stochastic algorithm becomes exact, if no Tau Leaping is employed and instead the whole simulation is evaluated using the Gillespie SSA scheme.