
Dynamic Conditional Correlation Estimation 

The Dynamic Conditional Correlation (DCC) method (Engle, 2002) is an example 

of a model-based multivariate volatility method, popular in finance, and recently 

introduced to neuroimaging (Lindquist et al., 2014). It provides a way to estimate 

conditional correlations between time series.  

We begin by introducing generalized autoregressive conditional heteroscedastic 

(GARCH) models (Engle, 1982; Bollerslev, 1986), often used to model the volatility in 

univariate time series. These models express the conditional variance of a time series at 

time t as a linear combination of past values of the conditional variance and of the squared 

process itself. To illustrate, assume that we are observing a univariate process 

 

where εt is a N (0, 1) random variable and σt represents the time-varying variance term 

we want to model. A GARCH(1,1) process models the conditional variance as follows: 

 

 

where ω  > 0, α, β   ≥ 0 and α      +β      < 1. Here α      controls the influence of past values of the time 

series on the variance and β  the influence of past values of the conditional variance on 

its present value. 

In the DCC approach, we assume yt = εt is a bivariate mean zero time series with 

conditional covariance matrix Σt. The first order form of DCC can be expressed as follows: 
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In Eqs. 1-3, univariate GARCH(1,1) models are fit (Eq. 1) to each of the two univariate 

time series that make up yt, and used to compute standardized residuals (Eq. 3). In Eq. 

4, an exponentially weighted moving average is applied to the standardized residuals and 

used to compute a non-normalized version of the time-varying correlation matrix. Here Q̄ 

represents the unconditional covariance matrix of εt and (θ1, θ2) are non-negative scalars 

satisfying 0 < θ1+θ2 < 1. Eq. 5 is a rescaling that ensures a proper correlation matrix is 

created, while Eq. 6 computes the time-varying covariance matrix. Model parameters (ω1, 

α1, β1, ω2, α2, β2, θ1, θ2) can be estimated using a two-step approach. This approach has 

been shown (Engle and Sheppard, 2001; Engle, 2002) to provide estimates that are 

consistent and asymptotically normal with a variance that can be computed using the 

generalized method of moments approach. 

 

Figure S1.  Network heritability estimates in each session for the DCC variance, DCC 

mean, and static connectivity measures. VN = visual network, SMN = sensorimotor 

network, VAN = ventral attention network, DAN = dorsal attention network, DMN = 

default mode network, FPN = frontoparietal network 

 



 

Table S1.  Network heritability estimates in each session for the DCC variance, DCC 

mean, and static connectivity measures computed at different ICA dimensionalities.  VN 

= visual network, SMN = sensorimotor network, VAN = ventral attention network, DAN = 

dorsal attention network, DMN = default mode network, FPN = frontoparietal network 

 

metric dimensionality session h2 min h2 max h2 mean 

DCC 25 1 0.28 0.50 0.41 

variance   2 0.24 0.49 0.36 

  50 1 0.27 0.53 0.43 

    2 0.27 0.53 0.41 

  100 1 0.27 0.60 0.44 

    2 0.27 0.57 0.45 

  200 1 0.33 0.58 0.46 

    2 0.33 0.55 0.44 

  300 1 0.24 0.59 0.45 

    2 0.32 0.59 0.45 

DCC 25 1 0.00 0.56 0.30 

mean   2 0.04 0.45 0.27 

  50 1 0.00 0.53 0.32 

    2 0.00 0.47 0.32 

  100 1 0.04 0.53 0.39 

    2 0.00 0.64 0.34 

  200 1 0.13 0.50 0.34 

    2 0.01 0.46 0.26 

  300 1 0.21 0.53 0.39 

    2 0.00 0.49 0.31 

static 25 1 0.00 0.56 0.30 

    2 0.16 0.49 0.32 

  50 1 0.00 0.52 0.31 

    2 0.23 0.55 0.36 

  100 1 0.03 0.54 0.37 

    2 0.00 0.59 0.36 

  200 1 0.15 0.47 0.34 

    2 0.00 0.51 0.31 

  300 1 0.19 0.53 0.38 

    2 0.05 0.51 0.37 

 

  



Table S2.  Individual connection heritability estimates in each session for the DCC 

variance, DCC mean, and static connectivity measures computed at the ICA 

dimensionality of 300 components. 

 

metric dimensionality session h2 min h2 max h2 mean 

DCC 300 1 0.00 0.62 0.33 

variance   2 0.00 0.55 0.31 

DCC 300 1 0.00 0.59 0.26 

mean   2 0.00 0.63 0.22 

static 300 1 0.00 0.62 0.27 

    2 0.00 0.65 0.27 

 

 

References 
 

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. 

Journal of econometrics, 31(3):307–327. 

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of 

the variance of United Kingdom inflation. Econometrica: Journal of the Econometric 

Society, pages 987–1007. 

Engle, R. F. and Sheppard, K. (2001). Theoretical and empirical properties of 

dynamic conditional correlation multivariate garch. Technical report, National 

Bureau of Economic Research. 

Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate 

generalized autoregressive conditional heteroskedasticity models. Journal of 

Business & Economic Statistics, 20(3):339–350 

Lindquist, M. A., Xu, Y., Nebel, M. B., and Caffo, B. S. (2014). Evaluating dynamic 

bivariate correlations in resting-state fmri: A comparison study and a new approach. 

NeuroImage, 101:531–546. 

 
 


