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Supplementary Information Text 
 
Generation of animal GEMs 
The GEM generation pipeline consists of two modules (Fig. S1): one for reconstruction of an 
orthology-based GEM using Human1 (1) as template, another for preparation of species-specific  
metabolic network by using the RAVEN 2.0 package (2). 
 
In module 1, the ortholog pairs between human and animal, as well as associated features including 
bestForward, bestReverse, methodCount (the number of different methods used in determining the 
orthology), were first retrieved from the Alliance Genomes databases using the stringent criteria 
(3), and then processed by the function extractAllianceGenomeOrthologs, in which all one-to-one 
pairs were kept, while the one-to-multiple pairs were filtered with following criteria: 1) exclude 
orthologs that are neither the best forward nor the best reverse match to a human gene; 2) only 
keep orthologs that are both the best froward and reverse hits. If steps 1) and 2) exclude all hits for 
a query gene, then retrieve and keep the ortholog pair(s) with the highest methodCount. 
Subsequently, these processed ortholog pairs and Human-GEM (v1.5.0) were used as input of 
getModelFromOrthology function for obtaining an ortholog-GEM, in which the human genes and 
gene-reactions rules were replaced with ortholog genes of corresponding animal by function 
replaceGrRules. 
 
In module 2, the RAVEN function getModelFromKEGG function was used to retrieve metabolic 
networks for a given model animal and human using the KEGG database (4). The metabolic 
network unique to an animal species was obtained by removing reactions shared in the human 
metabolic network, and then subjected to manual inspection of reaction compartment, reversibility, 
and annotations. 
 
For each species, the GEM was obtained from integrating species-specific network into the 
ortholog-GEM by function addMetabolicNetwork and a follow-up gap-filling step, using 
gapfill4essentialTasks function, to ensure the resulting GEM in conducting essential metabolic 
tasks (Dataset S1) and biomass formation. Additionally, all the GEMs were also evaluated by 
“metabolicTasks_VerifyModel” (Dataset_S1), in which a list of 21 verification tasks were checked 
to ensure that there were no infeasible flux circles in the GEMs, e.g. generation of reducing power 
or re-phosphorylation of ATP for free or at physiologically infeasible yields. 
 
Since a substantial amount of work and manual curation went into developing the recent GEM 
iCEL1314. We thus incorporated a total of 32 new Ascaroside biosynthesis and transport reactions, 
representing the major changes introduced into iCEL1314, as part of Worm1 species-specific 
network for more complete coverage of metabolism. 
 
 
Metabolic Atlas 2.0 
This is a major release that includes software architecture changes and upgrades since version 1.0 
(1). All the underlying code and data are now publicly available on GitHub repositories, which 
facilitates the migration of Metabolic Atlas towards a fully automated pipeline that welcomes 
community contributions. 
 
Graph database 
Metabolic networks have previously been described as graphs (5), where metabolic insights may 
be investigated through the application of graph algorithms. The graph database engine Neo4j 
(https://neo4j.com/) has been used by various systems biology databases (6–8) and well-
established biomedical resources (9, 10). In Metabolic Atlas 2.0, the backend was upgraded from 
the previously used Postgres relational database to the graph database Neo4j, which enables 
queries to compare GEMs, such as between multiple versions of the same GEM and between 
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different GEMs through the associated identifiers from external databases: e.g. MetaNetX (11), 
KEGG (4) and UniProt (12). 
 
Processing input data 
With the implementation of the graph database, all data files, such as integrated GEMs and  
manually-drawn 2D maps, have been centralized into a single public GitHub repository 
https://github.com/MetabolicAtlas/data-files. A pipeline that conducts automatic data processing 
and integration is available at https://github.com/MetabolicAtlas/neo4j-data-generation.  
 
3D Map Viewer 
The 3D Map Viewer was upgraded with improved performance, so that the visualization of 
metabolic networks is now accessible from computers and mobile devices, regardless of the 
network size. The source code is available at https://github.com/MetabolicAtlas/3d-network-viewer. 
 
 
Memote test 
The new and published GEMs were benchmarked with Memote (v0.12.0) (13), by which a 
‘snapshot’ report was generated for each GEM using the same set of parameters. The obtained 
‘Total Score’ were comparatively evaluated at species level. 
 
 
Gene essentiality analysis 
Genome-scale essentiality data for mouse, fruit fly, and worm were retrieved from the Online Gene 
Essentiality (OGEE) database (14), from which a full list of genes classified as either “essential” or 
“non-essential” were extracted (Dataset S2). Genes classified as “conditional” – essential in some 
but not all of the tested conditions – were grouped with the essential genes in our analysis. A 
computational gene deletion analysis was then performed to generate a predicted classification 
(essential or non-essential) for each GEM by function evalGeneEssentialityPred, in which each 
gene was individually “deleted” by inactivating all reactions encoded by the gene (excluding 
reactions that could be catalyzed by a compensatory isozyme) and then flux balance analysis was 
performed by setting the biomass production as the objective. For GEMs with pre-defined default 
media conditions (FlySilico, iCEL1273, and iCEL1314), only metabolites present in the default 
media conditions were allowed to be consumed when maximizing biomass (Dataset S2). For the 
other GEMs, metabolites present in Ham’s medium were allowed to be consumed (Dataset S2). 
For all GEMs, the maximum allowed consumption rate of each media component was set to 1000 
mmol per gram dry cell weight per hour (mmol/gDW/h). Genes whose deletion disabled the 
production of biomass (to a value less than 1 mmol/gDW/h) were classified as “essential”, whereas 
those with little or no effect on biomass flux were classified as “non-essential”. All GEM simulations 
were carried out with the Gurobi solver (Gurobi Optimization, LLC). 
 
The predicted essentiality classifications were then compared to those from the OGEE database, 
where true positives (TP) and true negatives (TN) were defined as genes that were correctly 
predicted as essential and non-essential, respectively, and false positives (FP) and false negatives 
(FN) were incorrect predictions. For each GEM, these values were used to calculate different 
performance metrics (Dataset S2), including Sensitivity, Specificity, Accuracy, F1 score, Matthew’s 
correlation coefficient (MCC) and a hypergeometric test (Fisher’s exact test) that was performed to 
evaluate the significance (p-value) of true positives among the predicted essential genes, with 
following equations: 
 

Sensitivity	 =
TP

TP + FN
 

Specificity	 =
TN

TN + FP
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Accuracy	 =
TP + TN

TP + TN + FP + FN
 

 

F1 =
2TP

2TP + FP + FN
 

 

MCC =
TP × TN − FP	 × 	FN

=(TP + FP)(TP + FN)(TN + FP)(TN + FN)
	 

 
 

 
Omics data retrieval 
The GEO database (15) was screened for RNA-seq datasets sequenced from rodent models of 
Alzheimer’s disease (AD). Initially, we collected 60 datasets that were derived from various mouse 
models; however, there were no datasets available from AD rat models. These datasets were 
further refined according to the following criteria: i) contains raw gene counts; ii) has paired disease 
and wild type samples for each experimental condition; iii) availability of extensive metadata 
(gender, age, tissue/cell type source); and iv) contains at least three biological replicates for each 
condition. Finally, a total of 11 datasets with 404 samples under 54 different experimental 
conditions were selected from 6 representative AD mouse models (Dataset S3). These models 
were manually inspected according to the Alzforum database (16), from which the model names, 
mutated risk genes, Aβ plaque formation and disease progression information were retrieved 
(Dataset S3). 
 
Proteomics datasets produced from brain tissues of APP overexpression mouse models 5xFAD 
(17), hAPP and hAPP/PS1 (18), ADLPAPT and ADLPAPP/PS1 (19) were used in validating the 
differentially expressed lysosomal enzymes. Peptidomics data measured from nondegenerative 
patients and healthy controls were retrieved from a study targeting for the quantification of abundant 
peptides in cerebrospinal fluid samples (20).  
 
 
Generation and comparison of tissue-specific GEMs 
The raw gene counts from various datasets were joined into a single matrix and the genes that 
were not present in all datasets were discarded. The counts were normalized using the function 
estimateSizeFactors in DESeq2 (v1.26.0) (21) with default parameters. The counts for each gene 
were then divided by the average transcript lengths which were retrieved from BioMart (22) (v. 
2.41.9, genome version 100) using the R-package GenomicFeatures (23) (v. 1.37.6). The gene 
counts of all samples were then linearly scaled to the average across all samples, to resemble TPM 
values. The tissue- and cell type-specific GEMs were finally generated using function 
getINITModel2 with the essential metabolic tasks (Dataset S1) and modified gene counts as input 
and by setting expression threshold as 1. GEM structures in t-distributed stochastic neighbor 
embedding (tSNE) and reaction content, as well as functional differences in subsystem coverage 
and metabolic task performance were compared using the RAVEN function 
compareMultipleModels. 
 
 
Differential expression analysis 
Differential expression analysis for paired transgenic mice versus wild type controls were performed 
using DESeq2 (v1.26.0) with default parameters (21). Raw gene (integer) counts were used as 
input for each analysis, where gene counts of multiple variants of the same gene were merged by 
summing them up. The variance-mean dependence in count data was estimated using the Wald 
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test based on a model using the negative binomial distribution, and p-values were corrected for 
multiple testing using the Benjamini-Hochberg method. 
 
 
Gene set analysis 
Multiple gene-set enrichment analysis were performed using GSAM package 
(https://github.com/JonathanRob/GeneSetAnalysisMatlab), which is a MATLAB implementation of 
the approach developed by Väremo et al (24). Gene sets were defined as either the set of genes 
constituting pathways in Mouse1 (reporter subsystems), or as the set of genes that encode for any 
reactions involving a certain metabolite (reporter metabolites) (5), or retrieved from the Molecular 
Signatures Database (MSigDB) (25), specifically the Hallmark (26), KEGG (4), and Reactome (9) 
gene set collections. The gene identifiers of MSigBD gene sets were replaced with corresponding 
mouse ortholog genes according to the information retrieved from the Alliance Genomes database 
(3). 
 
The significance of directional gene set enrichment (penrich) was estimated as described previously 
(24). First, the significance estimates (p-values) from the differential expression analysis were 
converted to directional p-values (pdir) for each gene i: 
 

𝑝!"#," =
(𝑝" − 1) ∙ 𝑠𝑖𝑔𝑛(𝐹𝐶") + 1

2  
 
where sign(FC) corresponds to the sign of the log fold-change of each gene. This transformation 
yields pdir values that are near zero for genes exhibiting a very significant increased expression, 
near one for genes that significantly decreased expression, and approximately 0.5 for genes with 
negligible change in expression. 
 
Gene sets were scored based on the pdir values of their associated genes. For the reporter 
metabolite and reporter subsystem analyses, gene sets were scored using the reporter method (5), 
which involves a conversion of the gene pdir values into Z-scores. A Wilcoxon rank-sum test was 
used to score gene sets from MSigDB. After calculating the gene set scores, the enrichment 
significance of each gene set (penrich) was estimated by comparing the gene set scores to those of 
50,000 randomly shuffled gene sets of equal size. 
 
 
Network analysis 
The integrative analysis of reporter metabolite gene sets with the metabolic network of Mouse1 
was carried out with the Kiwi package (27), in which gene sets were considered related if the mutual 
shortest path length was no more than 2 in metabolic network. The parameters p-value cutoff, 
maximum number, and maximum degree of gene sets were adjusted between 0.00001-0.002, 50-
100, and 50-100, respectively, to avoid having networks with over-crowded nodes. A directionality 
score that indicates the differential direction of each gene set was calculated and represented as 
node color scaling from blue (down-) to red (up-regulation). The interactions between metabolite 
gene sets and genes were extracted from the Mouse1. The input gene set and gene level statistics 
files were generated using the PIANO R-package (24). The network visualization diagrams were 
adjusted by using Cytoscape (28). 
 
 
Statistical analysis 
All analysis was performed using R (ver 4.0.2) or Matlab (R2019b). Unless otherwise stated, 
boxplots show the relative abundance of lysosomal peptides. The non-parametric Wilcoxon 2-
sample rank sum test was used for pairwise comparison between patient and healthy control 
groups. Statistical significance in this study was defined as p < 0.05.  
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Figure S1. The pipeline for the generation, validation and maintenance of animal GEMs. This 
pipeline consists of two modules: one for developing the ortholog-GEM based on template Human-
GEM (ver 1.5.0) and provided ortholog pairs; another for extracting species-specific pathways by 
using the RAVEN package and KEGG database. The functions undertaking corresponding steps 
in the pipeline are shown in italic and detailed in SI text. 
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Figure S2. Heatmap comparing the reaction content between tissue- and cell type-specific GEMs 
reconstructed from RNA-seq data of different AD mouse models. 
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Figure S3. Heatmap shows the variations in subsystem coverage among the tissue/cell type-
specific GEMs. 
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Figure S4. Comparison of metabolic task performance among the tissue- and cell type- specific 
GEMs. Metabolic tasks are listed along the vertical axis and the samples from which the GEMs 
were reconstructed are on the horizontal axis. A blue circle represents that the model was able to 
perform the metabolic task, whereas a white space indicates that the model failed to perform the 
task. 
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Figure S5. Gene-set analysis of RNA-seq data from different mouse AD models revealed distinct 
metabolic changes under various experimental conditions. Gene sets from three major biochemical 
databases (KEGG, Hallmark, and Reactome) were included in the enrichment analysis. The log-
transformed Penrich value quantifies the significance of substantially up- (in positive values) or down-
regulated (in negative values) gene sets between diseased and normal conditions. 
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Figure S6. Enrichment analysis of subsystems gene sets extracted from Mouse1. Substantial 
metabolic changes are observed in the subsystems of oxidative phosphorylation and cholesterol 
metabolism along with Aβ deposition among the APP overexpression models. The log-
transformed Penrich value quantifies the significance of substantially up- (in positive values) or 
down-regulated (in negative values) gene sets between diseased and normal conditions. 
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Figure S7. Integrative analysis of reporter metabolite gene sets in APP overexpression mouse 
models using RNA-seq data sampled after Aβ deposition. 
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Figure S8. Integrative analysis of reporter metabolite gene sets in APP overexpression mouse 
models using RNA-seq data sampled prior to Aβ deposition. 
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Fig. S9. Enrichment of lysosomal peptides in the cerebrospinal fluid samples of AD patients. Six 
peptides of lysosomal digestive enzymes exhibited significantly elevated concentrations in 
cerebrospinal fluid samples of AD patients versus healthy controls. The CTSB peptides 80-87 
and 210-220, GM2A peptides 89-96 and 170-179 were measured from the pilot study of ref 20, 
while CTSD peptides 55-72 and 112-122 were quantified from the clinical study II of ref 20. 
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