

Supplementary Information for Part 1

Three mutations repurpose a plant karrikin receptor to a strigolactone receptor

Amir Arellano-Saab^{1,6}, Michael Bunsick¹, Hasan Al Galib¹, Wenda Zhao¹, Stefan Schuetz¹, James Michael Bradley¹, Zhenhua Xu¹ Claresta Adityani¹, Asrinus Subha¹, Hayley McKay¹, Alexandre de Saint Germain², François-Didier Boyer³, Christopher S. P. McErlean⁴, Shigeo Toh⁵, Peter McCourt¹, Peter J. Stogios^{6,7} and Shelley Lumba^{1,7}

Email: <u>shelley.lumba@utoronto.ca</u> <u>peter.stogios@utoronto.ca</u> <u>peter.mccourt@utoronto.ca</u>

This PDF file includes:

Figures S1 to S11 Tables S1 to S3 Legends for Movies S1 to S3

Other supplementary materials for this manuscript include the following: Movies S1 to S3

Fig. S1. Structures of 2'R- and 2S'-enantiomeric forms of strigolactones (SLs) and karrikin (KAR₂). For SLs the synthetic GR24 is shown and the 2' chirality is at the enol-ether bridge between the C and D-ring. For karrikin KAR₂ is shown.

Catalytic triad

Polar side chain

side chain

Substitution residues

Non-Polar side chain

Electrically charged

Fig. S2. Selection of eight ShHTL7 residues for substitution in KAI2. (*A*) Crystal structures representing the eight residues highlighted in blue, The three catalytic residues highlighted in red. Structures are visualized using PYMOL version 2.3.2. (*B*) Chemical structures of the amino acids at the positions substituted in KAI2 to generate JGI variants. Structures in black represent the amino acids present at these positions in KAI2, structures in red represent their counterparts in ShHTL7. Letter codes and numbers below the arrows denote the substitutions that were made to produce the JGI variants. (*C*) The choice of the eight substitutions (pink boxes) were made based on increased polarity and decreased size (blue amino acids) in ShHTL7 versus the KAI2 equivalent. Red boxes represent the three catalytic residues.

Fig. S3. Map of MAX2 fragments used in yeast-two-hybrid (Y2H) experiments.

Fig. S4. Yeast-two hybrid interactions of KAI2 variants with MAX2 (*A*) Heatmap of log-fold change scores based on interactions relative to DMSO conditions queried against all MAX2 fragments (**see Fig. S3**). EV, empty vector, F, full-length protein, N, fragments shown in **Fig. S3**. Red shading indicates increased interaction, with the seven strongest interactions (Var21, 37, 62, 64, 65, 66, 67) shown. Grey lines, construct that could not be cloned. (*B*) Scatterplot showing the log-fold change scores calculated for each combination of an individual mis-expressed *KAI2* chimeric variant with full-length, MAX2 fragments and empty vector control based on Y2H interaction intensities. (*C*) Table of statistically significant hits in Y2H screen.

Fig. S5. Images of Yeast 2-hybrid (Y2H) interactions used to generate the Y2H heat map shown in **Fig. 1**. Ev is an empty vector colony. Each duplicate variant colony has its number beneath it. The two blue boxes represent Var21 and Var64.

MAX2-N1

MAX2-N2

Fig. S5. Cont'd

Fig. S5. Cont'd

Fig. S5. Cont'd

Fig. S6. Characterization of three independent Var64 transgenic lines. (*A*) Percent germination of mis-expressed *ShHTL7, KAI2* and three independent Var64 seed (64A, 64B, 64C) on PAC (20 μ M) and increasing *rac*-GR24 concentrations. Four-parameter logistic curves were fitted to the data, and EC₅₀ values, ± standard error, of *rac*-GR24 concentrations have been included for those lines showing a response on SL. Based on these curves, the effective concentration that germinates 50% of seed (EC₅₀) was calculated. (*B*) Western blot analysis of expression of mis-expressed *KAI2* and three independent Var64 seed (64A, 64B, 64C). Mis-expressed genes were Flag tagged and probed with an Antiflag antibody. Ponceau staining indicates equal loading. (*C*) Quantitative PCR (qPCR) of *KUF1* transcripts of germinated (24 hrs) seeds in the light on PAC in the absence or presence of *rac*-GR24. Each point represents a biological replicate and each sample represents three replicates. qPCR primers *AtKUF1F* (ATTGTTGTGGTGGATGTTG), *AtKUF1R* (ATTCGGTTGACTCATTCTTG), *AtACT8F* (CCACGAGACAACTTACAAC), *AtACT8R* (TGCCACGACCTTAATCTT). Expression values are relative to the At2g20000 reference gene. Bar=SD.

Fig. S7. Standard distribution of length/width (major/minor) ratio of *htl-3* and wild type Columbia (WT) leaves. Each distribution was a normal distribution based on the population mean (μ) and standard deviation (σ) approximated by that of the 26 control samples. WT: $y=(1/(0.53332 \cdot \sqrt{(2\pi)})) \cdot e \cdot (x-2.7996)^2/(2 \cdot (0.53332)^2);$ *htl-3*: $y=(1/(0.2261 \cdot \sqrt{(2\pi)})) \cdot e \cdot (x-1.48)^2/(2 \cdot (0.2261)^2).$ Three categories given by 5% cutoff: *htl-3*: x<1.85; WT: x>1.92; ambiguous: 1.85<x<1.92. Based on the two distributions, in order to meet the 0.05 significance level, any sample data smaller than 1.85 would be considered as *htl-3*, while sample data larger than 1.92 would be considered as wild type. Note that there is an ambiguous region in between (1.82-1.92) where the phenotype can not be statistically determined in this case.

Fig. S8. Images and quantification of transgenic variant lines used to generate Fig. 1*C*. Independent lines of Var19 and Var64 are highlighted.

Fig. S8. Con't

Fig. S8. Cont'd

Fig. S8. Cont'd

Fig. S8. Cont'd

Fig. S8. Cont'd

htl-3

85.1

htl-3

87.5

htl-3

90.1

Fig. S8. Cont'd

htl-3

85.1

htl-3

86.1

htl-3

87.3

wild type (Col-0)

Varia	nt lea	af ma	jor m	ninor	leaf ratio	rescued or not	Variant	t lea	af r	major	minor	leaf ratio	rescued or	ot	Variant	leaf	major	minor	leaf ratio	rescued or	Variant	leaf	major	minor	leaf ratio	rescued or not	Variant	leaf major	minor	leaf ratio	rescued or not
	1.2	6	151.29	93.86	1.61	Not Rescued	18.9	9	6	285.36	125.80	2.2	27 R	cued	40.:	6	259.3	9 116.12	2.23	Rescued	58.1	1	1 182.73	119.89	1.52	Not Rescued	75.6	6 388.54	255.55	1.52	Not Rescued
	1.3	6	20.06	57.82	2.08	Rescued	19.1	1	6	284.52	112.04	2.5	54 R	cued	40.:	6	240.0	9 130.69	1.84	Not Rescued	58.3	3	1 249.74	159.86	1.56	Not Rescued	75.7	6 255.16	148.59	1.72	Not Rescued
	1.4	6	27.98	60.27	2.12	Rescued	19.9	9	6	326.96	131.35	2.4	19 R	icued	41.:	6	249.7	2 103.84	2.40	Rescued	58.4	4	1 324.66	156.31	2.08	Rescued	76.2	6 543.07	282.74	1.92	Rescued
-	2.2	6	80.51	53.29	1.51	Not Rescued	19.12	2	6	373.55	142.19	2.6	23 R	icued	41.1	6	207.2	9 121.19	1./1	Not Rescued	59.3	3	1 393.29	180.84	2.1/	Rescued	76.3	6 1/9.38	109.87	1.63	Not Rescued
1	2.7	6	157.87	49.61	3.18	Rescued	20.1	.1	6	306.30	142.28	3.0	24 R	cued	41.	6	223.14	4 102.31	2.62	Rescued	59.6	6	1 NA	NA 98.99	NA 2.44	Recued	76.6	6 192.81	105.21	2.24	Not Rescued
	2.9	6	152.95	57.16	2.00	Rescued	20.7	.7	6	320.34	143.20	2.4	26 P	cued	42.4	6	269.3	102.51	1.05	Rescued	59.7	7	1 216.74	105.30	2.44	Rescued	77.1	6 318.00	141.00	1.00	Ambiguous
	3.2	6	159.34	56.40	2.86	Rescued	20.9	9	6	367.40	102 57	3(13 R	loued	42.	6	212.62	92.97	2.53	Rescued	60.3	3	1	171.20	1.67	Not Rescued	77.4	6 276.73	152.10	2.06	Rescued
	a. 7	6 .	40.15	65.72	2.13	Rescued	21.2	_	6	223.50	97.04	2.3	30 R	cued	42.1	0	174.6	116.97	1.49	Not Rescued	60.0		1 285.81	191.00	1.62	Not Rescued	77.5	6 313.89	162.02	1.51	Not Rescued
	4.2	• ·	01.50	46.52	1.97	Rescued	21.4		6	276.00	128.11	2.1	16 R	icued	43.	0 6	220.4	127.71	1.80	Not Rescued	60.1	2	c 279.59	145.40	1.92	Rescued	78.0	6 274.20	159.10	1.72	Not Rescued
	4.5	6	91.86	75 73	2.53	Rescued	22.3	3	6	588.86	295.42	1.9	99 R	cued	43.	6	269.4	134.79	2.00	Rescued	61.4	4	6 397.98	165.39	2.41	Rescued	78.8	6 201.72	120.37	1.68	Not Rescued
	4.7	6	85.45	245.01	2.39	Rescued	22.9	9	6	275.02	110.95	2.4	18 R	icued	44.:	6	212.8	6 101.91	2.09	Rescued	61.8	8	6 349.63	172.66	2.03	Rescued	79.6	6 273.57	152.91	1.79	Not Rescued
	5.3	6	70.44	90.37	2.99	Rescued	22.11	1	6	313.52	113.70	2.7	76 R	cued	44.4	6	273.7	5 143.72	1.90	Ambiguous	62.3	3	6 464.72	192.55	2.41	Rescued	79.7	6 298.10	153.25	1.95	Rescued
	5.4	6	131.23	131.18	2.53	Rescued	23.8	8	6	294.26	105.05	2.8	30 R	icued	44.1	6	353.4	7 141.17	2.50	Rescued	62.6	6	6 462.73	291.33	1.59	Not Rescued	79.8	6 276.22	134.32	2.06	Rescued
1	5.8	6	135.30	92.08	2.56	Rescued	23.11	1	6	305.96	165.42	1.8	35 Not R	cued	45.	6	220.2	5 162.28	1.36	Not Rescued	62.1	7	6 333.11	148.04	2.25	Rescued	81.1	6 276.88	141.06	1.96	Rescued
	6.2	6	155.09	124.43	2.05	Rescued	24.3	3	6	307.60	145.31	2.1	12 R	cued	45.4	6	721.0	378.41	1.91	Ambiguous	63.1	1	6 314.09	128.54	2.44	Rescued	81.6	6 249.38	149.22	1.67	Not Rescued
	6.8	6	98.58	83.57	2.38	Rescued	24.11	1	6	347.18	141.23	2.4	16 R	icued	45.1	6	277.8	B 141.70	1.96	Rescued	63.3	3	6 296.54	123.35	2.40	Rescued	81.12	6 264.66	147.28	1.80	Not Rescued
1	7.2	6	169.82	130.11	2.84	Rescued	26.4	4	6	301.99	150.07	2.0	01 R	scued	46.1	6	250.7	2 140.79	1.78	Not Rescued	63.4	4	6 323.02	133.77	2.41	Rescued	82.3	6 277.15	185.60	1.49	Not Rescued
	7.3	6	139.60	123.78	1.94	Rescued	26.5	5	6	349.29	159.31	2.1	19 R	cued	46.:	6	176.0	7 143.48	1.23	Not Rescued	64.3	3	6 363.03	166.99	2.17	Rescued	82.5	6 302.05	171.51	1.76	Not Rescued
							26.6	6	6	275.01	144.96	1.9	90 Amb	tuous	46.4	6	249.5	4 174.62	1.43	Not Rescued	64.4	4	6 406.32	186.79	2.18	Rescued	82.6	6 282.50	174.01	1.62	Not Rescued
	8.1	6	131.35	86.68	2.67	Rescued	27.5	5	6	342.70	187.24	1.8	33 Not R	icued	47.:	6	187.1	9 89.03	2.10	Rescued	64.5	5	6 299.39	153.94	1.94	Rescued	83.1	6 313.88	173.87	1.81	Not Rescued
	8.6	6	77.89	104.80	2.65	Rescued	27.4	4	6	251.57	119.47	2.1	L1 R	cued	47.4	6	133.0	93.94	1.42	Not Rescued	65.1	1	6 314.90	144.24	2.18	Rescued	83.4	6 358.48	166.94	2.15	Rescued
	8.8	6	176.38	110.82	2.49	Rescued	27.7	7	6	374.68	139.79	2.6	58 R	icued	47.	6	206.54	4 111.35	1.85	Ambiguous	65.12	2	6 384.74	197.80	1.95	Rescued	83.7	6 291.89	179.88	1.62	Not Rescued
1	9.2	6	120.29	110.41	2.90	Rescued	29.1	1	6	228.13	118.73	1.9	32 Amt	tuous	48.:	6	222.04	4 132.42	1.68	Not Rescued	66.5	5	6 264.68	1//.56	1.49	Not Rescued	84.3	6 317.35	166.62	1.90	Ambiguous
	9.6	6	144.90	134.85	2.50	Rescued	29.2	2	6	401.95	108.33	2.:	39 К	loued	48.4	6	342.1	5 101.78	2.11	Rescued	66.6	6	6 341.74	172.22	1.03	Not Rescued	84.4	6 323.50	151.54	1.80	Not Rescued
9	.12	6	40.84	67.30	2.21	Rescued	30.4	4	6	371.84	191.60	1.5	1 h	ruous	48.	6	402.13	133.43	1 35	Not Rescued	66.1	1	6 257.45	112.22	2 33	Rescued	84.7	6 274.82	209.44	1.01	Not Rescued
1	0.4	6	176.69	68.47	2.57	Rescued	30.7	7	6	359.57	133.40	1.4	16 Not R	icued	50.	6	180.4	9 133.54	1.62	Not Rescued	67.3	3	6 274.44	135.02	2.52	Rescued	85.1	6 281.35	188.47	1.64	Not Rescued
1	0.9	6	/6.31	102.61	2.08	Rescued	30.12	2	6	194.83	300.12	1.8	31 Not R	icued	50.1	6	216.7	1 130.07	2.11	Rescued	67.3	D	6 340.05 c 261.40	141.48	1.85	Not Rescued	85.2	6 310.01	177.54	1.47	Not Rescued
	1.1	6	13.03	119.03	2.15	Rescued	32.5	1	6	295.36	168.53	1.7	75 Not R	icued	51	0	2/3.9	1 122.48	1.67	Not Rescued	69.5	2	6 279.21	150.82	1.85	Ambiguous	86.1	6 110.45	91.38	1.21	Not Rescued
	1.3	6	123.36	168.78	1.92	Ambiguous	34.8	8	6	344.48	161.47	2.1	13 R	cued	514	1	220 8	109.18	2.02	Rescued	68.1	5	6 279.21	150.82	1.85	Ambiguous	86.3	6 184.43	94.80	1.95	Rescued
1	1.7	6 3	189.00	159.95	1.81	Not Rescued	34.9	9	6	396.41	166.19	2.3	19 R	icued	51.0	1	190.9	8 127.66	1.50	Not Rescued	68.0	6	6 260.66	161.32	1.62	Not Rescued	86.4	6 NA	NA	NA	NA
1	2.3	6	43.75	73.39	1.96	Rescued	34.1	1	6	482.38	197.52	2.4	14 R	icued	52.	1	289.44	4 143.55	2.02	Rescued	69.1	2	6 327.92	155.41	2.11	Rescued	87.3	6 233.66	156.69	1.49	Not Rescued
1:	2.5	6	98.23	116.27	2.56	Rescued	35.2	2	6	302.50	192.87	1.9	57 Not R	cued	52.	1	202.2	3 104.56	1.93	Rescued	69.4	4	6 261.51	153.20	1.71	Not Rescued	87.5	6 162.63	98.34	1.65	Not Rescued
1	2.1	6	57.21	82.94	1.90	Ambiguous	35.3	3	6	512.32	279.41	1.8	33 Not R	icued	52.5	1	206.8	8 108.07	1.91	Ambiguous	69.6	6	6 270.46	107.54	2.51	Rescued	87.6	6 313.23	207.41	1.51	Not Rescued
1	3.3	6	158.32	150.03	1.06	Not Rescued	35.5	5	6	251.36	162.64	1.5	55 Not R	cued	53.	1	224.6	1 132.80	1.69	Not Rescued	70.1	1	6 294.85	146.40	2.01	Rescued	88.1	6 279.19	162.78	1.72	Not Rescued
1	3.5	6 :	86.09	94.70	1.97	Rescued	36.5	5	6	309.46	198.22	1.5	56 Not R	icued	53.:	1	217.2	6 159.25	1.36	Not Rescued	70.1	2	6 534.00	286.20	1.87	Ambiguous	88.3	6 156.49	80.20	1.95	Rescued
1	3.7	6	41.63	125.51	1.93	Rescued	36.6	6	6	289.73	179.84	1.6	51 Not R	cued	53.:	1	209.4	0 92.34	2.27	Rescued	70.4	4	6 229.41	106.15	2.16	Rescued	88.4	6 220.25	123.05	1.79	Not Rescued
1	5.1	6	150.98	190.80	1.84	Not Rescued	36.9	9	6	375.76	166.34	2.2	26 R	icued	54.	1	224.0	5 98.16	2.28	Rescued	71.5	5	6 284.59	145.96	1.95	Rescued	89.1	6 282.59	182.94	1.54	Not Rescued
1	5.8	6	109.69	158.11	1.96	Rescued	37.2	2	6	250.28	202.37	1.5	24 Not R	cued	54.:	1	213.2	7 124.32	1.72	Not Rescued	71.6	6	6 365.91	153.77	2.38	Rescued	89.3	6 221.67	113.10	1.96	Rescued
15	.11	6	84.55	172.78	1.65	Not Rescued	37.5	5	6	315.15	180.48	1.7	75 Not R	cued	54.:	1	202.8	9 110.23	1.84	Not Rescued	71.5	9	6 341.86	165.76	2.06	Rescued	89.7	6 314.53	179.34	1.75	Not Rescued
1	6.1	6	165.44	162.60	2.25	Rescued	37.6	6	6	304.96	150.23	2.0	33 R	icued	55.	1	267.7:	1 158.14	1.69	Not Rescued	72.1	1	6 263.94	117.98	2.24	Rescued	90.1	6 188.96	119.16	1.59	Not Rescued
1	6.7	6	279.24	132.34	2.11	Rescued	38.2	2	6	300.28	116.27	2.5	58 R	icued	55.:	1	234.3	5 117.48	1.99	Rescued	72.5	2	6 327.65	154.97	2.11	Rescued	90.2	6 262.65	168.12	1.56	Not Rescued
1	6.8	6	:50.51	112.73	2.29	Rescued	38.3	3	6	345.72	101.10	2.4	+0 R	roued	55.1	1	288.62	2 100.17	1.80	NOT RESCUED	72.0	6	6 589.05	120.40	2.40	Rescued	90.7	6 291.46	135.09	2.16	Ambiguous
1	7.5	6	22.18	122.50	1.98	Rescued	38.4	4	6	228.22	101.10	2.4	15 0	koued	56.1	1	294.13	2 149.//	2 1.96	Rescued	73.1	1	6 300.45	138.49	2.17	Rescued	91.6	6 251.83	155.57	1.80	Ambiguous Not Rescued
1	1.7	6	161.51	151.20	1.78	Not Rescued	39.1	1	6	100.00	245.03	2.5	26 R	icued	56.	1	293.03	171 20	1.63	Not Rescued	73.3	3	6 267.41	226,70	2.05	Rescued	91.7	6 231.07	176.63	1.50	Not Rescued
1	1.8	6	107.57	159.01	1.93	Rescued	39.2	5	6	100.00	225.89	2.4	15 R	icued	56.	1	278.3	137.30	1.03	Ambiguous	73.4	4	6 553.92	133.06	1.88	Ambiguous	91.1	6 281.53 c 330.16	220.29	1.50	Not Rescued
1	8.4	6	107.57	106.90	2.89	Rescued	39.5	1	6	246.92	109.21	1.5	76 Not R	icued	57.1	1	256.94	140.17	2.06	Rescued	74.1	2	6 250.55	140.00	1.84	Not Rescued	92.11	6 387.18	214.33	1.81	Not Rescued
							40.1		0	192.05					57.1	1	208.9	3 170.53	1.75	Not Rescued	74.3	3	6 306.79	140.90	1.78	Not Rescued	93.1	6 282.40	201.29	1.41	Not Rescued
F	ia	S	8	Ca	onť	d															75.3	3	6 232.14	128.83	1.80	Not Rescued	93.7	6 695.50	233.48	2.98	Rescued
	. 2			-		~																									

Fig. S9. Germination response of *ShHTL7*, *KAI2*, and Var64 seed to karrikin. Misexpressed *ShHTL7*, *KAI2* and three biological independent Var64 seed (64A, 64B, 64C) germinated on PAC (20 μ M) and increasing KAR₂ concentrations. Four-parameter logistic curves were fitted to the data, and EC₅₀ values, ± standard error, of KAR₂ concentrations have been included for those lines showing response to karrikin. Based on these curves, the effective concentrations that germinates 50% of seed (EC₅₀) are indicated.

Fig. S10. *In silico* docking of 2'*R*-GR24 and 2'*S*-GR24. The two GR24 enantiomers were docked into ShHTL7, Var64, and KAI2. As expected, ShHTL7 displays the most interactions with 2'*R*-GR24. KAI2 has the most contacts with 2'*S*-GR24.

Fig. S11. SL dependent germination of mis-expressed *ShHTL7*, *KAI2*, three biologically independent Var19 lines (19A, 19B, 19C) and three biologically independent Var64 lines (64A, 64B, 64C). Each line was tested three times Bar = S.D

Protein	Ligand	SwissDock	AutoDock	RMSD vs 5DJ5
Var64	<i>(2'R)</i> -GR24	-7.02 kcal mol ⁻¹	-6.97 kcal mol ⁻¹	3.025 Å
Var64	<i>(2'S)</i> -GR24	-6.33 kcal mol ⁻¹	-6.39 kcal mol ⁻¹	3.100 Å
KAI2	<i>(2'R)</i> -GR24	-5.50 kcal mol ⁻¹	-5.41 kcal mol ⁻¹	2.901 Å
KAI2	<i>(2'S)</i> -GR24	-5.92 kcal mol ⁻¹	-5.84 kcal mol ⁻¹	3.148 Å

Table S1. Protein-ligand docking statistics

System	Convergence timepoint	Average RMSD after convergence (ligand)	Average Potential Energy
Var64 + (<i>2'R</i>)-GR24 #1	214 ns	0.4175 Å	-3.679 kJ/mol
Var64 + (<i>2'R</i>)-GR24 #2	198 ns	0.4093 Å	-3.128 kJ/mol
Var64 + (<i>2'R</i>)-GR24 #3	223 ns	0.4419 Å	-3.709 kJ/mol
KAI2 + (<i>2'R</i>)-GR24 #1	270 ns	0.9592 Å	-3.721 kJ/mol
KAI2 + (<i>2'R</i>)-GR24 #2	291 ns	0.9817 Å	-3.875 kJ/mol
KAI2 + (<i>2'R</i>)-GR24 #3	284 ns	0.9799 Å	-3.814 kJ/mol
Var64 #1	59 ns	N/A	-1.395 kJ/mol
Var19 #1	43 ns	N/A	-1.118 kJ/mol
KAI2 #1	28 ns	N/A	-1.204 kJ/mol

Table S2. Molecular dynamics simulations statistics

Structure	Residue ID	Distance to ligand (Å)	Structure	Residue ID	Distance to ligand (Å)
	Phe28	3.77 + 3.62		Phe78	3.53
	Ser97	2.40		Val148	3.85
	Val98	3.47		Phe186	3.6
	Phe126	3.72	USD14-7 Carba-4BD	Val194	3.99
	Phe136	3.81		Tyr209	3.91 + 4.38
DWARF14-GR24	Val144	3.29		Val244	3.49
(5DJ5)	Tyr159	3.48 + 4.02		Phe245	3.73
	Val194	3.94		Phe26	3.80
	Phe195	3.84		Ser95	2.32
	Val219	3.26		Phe134	3.71
	Ser220	3.62		Asp138	3.88
	His247	4.52 + 3.88		Leu142	3.54 + 3.83
	Phe28	3.07	Var64-(+)GR24	Thr157	3.65
	His96	5.41		Leu160	3.52
DWARF14-CLIM	Val98	3.94 + 2.74		Phe194	3.93
(4IHA)	Phe126	3.84		Leu218	3.96
	Val194	3.20		Ala219	3.99
	His247	3.31 + 3.83 + 5.01		His246	4.64

Table S3 Protein-Ligand Interaction Profile

Movie S.1. The Var64 receptor displays increased flexibility and a larger binding pocket. A 1 μ s molecular dynamics simulation of KAI2 (grey) and Var64 (blue) reveals that the α E loop of Var64 presents increased motility, and its three mutations (shown in red) result in improved flexibility along the X-axis of the protein. These two factors would produce a more efficient perception of SLs as the active site opening area of Var64 is increased by 11.5 Å.

Movie S.2. Enhanced interaction between Var64 and 2'*R*-(+)GR24. 1 μ s molecular dynamics simulation reveals that the polar Thr190 in Var64 (blue) does a better job stabilizing the ligand than its WT counterpart. Upon binding, the α D helix of Var64 increases its movement, possibly resulting in enhanced interactions with its downstream protein partner.

Movie S.3. The WT Phe157 in Var19 directly affects the flexibility of the receptor. 0.5 μ s molecular dynamics simulation comparing the flexibility of Var19 (grey) and Var64 (blue) reveals that the presence of the WT Phe157 (grey sticks) from KAI2 produces stronger interactions between the opposite sides of the lid domain; this results in a decreased flexibility and a reduced binding pocket area, making the interaction with SL more challenging that in Var64 (variant residues shown in red sticks).