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A Assumptions for the Bayesian g-formula

Assumption 1 (Positivity). Let Q be any node in the causal graph G, and q any value in the support of
Q. Then for any regime g0 ∈ {g, g′}, p(q|pag0(Q) = p̃a) > 0, where p̃a is any value taken by pag0(Q), the
parent nodes of Q under g0. Furthermore, it must hold for all q and p̃a that p(q|pa(Q) = p̃a) > 0, where
pa(Q) without a subscript indicates the parent nodes of Q in the naturally occurring treatment assignment
mechanism.

Assumption 2 (Consistency). For any regime g0 ∈ {g, g′}, Y = Y g0 whenever V takes on the values
prescribed by g0. If V is a single binary treatment, this statement simplifies to Y = V Y 1 + (1− V )Y 0.

Assumption 3 (Conditional exchangeability). For any variable V0 in the intervention set and every regime
g0 ∈ {g, g′}, there exists a set of measured variables C ⊂ {Z,W} such that Y g0 ⊥⊥ V0|C.

Assumption 4 (Correct parametric model specification). For every node Q ∈ {V,W, Y } modeled conditional
on variables C with parameters θQ, the parametric model f(Q|C, θQ) is correctly specified.

B Bayesian g-formula algorithms for other causal estimands

For simplicity of exposition, we assume a single unmeasured confounder U throughout the following algo-
rithms, but U can be vector-valued, or there may be L distinct unmeasured confounders U1, U2, . . . , UL
occupying different positions in the causal graph. Although the algorithms outlined below describe BDF
with “forward simulation” (i.e., posterior prediction), Web Appendix D describes how to leverage more
computationally efficient closed-form versions (BDF-CF) that are available in certain circumstances (e.g.,
discrete data, certain outcome models with identity link functions). Throughout, we continue using n1 to
denote the sample size of the main data sources.

B.1 Time-varying confounding of a longitudinal exposure

Suppose that the true causal DAG is as in Supplemental Figure 1, with a discrete exposure-induced unmea-
sured variable U acting as a confounder of the time-varying exposure A measured at two time points to yield
A = (A1, A2). Denote the regimes of interest with g = (A1 = a1, A2 = a2) and g′ = (A1 = a′1, A2 = a′2),

with the causal estimand of interest being the superpopulation average causal effect τsp = E
[
Y g − Y g′

]
.

Adopt parametric generalized linear models indexed by θQ for Q ∈ {U,A2, Y }, with hQ(·) denoting the
link function and ηQ the linear predictor term, which is a function only of the parent nodes pa(Q) and θQ.
Equation 1 gives a general model form.

hQ(Qi|pa(Qi), θQ) =ηQi (1)
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Supplemental Figure 1: Time-varying causal structure with outcome Y , exposures A1 and A2, baseline
confounder(s) Z, and time-varying confounder U

The intervention set is V = (A1, A2). For g0 ∈ {g, g′} let pag0(Q) be the intervened parents of Q where any
V ∈ {pa(Q)} has been set (deterministically or stochastically) in accordance with g0 and the relevant model.

To emphasize that ηQi depends on the parameters θQ as well as the values of the parents of Q for
observation i, we can also write it as ηQi(pa(Q), θQ).

With models p(θQ|q,pa(Q)) and θ = (θU , θA2
, θY ), the likelihood is

L(θ) =

n1∏
i=1

p(yi|a2i, ui, a1i, zi, θY )p(a2i|ui, a1i, zi, θA2
)p(ui|a1i, zi, θU )

For discrete U , this yields the marginal likelihood of

L†(θ) =

n1∏
i=1

[∑
u

p(yi|a2i, ui = u, a1i, zi, θY )p(a2i|ui = u, a1i, zi, θA2
)p(ui = u|a1i, zi, θU )

]

1. Fit maximum likelihood models in the external data to obtain the prior π(θ) as detailed in Section ??.

2. Use NUTS with target probability distribution proportional to L†(θ)×π(θ) in order to obtain posterior
samples of the regression parameter vector θ. For some large B, let θ(1), . . . , θ(B) denote the B posterior
samples remaining after discarding warmup iterations.

3. For MCMC iteration b = 1, . . . , B, sample a length-n1 weight vector (d
(b)
1 , . . . , d

(b)
n ) from a Dirichlet(1, . . . , 1).

For i = 1, . . . , n1:

a) For g0 ∈ {g, g′}, set ã1
g0(b)
i deterministically or stochastically in accordance with g0. For example,

if g is the static, deterministic regime setting A1 to level a1, ã1
g(b)
i = a1 for all i and b.

b) For g0 ∈ {g, g′}, sample ũ
g0(b)
i in accordance with

h−1
Q

(
ηQ

(
pag0(x̃g0i ), θ

(b)
Q

))
Concretely, for g = (A1 = a1, A2 = a2) and a logistic model logit (P (Ui = 1|Zi, A1i)) = γ0 +

γA1
A1i + γ′ZZi, sampling ũ

g(b)
i requires drawing from a Bernoulli with success probability

logit−1
(
γ

(b)
0 + γA1

a1 + γ
(b)′
Z z̃

(b)
i

)
c) For g0 ∈ {g, g′}, set ã2

g0(b)
i deterministically or stochastically in accordance with g0. Concretely, if

g is the static, deterministic regime setting A2 to level a2, ã2
g(b)
i = a2 for all i and b.

d) For g0 ∈ {g, g′}, draw ỹ
g0(b)
i in accordance with g0, θ

(b)
Y , z̃

(b)
i , ũ

g0(b)
i , ã1

g0(b)
i , and ã2

g0(b)
i . Then

calculate the individual-level causal effect

φ̃
(b)
i =ỹ

g(b)
i − ỹg

′(b)
i
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Supplemental Figure 2: Mediation causal structure with outcome Y , exposures A, mediator M , baseline
confounder(s) Z, and unmeasured confounder U

Alternatively, if the conditional mean of Y has a closed form µ(θY , z, u, a1, a2), define the individual-
level causal effect as

φ̃
(b)
i =µ

(
θ

(b)
Y , z̃

(b)
i , ũ

g(b)
i , ã1

g(b)
i , ã2

g(b)
i

)
− µ

(
θ

(b)
Y , z̃

(b)
i , ũ

g′(b)
i , ã1

g′(b)
i , ã2

g′(b)
i

)
.

For example, if Yi is conditionally normal with mean α0 + α′ZZi + αA1A1i + αUUi + αA2A2i +
αintx × A1i × A2i × Ui and the contrast of interest compares regimes g = (A1 = a1, A2 = a2) and
g′ = (A1 = a′1, A2 = a′2),

φ̃
(b)
i =α

(b)
A1
a1 + α

(b)
U ũ

g(b)
i + α

(b)
A2
a2 + α

(b)
intxa1 × a2 × ũg(b)i −

α
(b)
A1
a′1 + α

(b)
U ũ

g′(b)
i + α

(b)
A2
a′2 + α

(b)
intxa

′
1 × a′2 × ũ

g′(b)
i

4. Calculate population estimate ACE(b) =
∑n1

i=1(d
(b)
i × φ̃

(b)
i ).

5. Construct a point estimate for ACE as the posterior mean ÂCE =
∑B
b=1ACE

(b)/B, and create
quantile-based 95% credible intervals as the 2.5th and 97.5th quantiles of (ACE(1), . . . , ACE(B)).

B.2 Natural direct effects

Suppose the true causal diagram underlying the mediation is shown in Supplemental Figure 2. The unmea-
sured confounder U can confound the (1) exposure-mediator, (2), exposure-outcome, or (3) mediator-outcome
relationships, as well as any combination of (1) - (3).

The population average natural direct effect of changing exposure A to a instead of a∗, while holding the

mediator M to its natural value under A = a∗, is given by NDE = E
[
Y aM

a∗ − Y a∗Ma∗
]
. This estimand has

an intervention set V = {A,M} and can be formulated as a contrast in the regimes g = (A = a,M = Ma∗)
and g′ = (A = a∗,M = Ma∗).

1. Fit maximum likelihood models in the external data to obtain the prior π(θ) as detailed in Section 3.3.

2. Use NUTS with target probability distribution proportional to L†(θ)×π(θ) in order to obtain posterior
samples of the regression parameter vector θ. For some large B, let θ(1), . . . , θ(B) denote the B posterior
samples remaining after discarding warmup iterations.

3. For MCMC iteration b = 1, . . . , B, sample a length-n1 weight vector (d
(b)
1 , . . . , d

(b)
n ) from a Dirichlet(1, . . . , 1).

For i = 1, . . . , n1:

a) Sample ũ
(b)
i in accordance with θ

(b)
U and zi using

h−1
U

(
ηU

(
zi, θ

(b)
U

))
In contrast to previous algorithms, this sampling does not need to be done for each g0 ∈ {g, g′}
because U cannot be a descendant of A or M in the causal graph for the natural direct effect to be
well defined.
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b) Sample mediator m̃
a∗(b)
i according to θ

(b)
M , zi, and ũ

(b)
i using

h−1
M

(
ηM

(
zi, ũ

(b)
i , a∗, θ

(b)
M

))
c) For g0 ∈ {g, g′}, draw ỹ

g0(b)
i in accordance with g0, θ

(b)
Y , z̃

(b)
i , ũ

(b)
i , and m̃

a∗(b)
i . For regime g = (A =

a,M = Ma∗) this involves

h−1
Y

(
ηY

(
zi, ũ

(b)
i , m̃

a∗(b)
i , a, θ

(b)
Y

))
while for g′ = (A = a∗,M = Ma∗) the relevant equation will involve

h−1
Y

(
ηY

(
zi, ũ

(b)
i , m̃

a∗(b)
i , a∗, θ

(b)
Y

))
Then calculate the individual-level causal effect

φ̃
(b)
i =ỹ

g(b)
i − ỹg

′(b)
i

Alternatively, if the conditional mean of Y has a closed form µ(θY , z, u, a,m), define the individual-
level causal effect as

φ̃
(b)
i =µ

(
θ

(b)
Y , z̃

(b)
i , ũ

(b)
i , a, m̃

(b)
i

)
− µ

(
θ

(b)
Y , z̃

(b)
i , ũ

(b)
i , a∗, m̃

a∗(b)
i

)
.

4. Calculate population estimate NDE(b) =
∑n1

i=1(d
(b)
i × φ̃

(b)
i ).

5. Construct a point estimate for NDE as the posterior mean N̂DE =
∑B
b=1NDE

(b)/B, and create
quantile-based 95% credible intervals as the 2.5th and 97.5th quantiles of (NDE(1), . . . , NDE(B)).

B.3 Natural indirect effects

Again suppose that the correct causal diagram is as in Supplemental Figure 2, where natural direct effects
are well defined.

The population average natural indirect effect is the effect of changing the mediator M from the value it
naturally takes under exposure A = a∗ to the value it naturally takes under A = a, while holding the exposure

constant at level a. In potential outcome notation, this quantity is given by NIE = E
[
Y aM

a − Y aMa∗
]
.

This estimand has an intervention set V = {A,M} and can be formulated as a contrast in the regimes
g = (A = a,M = Ma) and g′ = (A = a,M = Ma∗).

The estimation algorithm is the same as in Section B.2 until Step 3, where it continues as follows.

3. For MCMC iteration b = 1, . . . , B, sample a length-n1 weight vector (d
(b)
1 , . . . , d

(b)
n ) from a Dirichlet(1, . . . , 1).

For i = 1, . . . , n1:

a) Sample ũ
(b)
i in accordance with θ

(b)
U and zi using

h−1
U

(
ηU

(
zi, θ

(b)
U

))
b) For each a0 ∈ {a, a∗}, sample mediator m̃

a0,(b)
i according to θ

(b)
M , zi, and ũ

(b)
i using

h−1
M

(
ηM

(
zi, ũ

(b)
i , a0, θ

(b)
M

))
c) For g0 ∈ {g, g′}, draw ỹ

g0(b)
i in accordance with g0, θ

(b)
Y , z̃

(b)
i , ũ

(b)
i , and m̃

a0(b)
i for the a0 corresponding

to the M counterfactual in g0. For regime g = (A = a,M = Ma) this involves

h−1
Y

(
ηY

(
zi, ũ

(b)
i , m̃

a(b)
i , a, θ

(b)
Y

))
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while for g′ = (A = a,M = Ma∗) the relevant equation will involve

h−1
Y

(
ηY

(
zi, ũ

(b)
i , m̃

a∗(b)
i , a, θ

(b)
Y

))
Then calculate the individual-level causal effect

φ̃
(b)
i =ỹ

g(b)
i − ỹg

′(b)
i

Alternatively, if the conditional mean of Y has a closed form µ(θY , z, u, a,m), define the individual-
level causal effect as

φ̃
(b)
i =µ

(
θ

(b)
Y , z̃

(b)
i , ũ

(b)
i , a, m̃

a(b)
i

)
− µ

(
θ

(b)
Y , z̃

(b)
i , ũ

(b)
i , a, m̃

a∗(b)
i

)
.

4. Calculate population estimate NIE(b) =
∑n1

i=1(d
(b)
i × φ̃

(b)
i ).

5. Construct a point estimate for NIE as the posterior mean N̂IE =
∑B
b=1NIE

(b)/B, and create
quantile-based 95% credible intervals as the 2.5th and 97.5th quantiles of (NIE(1), . . . , NIE(B)).

B.4 Randomized interventional analogs to the natural indirect effect

The estimation algorithm is the same as in Section B.2 until Step 3, where it continues as follows.

3. For MCMC iteration b = 1, . . . , B, sample a length-n1 weight vector (d
(b)
1 , . . . , d

(b)
n ) from a Dirichlet(1, . . . , 1).

For i = 1, . . . , n1:

a) For each g0 ∈ {g, g′} and a0 ∈ {a, a∗}, sample ũ
a0,g0(b)
i in accordance with θ

(b)
U and zi using

h−1
U

(
ηU

(
zi, a0, θ

(b)
U

))
b) For g0 ∈ {g, g′}, sample randomized mediator m̃

g0(b)
i in accordance with θ

(b)
U , zi, and ũ

a0,g0(b)
i . For

regime g = (A = a,M = Hz(a = a)), draw m̃
g(b)
i using

h−1
M

(
ηM

(
zi, a, ũ

a,g(b)
i , θ

(b)
M

))
and for g′ = (A = a,M = Hz(a = a∗)) draw m̃

g′(b)
i using

h−1
M

(
ηM

(
zi, a

∗, ũ
a∗,g′(b)
i , θ

(b)
M

))
c) Define individual-level causal contrast For g0 ∈ {g, g′}, draw ỹ

g0(b)
i in accordance with g0, θ

(b)
Y , z̃

(b)
i ,

ũ
(b)
i , and m̃

g0(b)
i . For regime g = (A = a,M = Hz(a = a)), draw ỹ

g(b)
i using

h−1
Y

(
ηY

(
zi, ũ

a,g(b)
i , m̃

g(b)
i , a, θ

(b)
Y

))
while for g′ = (A = a,M = Hz(a = a∗)), draw ỹ

g′(b)
i using

h−1
Y

(
ηY

(
zi, ũ

a,g′(b)
i , m̃

g′(b)
i , a, θ

(b)
Y

))
Then calculate the individual-level causal effect

φ̃
(b)
i =ỹ

g(b)
i − ỹg

′(b)
i

Alternatively, if the conditional mean of Y has a closed form µ(θY , z, u, a,m), define the individual-
level causal effect as

φ̃
(b)
i =µ

(
θ

(b)
Y , z̃

(b)
i , ũ

a,g(b)
i , a, m̃

g(b)
i

)
− µ

(
θ

(b)
Y , z̃

(b)
i , ũ

a,g′(b)
i , a, m̃

g′(b)
i

)
.

4. Calculate population estimate rNIE(b) =
∑n1

i=1(d
(b)
i × φ̃

(b)
i ).

5. Construct a point estimate for rNIE as the posterior mean r̂NIE =
∑B
b=1 rNIE

(b)/B, and create
quantile-based 95% credible intervals as the 2.5th and 97.5th quantiles of (rNIE(1), . . . , rNIE(B)).
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B.5 Controlled direct effects

The controlled direct effect is the effect of changing exposure A to level a from a∗ while holding the mediator
M fixed at level m, i.e., CDE = E

[
Y am − Y a∗m

]
. In general, this requires no unmeasured exposureoutcome

confounding and no unmeasured mediatoroutcome confounding. Both of these cases can be addressed by
with slight modifications to previously stated versions of the BDF-SIM algorithm in order to obtain B
posterior samples CDE(1), . . . , CDE(B).

Exposure-outcome confounding or mediator-outcome confounding that not affected by treat-
ment

Suppose the true causal diagram is as in Supplemental Figure 2, where U acts as an exposure-outcome
confounder, mediator-outcome confounder, or both. (It may also be an exposure-mediator confounder, but
the controlled direct effect is already identified if both the U → A and U → Y arrows are missing.)

For this causal structure, the controlled direct effect can be estimated using the algorithm from Sec-

tion B.2, replacing the stochastic assignment of m̃
a∗(b)
i in Step 3b with universal assignment to m for all i

and b.

Exposure-induced mediator-outcome confounding

Suppose the true causal diagram is as in Figure 2 in the main text, i.e., where U is an exposure-induced
mediator-outcome confounder. Further suppose scientific interest lies in the controlled direct effect of chang-
ing A to level a from a∗ while holding the mediator M fixed at level m, i.e., CDE = E

[
Y am − Y a∗m

]
.

The controlled direct effect can be estimated using the algorithm from Section B.1, replacing A1 with A
and A2 with M . The two regimes are g = (A = a,M = m) and g′ = (A = a∗,M = m).

C Population vs. sample estimands

As in Section 2 of the main text, consider the problem of estimating the effect of a regime g relative to g′,
on the difference scale (i.e., E [Y g]− E [Y g′]).

The counterfactual law of Y under regime g0 for profile Z = z0 is

p(ỹg0 |z0, o) ∝
∫
p(ỹ|g0, z0, θY )dθY

This yields counterfactual posterior mean of:

E [Y g0 |Z = z0] ∝
∫
ỹ × p(ỹ|g0, z0, θY )dθY

The average conditional effect τ(z) contrasting a regime g to g′ evaluated within the Z = z0 group is:

τ(z) = E [Y g|Z = z0]− E [Y g′|Z = z0] ∝
∫
ỹ
[
p(ỹg|z0, o)− p(ỹg

′
|z0, o)

]
dθY

In Section 12.4 of their text, Imbens and Rubin (2015) distinguish between estimating what they refer
to as a “conditional average treatment effect” (i.e., a finite-sample average effect that conditions on the
observed pre-treatment variables in the finite sample) and the average effect in the superpopulation which
gave rise to the data set. From a study sample containing n participants, the finite-sample version of this
average causal effect is

τcond =
1

n

n∑
i=1

E [Y g|Z = zi]− E [Y g′|Z = zi] ∝
∫
ỹ
[
p(ỹg|z0, o)− p(ỹg

′
|z0, o)

]
dθY

An estimator of this causal effect is the version implemented in the supplemental code provided by Keil
et al. (2015). By contrast, the superpopulation version of the average effect takes into account the additional
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uncertainty regarding the distribution of the baseline covariates (i.e., Z). Estimation of this superpopulation
quantity is the rationale for modeling Z, either parametrically or using the Bayesian bootstrap.

The posterior for the superpopulation τsp comparing regime g to g′ is given by

p(τsp|o) ∝
∫∫∫

[p(ỹ|g0, z̃, θY )− p(ỹ|g′, z̃, θY )] p(z̃|θZ)π(θZ |z)dθY dθZdz̃,

where p(z̃|θZ)π(θZ |z) can be replaced with p(z̃|z) via the frequentist or Bayesian bootstrap.

D Potential sources of computational efficiency gains

D.1 Handling non-unique baseline covariate values in the Bayesian bootstrap

Consider our use of the Bayesian bootstrap for modeling p(z), the distribution of baseline covariates. Without
loss of generality, assume Z represents n observations of a single covariate. First, let us consider when the Z
values are all unique (i.e., there is no i 6= j such that Zi = Zj for i, j ∈ {1, . . . , n}). Use of the the Bayesian
bootstrap can be seen as a analogous to the posterior distribution after placing an improper Dirichlet(0, . . . , 0)
on the covariate profile probabilities θZ = (θZ1, . . . , θZn) ∈ ∆n, where ∆n is the n-dimensional simplex
θZi > 0 for i = 1, . . . , n and

∑n
i=1 θZi = 1.

Now suppose we have duplicated Z values, such that Zi = Zj for some i 6= j. If there are K < n
unique values for Z, then the Bayesian bootstrap on Z amounts to a Dirichlet(ξ1, . . . , ξK) distribution over
a θZ ∈ ∆k, where ξk is the count of observations with the kth unique covariate profile. We denote this kth

unique profile by z(k). Due to the aggregation property of the Dirichlet distribution, this K-dimensional
Dirichlet(ξ1, . . . , ξK) distribution is equivalent to placing on the n-dimensional Dirichlet(1, . . . , 1) on values
for (i, Zi)– which are unique– and collapsing categories over that first, uniqueness-defining element.

These are equivalent and so we may choose to ignore ties to simplify implementations of the estimator.
However the alternative, K-dimensional representation offers an opportunity for computational gains when
(1) the estimand of interest has a closed-form expression and/or (2) K � n. The next subsection describes
a BDF algorithm variant that leverages closed-form expressions to speed computations.

D.2 A Bayesian data fusion algorithm for closed-form estimands using the
Bayesian bootstrap (BDF-CF)

In certain cases, e.g., when all data are discrete, estimation can be simplified through the use of closed-form
expressions for estimators within the MCMC. We now outline a data fusion procedure for the rNDE using
the Bayesian g-formula with the lower-dimensional Bayesian bootstrap from Section D.1 for marginalization
over baseline covariates. Steps 1, 2, and 5 of the closed-form version are identical to the simulation-based
approach in the main text, so we show only steps 3 and 4.

3. Let zk denote the kth unique covariate profile for k = 1, . . . ,K. For b = 1, . . . , B, sample profile weight

vector (d
(b)
1 , . . . , d

(b
K) from a Dirichlet(ξ1, . . . , ξK) distribution, where ξk is the count of observations in the

main data set with the kth unique covariate profile. For k = 1, . . . ,K, calculate the conditional contrast

φ
(b)
k as

φ
(b)
k =logit−1

(
α

(b)
0 + z′kα

(b)
Z + α

(b)
M m̃

0,g(b)
k + α

(b)
A + α

(b)
AMm̃

0,g(b)
k + α

(b)
U ũ

1,g(b)
k

)
− logit−1

(
α

(b)
0 + z′kα

(b)
Z + α

(b)
M m̃

0,g′(b)
k + α

(b)
U ũ

0,g′(b)
k

)
4. Calculate population estimate rNDE(b) =

∑K
k=1(d

(b)
k × φ

(b)
k ).

The simulation-based and closed-form Bayesian g-formula approaches are identical with respect to regres-
sion parameter estimation, but their differences have implications for extensibility to other causal estimands
and scalability to large data sets. In particular, the simulation-based approach is more general because does
not require a closed-form expression. However, the closed-form version can take advantage of non-unique
values of Z, and does not require computationally intensive forward simulation (i.e., posterior prediction) in
addition to the computational burden of parameter MCMC sampling.
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D.3 QR decomposition for improved sampler performance

When we applied QR matrix decomposition to the design matrices of our data application, we experienced
dramatic improvements in NUTS sampler performance, both with respect to the number of completed
MCMC iterations per minute and the number of “effective” parameter draws per MCMC iteration. As such,
we strongly recommend implementing this procedure for BDF, particularly with large sample sizes.

However, to calculate the marginalization over U in the BDF likelihood, we needed U to remain on its
original (i.e., non-decomposed scale). Setting informative priors on QR-scaled parameters is not straight-
forward, and selectively QR-scaling the non-U . Below, we outline how to place a MVN (µ,Σ) prior on
a regression coefficient vector βaug = (β0, . . . , βp, λ) with length (p + 1), for a design matrix X having p
columns from N subjects. There is also a single unmeasured confounder U , whose corresponding regression
coefficient is λ. The length-N vector of U values is denoted here by u. This decomposition process was used
for design matrices XM and XY ; for XU , the QR decomposition process was more standard because there
was no column to keep on the initial scale. Let c1 and c2 be scalar tuning parameters.

The purpose of applying the QR decomposition is to perform the MCMC parameter sampling on a scale
with more favorable posterior geometry. Specifically, we would prefer to sample β̃aug, whose elements are
less correlated, with a transformation applied afterwards to recover βaug .

Apply a thin QR decomposition to obtain Q and R such that

XN×p =QN×pRp×p

Rescale matrices by scalar c1:

Q∗N×p =c1 ·Q
R∗p×p =c−1

1 ·R

Define augmented design matrix Xaug. For scalar c2,

Xaug =
(

X u
)
N×(p+1)

=
(

Q∗R∗ u
)
N×(p+1)

Then Xaug = Q∗augR
∗
aug for scaled augmented matrices Q∗aug and R∗aug:

Q∗aug =
(

Q∗ c2 · u
)
N×(p+1)

R∗aug =

(
R 0

0 c−1
2

)
(p+1)×(p+1)

In practice, we found that c1 =
√
N − 1 resulted in better performance than c1 = N . We exclusively

investigated and were able to obtain reasonable convergence with c2 = 1.
Sampling can now be performed on the scale of β̃aug. To recover βaug from β̃aug, premultiply β̃aug by

the inverse of R∗aug:

βaug = (R∗aug)
−1β̃aug

This can be seen from the relationship through the linear predictor η:

Q∗augβ̃aug = η = Xaugβaug = (Q∗augR
∗
aug)βaug

The final question is how to translate our informative prior for βaug into an informative prior for β̃aug.
Here, we use the fact that BDF-derived priors are all multivariate normal. Therefore, the following two
priors are equivalent:

βaug ∼MVN (µ,Σ)

β̃aug ∼MVN (R∗augµ,R
∗
augΣR∗aug

′)
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E Connection to the power prior

Using prior information derived from a secondary data source is not unique to Bayesian data fusion. One
related approach to leveraging external data is the power prior (Ibrahim and Chen, 2000), which in some
instances can be related to hierarchical models (Chen and Ibrahim, 2006).

For a simple relationship that is identifiable in historical data D0, a power prior for a generalized linear
regression parameters θ is a prior taking the form

π(θ, a0|D0) ∝ L(θ|D0)a0 × π0(θ|c0)

where 0 ≤ a0 ≤ 1 is a scalar prior parameter weighting the historical data relative to the data in the study
at hand and π0(θ|c0) is an initial prior before seeing D0. Note that a0 is not the same as the treatment
variable A appearing in the main paper. In the language of the main text, D0 would be the “secondary” or
“external” data.

Due to the consistency and asymptotic normality of maximum likelihood estimators for parameters
(θQ,ΣQ) in the regression model for Q, we can approximate the likelihood of θQ after conditioning on the
external data with

L(θQ|D0) ≈MVN
(
θ̂Q,MLE , Σ̂Q,MLE

)
For mediation estimands, this reasoning applies to all Q ∈ {U,M, Y }. Then the standard BDF (i.e., with
no variance inflation) approximates a power prior in the special case of a0 = 1 and π0(θQ|c0) ∝ 1.

π(θQ, a0|D0) ∝ L(θQ|D0)a0︸ ︷︷ ︸
≈MVN(θ̂Q,MLE ,Σ̂Q,MLE)

×π0(θQ|c0)︸ ︷︷ ︸
1

(2)

However, BDF offers a distinct advantage over the analogous power prior: no sharing of individual-level
data is required. Although power priors can be implemented based on sufficient statistics in select instances,
this is not true for GLMs more generally. BDF priors can always be constructed solely on the basis of
summary statistics θ̂Q,MLE and Σ̂Q,MLE , the sharing of which creates no additional risk of reidentification
for study participants.

We attempted to directly compare our BDF approach to power priors using the same simulated external
data, but we were unable to achieve satisfactory MCMC performance or convergence when transportability
was violated. Despite changing the target Metropolis-Hastings acceptance probability to 0.95 and increasing
the maximum treedepth, our implementation of the power prior in Stan did not achieve R̂ < 3. Run
times were also extremely slow even when transportability held (> 24 hours for 500 MCMC iterations and
n1 = 1000).

F Frequentist bias corrections

F.1 Overview

The first comparator method, referred to as the delta-gamma (DG) correction, is a classical bias correction
method (VanderWeele, 2015). A version for controlled direct effects can be used for the rNDE when the
two coincide, i.e., if (1) U is not exposure-induced, and (2) there is no exposure-mediator interaction in the
outcome model. Note that for estimands on the risk difference scale, (2) does not hold for logistic models
of Y even if the Z-M interaction coefficient is zero. This approach also requires that the effect of U should
be the same across all levels of Z (i.e., E [Y |a, z,m,U = 1] − E [Y |a, z,m,U = 0] does not depend on z),
which cannot hold in a logistic model unless the Z coefficient is zero. Confidence intervals were obtained by
bootstrapping the main data 200 times.

A second frequentist correction, referred to as the interaction correction (IX), can accommodate exposure-
mediator interaction in the outcome model (VanderWeele, 2010). Originally derived as a bias correction for
the NDE, it is more generally applicable than the DG correction, but it similarly requires that U not be
exposure-induced. Again, we fit maximum likelihood models to the external data source to derive bias-
corrected estimates within each covariate pattern, and confidence intervals were obtained via the bootstrap.
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F.2 δ-γ correction (“DG”)

For each level of z, the bias due to U for the rNDE on the difference scale, assuming A does not cause U is

BCDEdg,add(m = 0|z) =δm=0(z)γm=0(z) with (3)

δm=0(z) =P (U = 1|z,m = 0, a = 1)− P (U = 1|z,m = 0, a = 0)

γm=0(z) =E [Y = 1|z, a,m = 0, u = 1]− E [Y = 1|z, a,m = 0, u = 1]

The DG-corrected population estimate of the rNDE is then given by

r̂NDEdg =
∑
z

(
r̂NDEuc(z)−BCDEdg,add(m = 0|z)

)
p(z). (4)

F.3 Interaction correction (“IX”)

The bias in the additive NDE from by a mediator-outcome confounder U which is not exposure-induced is
given by:

BNDEix,add(z) =
∑
m,u

([
E [Y |a,m, z, u]P (u|a,m, z)− E [Y |a∗,m, z, u]P (u|a∗,m, z)

]
P (m|a∗, x)

)
−
∑
m,u

([
E [Y |a,m, z, u]− E [Y |a∗,m, z, u]

]
P (m|a∗, z, u)P (u|z)

)
In our context, a = 1 and a∗ = 0. To eliminate the possibility of model misspecification in the estimation
of the bias correction term BNDEix,add(z), saturated parametric logistic regression models were adopted for U
and M when possible. (For the data application, sparseness in the covariates made this impossible, and
parametric models with many interaction terms were fit to reduce, but not eliminate, misspecification.) The
model for Y used to obtain E [Y |a = 1,m, z, u] was the same logistic model used to obtain the naive rNDE,
except with U as an additional term.

The corrected estimate of the population rNDE was calculated by

r̂NDEix =
∑
z

(
r̂NDEuc(z)−BNDEix,add(z)

)
p(z). (5)

G Data generation procedure for simulations

The “no-interaction” case corresponding to no statistical interaction has ∆Y,AM = 0.
When U is not exposure-induced, ∆U,A = 0.
For violations of transportability, βU = αU = 0 was used for generation of the small data set. Otherwise,

βU = αU = 1.5 in order to induce strong mediator-outcome confounding by U .

Z1 ∼ Bernoulli(0.5)

Z2|Z1 ∼ Bernoulli(0.5)

A|Z1, Z2 ∼ Bernoulli
(
logit−1 (−0.2 + 0.5Z1 + 0.7Z2)

)
U |A,Z1, Z2 ∼ Bernoulli

(
logit−1 (−0.4 + ∆U,A1.5A)

)
M |U,A,Z1, Z2 ∼ Bernoulli

(
logit−1 (−1.5 + 0.3Z1 + 0.2Z2 + 0.7A+ βUU)

)
Y |M,U,A,Z1, Z2 ∼ Bernoulli

(
logit−1 (−2 + 0.3Z1 + 0.2Z2 +A+ 0.8M + ∆Y,AMAM + αUU)

)
H Additional simulation results

H.1 Boxplots and coverage table for exposure-induced U , including the closed-
form estimator variant BDF-CF
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Supplemental Figure 3: Randomized natural direct effects estimated with naive, delta-gamma (DG) cor-
rection, interaction (IX) correction, simulation-based Bayesian data fusion (BDF-SIM), and closed-form
Bayesian data fusion (BDF-CF) estimators, with and without exposure-mediator interaction and causal
transportability between main and external data sets. The unmeasured confounder U is exposure-induced.

Coverage probabilities for the closed-form variants in the case of exposure-induced mediator-outcome
confounding are included below in Supplemental Table 1.
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Supplemental Table 1: Coverage percentages for 95% confidence and credible intervals for naive, delta-
gamma (DG) and interaction (IX) frequentist corrections, simulation-based (BDF-SIM) and closed-form
(BDF-CF) Bayesian data fusion estimators, calculated in 200 replicates with exposure-induced mediator-
outcome confounding

Transportability Interaction Sample sizes Naive DG IX BDF-SIM BDF-CF

Yes No (150, 1500) 73.5 5.0 15.5 93.5 92.5
Yes No (500, 5000) 25.0 0.0 0.0 94.0 95.0
Yes No (1000, 10000) 2.5 0.0 0.0 91.5 94.5
Yes Yes (150, 1500) 69.0 7.0 12.5 92.5 91.5
Yes Yes (500, 5000) 19.5 0.0 0.0 95.5 96.0
Yes Yes (1000, 10000) 2.5 0.0 0.0 93.5 94.5
No No (150, 1500) 66.5 64.0 54.0 50.0 50.0
No No (500, 5000) 26.0 31.5 34.0 3.0 2.5
No No (1000, 10000) 2.5 10.5 13.0 0.0 0.0
No Yes (150, 1500) 59.5 72.5 45.0 53.0 49.5
No Yes (500, 5000) 18.0 55.0 33.0 3.5 3.5
No Yes (1000, 10000) 3.5 44.0 13.0 0.0 0.0

H.2 Credible interval widths

Mean confidence and credible interval widths for the simulated scenarios are given in Supplemental Table 2.
BDF-SIM is the simulation-based estimator described in the main text, whereas BDF-CF uses the closed-
form g-formula expressions alluded to in Web Appendix D instead of the posterior prediction of potential
outcomes used in BDF-SIM. The Bayesian estimators tend to have widths comparable to frequentist analogs
when there is no transportability, but tend to have wider intervals when there is substantial bias in the
external data. BDF-CF may perform slightly better than BDF-SIM (i.e., have narrower intervals) in small
samples due to smaller Monte Carlo error.

Supplemental Table 2: Widths of 95% confidence and credible intervals for naive, delta-gamma (DG) and
interaction (IX) frequentist corrections, simulation-based (BDF-SIM) and closed-form (BDF-CF) Bayesian
data fusion estimators, calculated in 200 replicates with exposure-induced mediator-outcome confounding

Transportability Interaction Sample sizes Naive DG IX BDF-SIM BDF-CF

Yes No (150, 1500) 0.101 0.100 0.100 0.108 0.107
Yes No (500, 5000) 0.055 0.055 0.055 0.059 0.058
Yes No (1000, 10000) 0.039 0.039 0.039 0.042 0.042
Yes Yes (150, 1500) 0.101 0.098 0.101 0.112 0.110
Yes Yes (500, 5000) 0.056 0.054 0.056 0.061 0.061
Yes Yes (1000, 10000) 0.039 0.038 0.039 0.043 0.043
No No (150, 1500) 0.100 0.101 0.101 0.100 0.099
No No (500, 5000) 0.055 0.055 0.055 0.054 0.054
No No (1000, 10000) 0.039 0.039 0.039 0.038 0.038
No Yes (150, 1500) 0.101 0.099 0.102 0.103 0.101
No Yes (500, 5000) 0.056 0.054 0.055 0.056 0.054
No Yes (1000, 10000) 0.039 0.038 0.039 0.039 0.038

H.3 Performance when unmeasured confounder is not exposure-induced

In the absence of transportability, all of the bias corrections considered perform poorly. However, the BDF-
SIM and BDF-CF estimates are more confident about their (biased) estimates. In the top right panel
of Supplemental Figure 4, one can see that the BDF approaches reduce bias better than the frequentist
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corrections in smaller sample sizes, but that the difference in performance is virtually eliminated with a
main data set size of n = 10, 000. Interestingly, the IX correction does not exhibit good performance when
there is a strong exposure-mediator interaction, particularly in small samples. This is likely due to external
data being too small to provide sufficiently precise estimates of the the terms in the bias correction formula.

Supplemental Figure 4: Randomized natural direct effects estimated with naive, delta-gamma (DG) cor-
rection, interaction (IX) correction, simulation-based Bayesian data fusion (BDF-SIM), and closed-form
Bayesian data fusion (BDF-CF) estimators, with and without exposure-mediator interaction and causal
transportability between main and external data sets. The unmeasured confounder U is not exposure-
induced.

H.4 Transportability violations and the role of the inflation factor

The central assumption of parametric causal transportability (Assumption ??) can be violated in multiple
ways, and the complete transportability across data sets is only guaranteed by design in rare circumstances,
such as random subsampling for a validation substudy. The inflation factor proposed in Section ?? is intended
to make inference more robust to discrepancies in the data generation processes underlying the main and
external data sources. To demonstrate the impact of the inflation factor, we performed additional simulations
for the case where external information and internal information are similarly informative, i.e., n1 = n2.

We considered three data generation scenarios, all with n1 = n2 = 5000, strong exposure-induced con-
founding by U , and a large A-M interaction in the Y outcome model. With full transportability, the data
generation processes are identical. For the potentially recoverable transportability violation, the true data
generation processes were selectively altered such that the external data had (βA, αA, αAM ) = (0, 0, 0) rather
than the (0.7, 1.0, 1.0) in the main data. The primary data set contains some information on all of the dis-
crepant parameters, as A and M are fully observed, but the transportability violation induces a large change
in the estimand of interest, the rNDE, from 0.371 in the main data to 0.180 in the external data. The
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Supplemental Table 3: Coverage percentages for 95% credible intervals for simulation-based (BDF-SIM)
Bayesian data fusion estimators, calculated in 200 replicates with exposure-induced mediator-outcome con-
founding and n1 = n2 = 5000. Full transportability has identical data generating processes in the external
and main data sets, potentially recoverable violations have discrepancies only in variance-inflated parameters,
and non-recoverable violations have discrepancies in coefficients for the unmeasured confounder U .

Inflation factor σ
Transportability scenario 1 10 50 100

Full transportability 94.0 97.5 92.0 94.0
Potentially recoverable transportability violation 0.0 49.0 90.5 92.0
Non-recoverable transportability violation 0.0 4.5 20.0 23.5

Supplemental Table 4: Widths of 95% credible intervals for simulation-based (BDF-SIM) Bayesian data
fusion estimators, calculated in 200 replicates with exposure-induced mediator-outcome confounding and
n1 = n2 = 5000. Full transportability has identical data generating processes in the external and main
data sets, potentially recoverable violations have discrepancies only in variance-inflated parameters, and
non-recoverable violations have discrepancies in coefficients for the unmeasured confounder U .

Inflation factor σ
Transportability scenario 1 10 50 100

Full transportability 0.046 0.058 0.061 0.061
Potentially recoverable transportability violation 0.046 0.058 0.060 0.061
Non-recoverable transportability violation 0.044 0.058 0.059 0.059

non-recoverable transportability violation matches the situation in the main text, where parameters that are
completely unobservable in the main data, (βU , αU ), are (0, 0) in the external data and (1.5, 1.5) in the main
data; the true underlying rNDE is 0.052 in the external data and 0.371 in the main data. Within each data
generation scenario, we ran 200 simulation replicates and calculated the rNDE using BDF-SIM and prior
inflation factors of σ ∈ {1, 10, 50, 100}.

Supplemental Table 3 shows that both types of transportability violations we considered are sufficiently
severe to cause poor interval coverage in the absence of prior variance inflation. Specifically, the 95% credible
intervals from the no-inflation scenario (i.e., σ = 1) have zero coverage. In the potentially recoverable
scenario, larger inflation factor values increase coverage. However, even with σ = 100, coverage is slightly
less than nominal at 92%. Intervals get slightly wider (Supplemental Table 4) with larger σ, but are not
so wide as to be completely noninformative, with a mean width of ≈ 0.06 on the risk difference scale. In
the non-recoverable scenario, coverage remains below 25% for all values of σ we considered. These findings
suggest the use of inflation factors to make the analysis more robust to certain violations of transportability.
However, as demonstrated in the main text, non-transportability with respect to U -related parameters cannot
be overcome with prior variance inflation.
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