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Supplemental Figures 
 
Supplemental_Fig_S1 Precocious culmination in the pkaC-overexpressor strain 
 

 
 
Supplemental_Fig_S1  Precocious culmination in the pkaC-overexpressor strain. 
Comparison between the wild type (AX4) and the pkaCoe developmental morphologies. 
The AX4 images, all the experimental details, and the color codes are identical to those 
shown in Fig. 1 in the main text. 
  



Supplemental_Fig_S2 MDS and PCA plots of individual strains 
A. 

 
  



B. 

 
 

Supplemental_Fig_S2  MDS and PCA plots of individual strains. We analyzed the 
transcriptomes of the developing cells across time by RNA-seq and performed MDS (A) 
and PCA (B) using expression data from 2-7 replicates of each strain. The plots are 
identical to the respective analyses shown in aggregate in Figure 2, to provide better 
resolution. The PCA plots here include individual replicates of each strain plotted as 
different color circles to illustrate reproducibility.  



Supplemental_Fig_S3 Precocious spore and stalk differentiation in the pkaR– 
strain 
 

 
 
Supplemental_Fig_S3  Precocious spore and stalk differentiation in the pkaR– 
strain. We developed AX4 and pkaR– cells on nitrocellulose filters for 16 h and 40 h, as 
indicated. (A) We placed whole mounds on microscope slides, squashed them gently 
under a cover-slip and examined the cell morphology with phase-contrast microscopy. 
Blue arrows indicate stalk cells (16 h) or stalk tubes (40 h) and yellow arrows indicate 
spores. Bars = 20 µm. (B) We treated the developing cells with detergent to eliminate 
amoebae and imaged them with phase-contrast microscopy. Yellow arrows indicate 
spores. Bars = 20 µm. 
  



Supplemental_Fig_S4 Stage information on PCA plots 
 

 
 
Supplemental_Fig_S4  Stage information on PCA plots. We added the 
representative stage information of each sample to the PC1 vs. time plots of the wild 
type, tight aggregate, and disaggregation phenotype groups (a subset of 
Supplemental_Fig_S2). PC1 (y-axis, arbitrary units) of each strain was plotted against 
time (x-axis, hours). The strain names are indicated in the plot and the color of the strain 
name represents the phenotype group: wild type (light blue), tight aggregate arrest (dark 
yellow), tight aggregate disaggregation (light orange), and loose aggregate 
disaggregation (dark orange). Representative morphological stages are plotted in 
different colors as indicated in the legend on the right. Samples at the zero time points 
were assigned a no agg stage. If the image was not captured for the samples at 0 h, red 
borders were added to gray symbols. White symbols with black outlines indicate 
samples for which representative stages were undetermined due to mixed 
morphologies. 
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Supplemental_File_S1: Gene-set enrichment among milestone genes 
 
All genes (except for non-expressed genes): 12,431 genes 
Genes with Entrez ID (EID): 12,339 genes 
Annotated genes: 4,510 genes (36.55%) 
 
Milestone genes: 1,371 milestone genes at 8 stage transitions 
 
“Term”: Enriched GO-term, KEGG-pathway, custom gene sets(Custom) 
“Ontology”: GO:Biological process(BP), Cellular component(CC), Molecular function(MF), KE
GG:pathway(Path.), Custom 
“Group”: The number of genes with the term in the milestone gene set 
”Reference”: The number of genes with the term in the reference (with EID) 
”FDR”: false discovery rate, hypergeometric test 
The bar graph size shows the fold enrichment and the color (see scale) represents the FDR. 

Selected Enrichment terms: FDR ≤ 0.25, gene number in the group ≥ 2 
 
 
1)  “no agg” to “ripple/stream” stage 
Down-regulated:  
all genes: 294, with EID: 292, term-annotated genes: 132 genes 
Enrichment annotation list: 



  
 
Up-regulated:  
all genes: 247, with EID: 246, term-annotated genes: 72 genes 
Enrichment annotation list: 

 
 
2)  “ripple/stream” to “lag” stage 
Down-regulated:  
all genes: 1, with EID: 1, term-annotated genes: 0 genes 
 
Up-regulated:  
all genes: 71, with EID: 70, term-annotated genes: 26 genes 
Enrichment annotation list: None 
 
 
3)  “lag” to “tag” stage 
Down-regulated:  
all genes: 11, with EID: 11, term-annotated genes: 2 genes 
Enrichment annotation list: None 
 
Up-regulated:  
all genes: 260, with EID: 259, term-annotated genes: 133 genes 
Enrichment annotation list:  



 
 
 
4)  “tag” to “tip” stage 
Down-regulated:  
all genes: 20, with EID: 20, term-annotated genes: 9 genes 
Enrichment annotation list:  

 
Up-regulated:  
all genes: 35, with EID: 35, term-annotated genes: 21 genes 
Enrichment annotation list:  

 
 
5)  “tip” to “slug” stage 
Down-regulated:  
No selected genes. 



 
Up-regulated:  
all genes: 12, with EID: 12, term-annotated genes: 12 genes 
Enrichment annotation list: 

 
 
6)  “slug” to “Mexican hat” stage 
Down-regulated:  
No selected genes. 
 
Up-regulated:  
all genes: 209, with EID: 209, term-annotated genes: 96 genes 
Enrichment annotation list: 

 
 
7)  “Mexican hat” to “culmination” stage 
Down-regulated:  
all genes: 9, with EID: 9, term-annotated genes: 7 genes 
Enrichment annotation list:  

 
 
Up-regulated:  
all genes: 45, with EID: 45, term-annotated genes: 13 genes 
Enrichment annotation list: 

 
 
8)  “culmination” to “fruiting body” stage 
Down-regulated:  
all genes: 3, with EID: 3, term-annotated genes: 2 genes 
Enrichment annotation list: None 
 
Up-regulated:  



all genes: 176, with EID: 175, term-annotated genes: 50 genes 
Enrichment annotation list: 

 
 
  



Supplemental_File_S2: Gene set enrichment among the regulons 
 
All genes (except for non-expressed genes): 12,431 genes 
Genes with Entrez ID (EID): 12,339 genes 
Annotated genes: 4, 510 genes (36.55%) 
 
Regulon clusters: 21 clusters containing 1099 selected genes 
 
“Term”: Enriched GO-term, KEGG-pathway, custom gene sets (Custom) 
“Ontology”: GO:Biological process(BP), Cellular component(CC), Molecular function(MF), KE
GG:pathway(Path.), Custom 
“Group”: The number of genes with the term in the regulon cluster 
”Reference”: The number of genes with the term in the reference (with EID) 
”FDR”: false discovery rate, hypergeometric test 
The bar graph size shows the fold enrichment and the color (see scale) represents the FDR. 

Selected Enrichment terms: FDR ≤ 0.25, gene number in the group ≥ 2 
 
 
Cluster 1:  
all genes: 30, with EID: 30, term-annotated genes: 22 genes 
Enrichment annotation list:  

 
  



Cluster 2:  
all genes: 66, with EID: 65, term-annotated genes: 40 genes 
Enrichment annotation list 

 
 
Cluster 3:  
all genes: 68, with EID: 68, term-annotated genes: 66 genes 
Enrichment annotation list:  

 
 
Cluster 4:  
all genes: 55, with EID: 55, term-annotated genes: 23  
 genes 
Enrichment annotation list:  

 
  



Cluster 5:  
all genes: 41, with EID: 41, term-annotated genes: 40 genes 
Enrichment annotation list:  

 
 
Cluster 6:  
all genes: 74, with EID: 74, term-annotated genes: 41 genes 
Enrichment annotation list:  

 
 
Cluster 7:  
all genes: 40, with EID: 40, term-annotated genes: 14 genes 
Enrichment annotation list: 

 
 
Cluster 8:  
all genes: 23, with EID: 23, term-annotated genes: 10 genes 
Enrichment annotation list: 

 
  



Cluster 9:  
all genes: 20, with EID: 20, term-annotated genes: 18 genes 
Enrichment annotation list:  

 
 
 
Cluster 10:  
all genes: 36, with EID: 36, term-annotated genes: 19 genes 
Enrichment annotation list:  

 
 
Cluster 11:  
all genes: 77, with EID: 77, term-annotated genes: 24 genes 
Enrichment annotation list: 

 
 
Cluster 12:  
all genes: 57, with EID: 57, term-annotated genes: 35 genes 
Enrichment annotation list:  

 
  



Cluster 13:  
all genes: 64, with EID: 64, term-annotated genes: 51 genes 
Enrichment annotation list: 

 
 
Cluster 14:  
all genes: 19, with EID: 19, term-annotated genes: 16 genes 
Enrichment annotation list:  

 
 
Cluster 15:  
all genes: 91, with EID: 91, term-annotated genes: 67 genes 
Enrichment annotation list: 

 
 
Cluster 16:  
all genes: 74, with EID: 74, term-annotated: 39 genes 
Enrichment annotation list: 

 
  



Cluster 17:  
all genes: 61, with EID: 59, term-annotated genes: 22 genes 
Enrichment annotation list: 

 
 
Cluster 18:  
all genes: 46, with EID: 45, term-annotated genes: 19 genes 
Enrichment annotation list: 

 
 
Cluster 19:  
all genes: 58, with EID: 58, term-annotated genes: 18 genes 
Enrichment annotation list:  

 
 
Cluster 20:  
all genes: 54, with EID: 54, term-annotated genes: 20 genes 
Enrichment annotation list: 

 
 
Cluster 21:  
all genes: 45, with EID: 45, term-annotated genes: 12 genes 
Enrichment annotation list: 

 
  



Supplemental_File_S3: Gene-set enrichment in tgr-disaggregation and 
dedifferentiation 
 
All genes (except for non-expressed genes): 12,431 genes 
Genes with Entrez ID (EID): 12,339 genes 
Annotated genes: 4,510 genes (36.55%) 
 
“Term”: Enriched GO-term, KEGG-pathway, custom gene sets (Custom) 
“Ontology”: GO:Biological process(BP), Cellular component(CC), Molecular function(MF), KE
GG:pathway(Path.), Custom 
“Group”: The number of genes with the term in the disagg gene set  
”Reference”: The number of genes with the term in the reference (with EID) 
”FDR”: false discovery rate, hypergeometric test 
The bar graph size shows the fold enrichment and the color (see scale) represents the FDR. 

Selected Enrichment terms: FDR ≤ 0.25, gene number in the group ≥ 2 
 
tgr-disagg 8 hr vs 6hr (padj ≤ 0.01, FoldChange ≥ 2.5) 
all genes: 72, with EID: 70, term-annotated genes: 31 genes (44.0%) 
Enrichment annotation list: 

 
 
tgr-disagg 12hr vs 8hr (padj ≤ 0.01, FoldChange ≥ 2.5) 
all genes: 218, with EID: 217, term-annotated genes: 102 genes (47.0%) 
Enrichment annotation list: 

 



 
dediff_medium 0.5-2 hr vs buf allT (padj ≤ 0.01, FoldChange ≥ 4) 
all genes: 360, with EID: 359, term-annotated genes: 162 genes (45.0%) 
Enrichment annotation list: 

 
 

 
 
DE on data from Nichols, et al. (2020): dediff_set 
dediff_set overlap with all genes: 2.9% 
 
overlap between disaggregation_8to12 group and dediff_set: 32.1% 
p-val: 9.25E-55 
 
overlap between disaggregation_6to8 group and dediff_set: 2.8% 
p-val: 6.21E-01 
  

 disaggregation_8to12 dedifferentiation 
  gene # /list gene # /list 
Milestone_noAgg_down (294 genes) 10 3% 48 16% 
Regulon 1 (30 genes) 30 100% 15 50% 
U3 related_rRNA processing (56 genes) 45 80% 21 38% 
G-protein-coupled receptor (28 genes) 4 14.3% 1 3.6% 
Overlap between two sets 70 19% 70 32% 



Supplemental_File_S4  Introduction to data mining in dictyExpress and Orange 
 
A. An introduction to dictyExpress 
Open dictyExpress in a web browser: https://dictyexpress.research.bcm.edu, and press “Run 
dictyExpress”. If you are new to dictyExpress, follow the brief online tutorial before you proceed 
with the following suggestion. 
 

 



Select one of the Milestone project experiments in the ‘Experiment and Gene Selection’ panel. 
We recommend starting with AX4. 
 

 
  



Type a gene name in the ‘Genes’ box. In this example we chose the actin gene Act6 by typing 
‘act’ and selecting a gene from the ensuing drop-down menu. 
 

 
  



Pressing the ‘Update Selection’ button or hitting ‘return’ on your keyboard propagates the gene 
selection in all the other panels. 
 

 
  



To compare the temporal and developmental expression patterns of actin 6 between several 
strains, click the ‘Compare To’ button in the ‘Experiment Comparison’ panel. 
 

 
  



Select the desired experiments from the pop-up menu. Here, we selected the aggregationless 
mutant acaA– and the precocious developer pkaCOE. 
 

 
  



Close the selection menu to observe the comparison. 
 

 
  



Change the color selection by selecting the desired grouping in the ‘Group by’ button. Add a 
legend as needed. Mouse over the legend to view details (not shown). 
It is easy to see that the actin 6 mRNA abundance is reduced to about 60% in the 
aggregationless acaA– strain (tan) and to about 10% in the precocious pkaCOE strain (purple). 
 

 
  



B. An introduction to Orange 
 
Install Orange on your computer https://orangedatamining.com. If you are new to Orange, we 
strongly recommend following the ‘Getting Started with Orange’ tutorials at 
https://www.youtube.com/channel/UClKKWBe2SCAEyv7ZNGhIe4g 
Then, add the Bioinformatics add-on as described in 
https://www.youtube.com/watch?v=OANsA6fMJKg. In the following introduction, we used 
Orange 3.27.1 with the Bioinformatics add-on 4.3.1 
 
First, select two data sets for comparison. Start by opening a new Orange canvas. 

 
 
Select the dictyExpress widget from the Bioinformatics menu. 

 



Open the dictyExpress widget (double click). 

 
 
Select the ‘Genes in columns’ output and one of the Milestone datasets – a dot will appear next 
to the selection. Here, we selected AX4. Press ‘Commit’ to confirm your selection and close the 
dictyExpress window. 

 
  



Select a second dictyExpress widget from the Bioinformatics menu and repeat the above 
process but select a different dataset for comparison. Here, we selected mybB-. 

 
 
Next, we will combine the two datasets. Select the Concatenate widget from the Data menu. 

 
  



Connect the outputs of the two dictyExpress widgets to the Concatenate widget and open the 
widget (double click). 

 
 
Select the variable merging and source identification options as shown. Here, we changed the 
source ID by typing ‘Genotype’ in the feature name box. Notice that this widget is set to apply 
the selections automatically by default. 

 
  



The next 5 steps will change the genotype labels to indicate the strain names in the output data. 
Add an Edit Domain widget from the Data menu. 

 
 
Connect the output of the Concatenate widget to the Edit Domain widget and open the Edit 
Domain widget (double click). 

 
  



Scroll down the ‘Variables’ list and click the ‘Genotype’ variable. 

 
 
Click inside the ‘Values’ box. Text will appear if it is not already there. 

 
  



Double click the first value and type ‘AX4’. 

 
 
Double click the second value and type ‘mybB-‘. Press ‘Apply’ to propagate the two changes 
and close the Edit Domain window (not shown). 
 
To view your combined data, connect a Data Table widget to the Edit Domain output and double 
click to view the data. Here we show the first few columns that list the Genotype, Time and the 
first three of the 12828 genes (features) in the dataset. 

 
  



To compare the two datasets, select the MDS (multidimensional scaling) widget from the 
Unsupervised menu. 

 
 
Connect the output of the Edit Domain widget to the MDS widget. Red dots will appear at the 
ends of the connecting line, indicating data processing. Open the MDS widget (double click). 
Using the interactive menu on the left, ‘Color’ the points by ‘Genotype’ and to ‘Label’ them by 
‘Time’. Reduce the scale of the "Show similar pairs" to produce an MDS plot as shown. 

 
The wild type (AX4) temporal progression is quite different from that of the aggregationless 
mutant (mybB-), similar to the data shown in Figure 2A in the main manuscript. The projection is 
not identical to Figure 2A because the latter contains additional datasets that affect the 
rendering. You could test your skills by changing the mutant dataset from mybB- to another 
mutant (suggestion: tagB-; not shown).  



Supplemental_File_S5: Computational methods 
 
Abbreviations: 
lFC – log fold change 
DE – differential expression/differentially expressed 
padj – adjusted p-value 
pval – p-value 
RPKUM – Read counts Per Kilobase of exon model per Uniquely mapped Million reads 
tt – transition time 
agg – aggregation 
FB – fruiting body 
GAM – generalized additive model 
 
1 Milestones 
To find genes that change their expression relatively strongly between two consecutive 
developmental stages, we filtered the genes based on DE between two stages and also 
the shapes of their expression profiles. This approach ensured that the milestone gene 
exhibited a strong change between two stages and did not fluctuate much during the 
rest of development. For this analysis, we used AX4 samples annotated with 
developmental stages based on images that captured the morphologies of 
developmental structures. When an image contained multiple morphological stages, the 
majority morphology was used. 
1.1 Genes with marked expression changes between stages 
First, DE analysis was performed with the DESeq2 (v1.26.0) R library (Love et al. 2014) 
for every pair of neighboring stages using the AX4 samples. The later stage was used 
as the case and the earlier as the control. The padj was re-calculated over all the tests 
for all neighboring stage pairs using Benjamini-Hochberg correction on the pval from 
DESeq2. A gene was considered DE if the absolute lFC ≥ 2 and padj ≤ 0.01. 
1.2 Genes differentially expressed across stages 
The shape of the expression profile was analyzed with the ImpulseDE2 (v1.10.0) R 
library (Fischer et al. 2018) to find DE genes whose expression profiles change 
monotonously or transiently during development. The ImpulseDE2 model was fit to the 
AX4 data using ordered majority stages converted to consecutive integers as time-
points. Transition times were defined as the x-coordinate values of the sigmoid 
midpoints. The analysis was run in case-only mode with identification of transient genes 
whose expression profiles are better fit by single or double sigmoid model compared to 
constant model. Genes were considered significantly DE between two stages based on 
padj threshold = 0.001 and with a tt between those stages. 
The fitted ImpulseDE2 models were parsed to obtain neighboring stages that had tt 
between them, indicating a change in the expression level. The tt values were extracted 
from the appropriate model based on genes that were termed as monotonously or 
transiently changed across stages by ImpulseDE2. In some cases, this would lead to an 
inappropriate assignment of tt owing to the input timescale range (stages) and model 
complexity (single or double sigmoid). For each type of tt that would lead to an 
inappropriate expression change assignment (described below), changes were made to 



the tt values based on visual evaluation of example genes with the same tt value 
inconsistency. 
We extracted a single tt for monotonously DE genes according to the following steps 
even when the double sigmoid impulse model (i.e. having two tt values) was used. If the 
padj of the impulse model was lower than that of the sigmoid model (single sigmoid), 
the impulse tt closer to the tt of the sigmoid model was chosen. Otherwise, the tt of the 
sigmoid model was used. For border reassignment, if a tt value was smaller than the x 
value of the first stage (no agg), it was readjusted to be immediately after the first stage. 
If a tt was larger than the x-value of the last stage (FB), it was readjusted to be 
immediately before the last stage. 
For transiently DE genes, two tt values were extracted from the double sigmoid model. 
If both tt values were between the same two stages, they were reassigned to be right 
before the first neighboring stage and right after the second neighboring stage. If tt 
values were smaller than the first stage (no agg) or larger than the last one (FB), they 
were reassigned as in the monotonous model. If this procedure set the two tt values to 
be between the same two stages, a single tt value between these two stages was 
extracted. 
1.3 Selection of milestone genes 
A gene was determined to be a milestone between two neighboring stages by two 
criteria; 1) the gene was significantly DE between these two stages based on DESeq2 
(Section 1.1) and 2) it was significantly DE based on ImpulseDE2 with tt between the 
two stages (Section 1.2). These milestone genes were then separated based on being 
up- or down-regulated between the two stages. 
1.4 Milestone genes - expression heatmaps 
The expression profiles of milestone genes were visualized with the ComplexHeatmap 
(v2.3.3) R library (Gu et al. 2016). RPKUM data were averaged across the multiple 
samples, which were annotated as the same majority stage in each strain, so that the 
expression data of each gene were summarized by a single averaged value for each 
stage of a strain. The expression was scaled based on the following formula: 

𝐺𝑖𝑠𝑡	𝑠𝑐𝑎𝑙𝑒𝑑 =
𝐺𝑖𝑠𝑡 − 𝑝!!(𝐺𝑖)

𝑝!!(𝐺𝑖)
 

where Gi represents all the averaged expression values of a given gene (i) across 
stages and strains, Gist represents Gi in a certain strain (s) at a certain stage (t), and 
p99 represents the 99th percentile. This formula linearly scales the majority of the Gist 
values to the interval [-1,0] with extremely high Gist being given a value above zero. 
Values were then capped at 0.1 to reduce the effect of extreme values on the color 
scale. 
The heatmaps of the milestone genes were prepared separately for each pair of 
neighboring stages and for up- and down-regulation. Gene ordering was based on 
hierarchical clustering of the scaled averaged AX4 data with the Ward algorithm 
(ward.D2) in hclust (R v3.6.3) using Euclidean distances, followed by visual reordering 
with the seriation (v1.2-8) R library (Hahsler et al. 2008). The two strains that did not 
have stage annotations (ac3–/pkaCoe and gtaC–) were not included in the milestones 
heatmap.  
  



2 Regulons 
2.1 Selection of regulon candidate genes 
Co-regulated gene pairs were extracted from individual strain data to avoid biasing in 
favor of strains with more samples, according to the following steps. First, we excluded 
genes whose RPKUM was all-zero in a strain. The RPKUM values of each gene were 
transformed by adding a pseudocount (+1) followed by log2 transformation and scaling 
to a mean = 0 and standard deviation = 1. We used the Python nearest neighbor 
descent, PyNNDescent (v0.3.3) library (https://libraries.io/pypi/pynndescent/0.3.3), to 
obtain the 300 nearest neighbors of each gene based on cosine similarity. Then, we 
chose all the genes that have at least one nearest neighbor that exhibited a similarity 
equal to or higher than the strain-specific threshold (the 30th percentile of the similarities 
in each strain; see 2.2 Strain-specific similarity threshold). For each gene, we counted 
the number of strains in which the gene was found to have some co-expressed 
neighbor(s) and compared the number with the gene-specific N threshold. The gene-
specific N was specified by the number of strains in which the gene was deemed as 
expressed highly enough (see details below). If the gene had closest neighbor(s) 
present in at least N strains, it was considered a regulon candidate. Some genes were 
strongly co-regulated only in a few strains and exhibited mainly low or no expression in 
most strains, where they were not counted as co-regulated. When the expression level 
of a gene pair is very low, cosine similarity often becomes lower than the true similarity 
due to amplifying noise. Therefore, even if the genes are co-regulated, they would be 
counted as negative. To avoid such false negatives, we lowered the gene-specific N 
threshold by not taking into account strains in which the gene was expressed at very 
low levels. Thus, we first determined the H percent of the 99th percentile expression 
(He) in all samples and then defined the gene-specific N threshold as the number of 
strains in which the gene’s expression reached its He value at any timepoint. We also 
tested different H values (0, 10, 30, or 50) for the expression level. By increasing H 
(resulting in lowering N) more genes would be included as regulon candidates, because 
genes can be co-expressed even in strains that exhibit relatively low expression 
(empirically, we found H=0, 365 genes; H=10, 1099 genes; H=30, 1974 genes; H=50, 
3182 genes). We chose H=10 based on a visual inspection of the regulons obtained 
with different values of H. Moreover, we also set an upper limit of N=18 instead of 21 (all 
strains) to avoid more false negatives in the extraction process for the co-expressed 
gene pairs. The cap N=18 ensures that a gene would have co-expressed close 
neighbor(s) in at least one strain among the aggregation minus group in which regulons 
were frequently disrupted. 
2.2 Strain-specific similarity threshold 
A gene profile similarity threshold was selected to classify genes as co-expressed or 
not. The gene profile similarities depend on the strain-specific number of samples and 
data quality. A different similarity threshold was thus selected for each strain. These 
similarities to the top closest neighbors obtained for each strain displayed a left-skewed 
distribution. A strain-specific similarity threshold was set to the 30th percentile of the 
similarities to the closest neighbors. This threshold approximately separated the closest 
neighbor similarity distribution to a bulk of genes with close neighbors and a tail of 
genes that had relatively low similarity to the closest neighbor. 
  



2.3 Clustering of selected genes into regulons 
The selected regulon candidate genes were clustered based on their expression 
profiles. Clustering and data preprocessing were performed in Orange (v3.26) (Demsar 
et al. 2013). We used two methods for data preprocessing: 1) We added a pseudocount 
(+1) to the RPKUM data, log2-transformed and scaled to mean = 0 and standard 
deviation = 1. We used the scaled expression of samples as features for clustering. 2) 
We scaled the RPKUM data of each gene to interval [0,1], followed by PCA 
dimensionality reduction. We used the first 30 PCA components as features for 
clustering. Based on visual evaluation of the clustering results, we selected the first 
method for AX4-based regulons. Most of the regulon candidate genes are expressed in 
AX4 and thus the first method performed better on the AX4 data as it was able to 
capture more subtle changes in expression. On the other hand, the second method 
gives more importance to higher expression profiles, mostly due to peaks, and less 
importance to lower expression values than the first method. Thus, the second method 
performed better on strain-wide data where many strains do not express a gene leading 
to relatively more noise in their low expression values. We selected the second method 
for all-strains-based regulons. Louvain clustering was performed with resolution 0.8 
when AX4-based regulons were extracted from the AX4 data only and with resolution 
0.4 for all-strains-based regulon extraction. 
2.4 Regulons expression heatmap 
Regulon heatmap were prepared as for Milestone genes with the following changes. 
RPKUM data were averaged across timepoints of the replicates of each strain. 
Regulons were ordered based on the developmental time of the gene expression peak 
in AX4. Peak times of individual regulon genes were obtained from the averaged non-
scaled AX4 data. Regulons were ordered first by the median of the peak times, followed 
by the mean of the peak times of the regulon genes. Genes were ordered within each 
AX4 regulon separately. The ordering was based on hierarchical clustering of the scaled 
averaged AX4 data as for the milestone genes. The genes in the heatmap of the ‘all-
strains’ regulons were ordered based on the AX4 order, first by regulons and then by 
ordering within the regulons.  
 
3 Disaggregation genes 
We performed DEseq2 analysis to select genes that are related to the disaggregation 
process in the tgr mutant strains. The relevant timepoints were selected based on visual 
evaluation of the differences in PC1 values between tgrB1– and tgrB1–C1–  and the 
AX4, tagB– and comH– strains. 
3.1 Selection of disaggregation genes 
Genes that were upregulated during disaggregation, but not upregulated at the same 
time in normal development were extracted with the following method. Genes DE in 
individual strains between time points: 6 and 8 hrs, and 8 and 12 hrs, were extracted for 
AX4, tagB, comH, tgrB1–, and tgrB1–C1– strains with DESeq2. The design used 
adjustment for replicates and thus only replicates present at both timepoints were used. 
The DESeq2 results were optimized for padj threshold 0.01. A gene was considered 
significantly upregulated if lFC ≥ 1.32 and padj ≤ 0.01. For each time comparison, the 
genes upregulated during disaggregation in both tgrB1– and tgrB1–C1–, but not in AX4, 
tagB–, or comH– were selected as disaggregation genes. 



3.2 Comparison between the disaggregation and dedifferentiation genes 
To characterize the selected disaggregation genes, they were compared with genes 
that are upregulated during early dedifferentiation. The dedifferentiation genes were 
obtained from published dedifferentiation RNA-seq data (Nichols et al. 2020). The 
published data included an experiment in which cells were disaggregated and incubated 
in nutrient medium to induce dedifferentiation, and a control in which the disaggregated 
cells were incubated in non-nutrient buffer. We downloaded the RNA-seq fastq files 
(GSE144892) and prepared the RPKUM data by the same procedure as ours through 
the Genialis platform. Dedifferentiation genes were selected based on a DESeq2 
comparison between the pooled ‘medium’ samples at 0.5, 1, and 2 hrs and the pooled 
‘buffer’ samples at 0, 0.5, 1, 2, 3, 4, and 6 hrs. We tested for upregulation with DeSeq2 
and optimized the results for padj threshold 0.01. A gene was considered to be 
upregulated during dedifferentiation if lFC ≥ 2 and padj ≤ 0.01. Gene expression scaling 
and gene ordering for the heatmaps were performed as for the milestone genes. We 
used a hypergeometric test to determine whether the disaggregation genes significantly 
overlap with the dedifferentiation genes. For the reference group in the test we used all 
genes expressed in the data published with this paper. 
 
4 Developmental stage annotation 
We prepared two types of stage annotations: 1) all stages annotations and 2) 
representative stages annotations. First, we manually annotated developmental stages 
from the microscopic images showing developmental morphological structures. When 
an image contained multiple morphological stages, we annotated the sample with all the 
observed structures. If the image was not captured for any sample, it was annotated as 
“no image”, except for t=0 where it was annotated as no_agg. All stage annotations are 
shown in the color pallet above the heatmaps of regulons and disaggregation genes as 
information for each sample. When selecting milestone genes that transcriptionally 
define each developmental stage boundary, we annotated each sample with a 
“representative stage annotation” that is characteristic of the most abundant 
morphology. 
 
5 Gene-set enrichment analysis 
Datasets used for gene-set enrichment (including dictyBase gene name – entrez ID 
mapping and gene sets) were obtained on the 5th of April, 2020. The data were 
collected from the following sources. Gene information and taxonomy data were 
obtained from the NCBI database (ftp://ftp.ncbi.nlm.nih.gov). Gene ontology and KEGG 
pathway information was obtained from the official GO 
(http://geneontology.org/docs/download-ontology/) and KEGG 
(https://www.genome.jp/kegg/) knowledge-bases, respectively. The gene sets were pre-
processed to contain only genes with Entrez IDs. The code used for data retrieval is 
available at https://github.com/JakaKokosar/bioinformatics-serverfiles and the data used 
in this study are stored at 
http://download.biolab.si/datasets/bioinformatics/2020_04_05/. 
The analysis was performed using the Orange Bioinformatics (v4.0.0) Python library. 
Entrez IDs were mapped to the dictyBase gene names. The following gene sets were 
used: generic GO slims for biological process, molecular function, and cellular 



component; KEGG Pathways; and the custom gene sets described below. Only gene 
sets with size within the interval [5,500] were used. The size was determined based on 
the number of genes that were contained within the reference set. The reference set 
contained all the genes present in the RNA-seq data, except those that had all zero 
expression values. Reference and query sets were filtered to include only genes that 
had an Entrez ID and were contained within at least one of the used gene sets. The 
latter was done to account for different proportions of genes annotated with a gene set 
between the reference and the query groups. All gene sets that had non-zero overlap 
with the query were tested for enrichment using the Orange Gene Set set_enrichment 
function. The pval were adjusted with Benjamini-Hochberg correction. Results were 
filtered to display only gene sets with padj ≤ 0.25 and overlap with query ≥ 2. 
5.1 Custom gene sets 
We used cell-type specific genes (Prespore and Prestalk genes) (Parikh et al. 2010), 
cAMP-pulse induced genes (Iranfar et al. 2003), chemotaxis genes (Swaney et al. 
2010), Dictyostelium short gene families (hssA/2C/7E family, 57-aa protein family, sig 
and sigN genes, and gtaG-dependent short proteins) (Shimada et al. 2008; Vicente et 
al. 2008; Katoh-Kurasawa et al. 2016) and transcriptional regulation and chromatin 
organization (regulatory transcription factor, general transcription factors, mediators, 
chromatin remodeling/histone modification, histone/histone variants, and 
chromatin/centromere) (Rosengarten et al. 2013; Forbes et al. 2019). These custom 
gene sets are provided in Supplemental_File_S8. 
  



Supplemental_File_S6:  Standard experimental methods 
 
Cell culture, strain maintenance, development and spore collection 

All the Dictyostelium discoideum strains were derivatives of AX4 (Knecht et al. 
1986) as detailed in Supplemental_Table_S1. We cultured cells at 22°C in HL5 medium 
with the necessary supplements and antibiotics. To induce development, we washed 
exponentially growing cells twice with KK2 buffer (20 mM potassium phosphate, pH6.4) 
to remove nutrients. Cells of the gtaI– strain were grown in association with live 
Klebsiella pneumoniae bacteria on SM plates, collected at the exponential growth 
phase, and washed at least three times with DDW. In all cases, we deposited the cells 
at a density of 2.6x106 cells/cm2 on black nitrocellulose filters on top of a paper pad 
soaked with PDF buffer (20 mM KCl, 9.2 mM K2HPO4, 13.2 mM KH2PO4, 5.3 mM MgCl2 
and 1 mM CaCl2, pH6.4). The cells were incubated in the dark at 22°C for defined 
periods of time (Katoh et al. 2004). We collected spores from developing structures and 
treated with detergent (0.1% NP-40, 1mM EDTA in KK2 buffer) to eliminate amoebae 
(Shaulsky and Loomis 1993). 

 
RNA-seq 

We collected the cells from one nitrocellulose filter at each time point of two to 
seven independent developmental series, extracted total RNA from each sample using 
1 ml of Trizol (Invitrogen) and performed poly(A) selection twice as described (Katoh-
Kurasawa et al. 2016). We note that fruiting bodies, which contain walled spores and 
stalk cells, were not broken mechanically prior to RNA extraction, which could have 
resulted in underrepresentation of RNA species that are found exclusively in these 
walled cells (Van Driessche et al. 2005). We prepared multiplexed cDNA libraries and 
performed RNA sequencing using the Illumina sequencing platform as described 
previously. We mapped the resulting sequences to the Dictyostelium reference genome 
and obtained mRNA abundance values for each gene in the genome (Miranda et al. 
2013) through the web applications dictyExpress, GenBoard or Genialis platform. The 
data were deposited in GEO (accession numbers GSE152851). Unless otherwise 
stated, we preprocessed RPKUM data by log2-transformation after adding one 
(pseudocount), and then scaling to mean = 0 and standard deviation = 1. 

 
 

Supplemental Files S7 and S8 are provided as separate Excel spreadsheets. 
Supplemental_File_S7   Milestones, regulons and disaggregation gene lists 
Supplemental_File_S8   Reference gene lists 
  



Supplemental_Table_S1  D. discoideum strains used 
 

Strain 
name 

Phenotype 
group 

Strain 
Descriptor Strain summary Parental 

strain 
Antibiotic 
resistance Reference 

AX4 wild type AX4 wild type AX3  (Knecht et al. 1986) 

MybBGFP wild type 
mybB–

/[mybB]:mybB:G
FP 

expressing 
MybB:GFP under 
control of mybB 

promoter in mybB— 

mybB- Blasticidin S, 
G418 this study 

pkaCoe precocious 
development  [act15]:pkaC:HA 

expressing PkaC 
under control of 

act15 promoter in 
AX4 

AX4 G418 this study 

pkaR— precocious 
development pkaR— pkaR null mutant AX4 Blasticidin S (Shaulsky et al. 

1998) 

acaA—/ 
pkaCoe 

small fruiting 
body 

acaA—
/[act15]:pkaC 

expressing PkaC 
under control of 

act15 promoter in 
acaA– 

acaA- Blasticidin S, 
G418 this study 

ac3—/ 
pkaCoe 

small fruiting 
body 

acaA—/acgA— 
/acr A—/ 

[act15]:pkaC:HA 

expressing PkaC 
under control of 

act15 promoter in 
acaA—/acgA— 

/acrA— 

acaA-
/acgA- 
/acrA- 

Blasticidin S, 
G418 this study 

gtaI— culmination 
defective gtaI— gtaI insertional 

mutant AX4 Blasticidin S this study 

gtaG— culmination 
defective gtaG— gtaG insertional 

mutant AX4 Blasticidin S (Katoh-Kurasawa 
et al. 2016) 

cudA— culmination 
defective cudA— 

cudA deletion 
mutant 

pcudAKO(MF2) 
AX4 Blasticidin S 

this study; Plasmid: 
(Fukuzawa et al. 

1997) 

dgcA— culmination 
defective dgcA— dgcA null mutant 

pdgcA_KO_443 AX4 Blasticidin S 
this study; Plasmid: 
(Chen and Schaap 

2012) 

ecmARm culmination 
defective 

[ecmA]:pkaR 
(G135E/G261A) 

gtaG insertional 
mutant AX4 G418 this study 

tagB— tag arrest tagB— tagB null mutant AX4 Blasticidin S (Khare and 
Shaulsky 2010) 

t345 tag arrest comH— comH insertional 
REMI mutant AX4 Blasticidin S  (Kibler et al. 

2003)g 

tgrB1— tag 
disaggregation tgrB1— tgrB1 null mutant AX4 Hygromycin 

B 
(Benabentos et al. 

2009) 



tgrB1C1— tag 
disaggregation tgrB1—/tgrC1— tgrB1C1 null 

mutant pyr5-6- Uracil (Hirose et al. 2011) 

tgrC1— lag 
disaggregation tgrC1— tgrC1 null mutant AX4 Hygromycin 

B 
(Benabentos et al. 

2009) 

gbfA— lag 
disaggregation gbfA— gbfA null mutant AX4 BS- this study 

gtaC— aggregation 
minus gtaC— gtaC deletion 

mutant AX4 Blasticidin S (Keller and 
Thompson 2008) 

acaA— aggregation 
minus acaA— acaA null mutant AX4 Blasticidin S (Stepanovic et al. 

2005) 

mybB— aggregation 
minus mybB— mybB insertional 

mutant AX4 Blasticidin S this study 

amiB— aggregation 
minus amiB— 

amiB insertional 
mutant 

p82ClaI_amiB-
REMI 

AX4 Blasticidin S this study; Plasmid: 
(Kon et al. 2000) 
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