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Supplementary Information Text 

S1. Overview of Transient Network Theory 
The rate and history dependent response of materials made of transient network can be captured 
by the transient network theory developed in our previous works 1–4. To start, we briefly overview 
the key concepts of this theory as follows. 

 

The dynamics of chains in the transient network is described by the average rates of bond 
dissociation (𝑘𝑑) and reassociation (𝑘𝑎). During the deformation, the network response is governed 
by two quantities, the concentration of attached (i.e., mechanically active) chains and their 
deformation in time. The first quantity can be calculated in time through an evolution equation that 
captures bond dynamics as 1: 

 𝑑𝑛

𝑑𝑡
= 𝑘𝑎(𝑛𝑡 − 𝑛) − 𝑘𝑑𝑛 

(S1) 

 

Where 𝑛𝑡 is the total concentration of chains in the network. At chemical equilibrium state (𝑑𝑛/𝑑𝑡 =
0), the concentration of connected chains becomes a constant and can be found as 𝑛 = 𝑛𝑡𝑘𝑎/(𝑘𝑎 +
𝑘𝑑).  The second quantity can be described by the so-called chain conformation tensor 1,4 that 
stores the mean squared stretch of chains in the network:  

 𝝁 = 〈𝝀 ⊗ 𝝀〉  (S2) 

 

where 𝝀 is the stretch vector of a chain and the operator 〈⋅〉 represents the average over the chain 
configuration space. With this definition, 𝝁 is equal to identity tensor 𝑰 when the network is stress-

free. Upon deformation, 𝝁 evolves in time according to: 
 𝝁̇ = 𝑳𝝁 + 𝝁𝑳𝑇 + 𝑘𝑑(𝝁𝟎 − 𝝁) (S3) 

 

Where 𝑳 = 𝑭̇𝑭−1is the velocity gradient applied to the network (𝑭 being the deformation gradient 

tensor), 𝝁0 =
3

𝑡𝑟(𝝁−1)
𝑰 is the state at which the chains are associated to. The first two terms on the 

right-hand side describe the contribution of imposed deformation while the latter two terms account 
for relaxation of 𝝁 due to bond dynamics. For a purely elastic network (i.e., 𝑘𝑎 = 𝑘𝑑 = 0), 𝝁 

degenerates to the Finger tensor 𝝁 = 𝑭𝑭𝑇 and eq.4 describes its objective Truesdell rate 𝝁̂ = 𝝁̇ −
𝑳𝝁 − 𝝁𝑳𝑇 = 𝟎 5. Since 𝝁 stores information about the network elastic deformation, it is directly 
related to the elastic energy density 𝜓 and the rate of energy dissipation 𝒟. Assuming Gaussian 
chains (i.e., the force-stretch relation of a chain is linear), these two quantities are calculated as 1 

 𝜓 =
𝑛𝑘𝐵𝑇

2
𝑡𝑟(𝝁 − 𝑰) + 𝑝(det(𝑭) − 1)     and     𝒟 = 𝑘𝑑𝜓 (S4) 

   
where 𝑝 is the hydrostatic pressure that enforces incompressibility. The expression for 𝒟 quantifies 

the loss of strain energy due to chain dissociation. Finally, the Cauchy stress tensor 𝝈 is finally 
given by: 

 𝝈 = 𝑛𝑘𝐵𝑇(𝝁 − 𝑰) + 𝑝𝑰 (S5) 
 
Due to the chain dynamics, the network deformation may not coincide with the macroscopic 
deformation of the specimen. This indicates a permanent deformation of the specimen after a 
loading-unloading cycle. Therefore, the specimen deformation (measured by the deformation 
gradient tensor 𝑭) can be split into two parts, a purely dissipative component 𝑭𝑑 and a purely elastic 
deformation 𝑭𝑒 6,7. According to the multiplicative decomposition, 𝑭𝑑 describes the evolution of the 

reference configuration while 𝑭𝑒 is related to the network elastic deformation (related to 𝝁). In 
summary, we have the following relation:  

 𝑭 = 𝑭𝑒𝑭𝑑       and       𝝁 = 𝑭𝑒𝑭𝑒
𝑇 (S6) 

 

For pure shear extension experiment, we can therefore decompose the vertical stretch 𝜆 into an 

elastic and dissipative component as 𝜆 = 𝜆𝑒𝜆𝑑 where 𝜆𝑒 = √𝜇22.    
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In pure shear experiment, the conformation tensor reads 𝝁 = 𝑑𝑖𝑎𝑔(1, 𝜆𝑒
2 , 1/𝜆𝑒

2). Along the vertical 

direction, the evolution equation then reads 𝜇̇22 =
𝑑

𝑑𝑡
(𝜆𝑒

2) = 2𝜖̇𝜆𝑒
2 + 𝑘𝑑 (

3

𝜆𝑒
2+1/𝜆𝑒

2 − 𝜆𝑒
2). Reorganizing 

this equation, we get the evolution of 𝜆𝑒̇ as 
 

𝜆̇𝑒 =
𝜆𝑒𝑘𝑑

2
(2𝑊 +

3

1 + 𝜆𝑒
4

− 1) 
(S7) 

 

which is eq. 1a in main manuscript. Furthermore, the evolution of 𝜓 follows 𝜓̇ =
𝑠

2
(𝝁: 𝑳) − 𝑘𝑑(𝜓 −

𝜓0). Using 𝝁 = 𝑑𝑖𝑎𝑔(1, 𝜆𝑒
2 , 1/𝜆𝑒

2) and 𝑳 = 𝑑𝑖𝑎𝑔(0, 𝜖̇, −𝜖̇) , one can obtain eq. 1b in the main 
manuscript as: 
  

 
𝜓̇ =

𝑠𝑘𝑑

2
[2𝑊 (𝜆𝑒

2 −
1

𝜆𝑒
2

) − 𝜓] 
(S8) 

 
Figure S2 plots the evolution of 𝜆𝑒 as a function of specimen stretch 𝐻/𝐻0 for four different loading 

rates used in fracture experiment. We see that for the fastest loading (𝑊0 = 0.6), maximum stretch 

of the network is about 𝜆𝑒. 
 
Calculation of crack driving force 
The crack driving force 𝒢 is defined as the decrease of strain energy per increase in fracture surface 

area. In this work, we consider a pure-shear specimen with a cut of length 𝑐 (Figure S6) being 
elongated at a strain rate  𝜖̇. To obtain the crack driving force, let us consider the cut extends by a 

small increment 𝛿𝑐 with velocity 𝑐̇  during a small time interval 𝛿𝑡. Ignoring the inertial effect, the 
conservation of energy during this process follows: 
 𝛿Π𝑤 = 𝛿Π𝑒 + 𝛿Πd + 𝛿Π𝑐 (S9) 

 
where 𝛿Π𝑤 is the work done by external load, 𝛿Π𝑒 is the change of stored elastic energy, 𝛿Π𝑑 is 

the energy dissipated by bulk relaxation and 𝛿Π𝑐 is the energy flows to the crack. The crack driving 

force 𝒢 is then computed as 
 

𝒢 = lim
𝛿𝑐→0

𝛿Π𝑐

𝛿𝑐
= lim

𝛿𝑐→0
[

1

𝛿𝑐
(𝛿Π𝑤 − 𝛿Π𝑒 − 𝛿Πd)] 

(S10) 

 
 
These quantities Π𝑤, 𝛿Π𝑒 and 𝛿Πd are calculated based on the specimen evolution from state a to 
b as follows. First, the work of external load is calculated from the boundary traction 𝝉̅ and 

velocity 𝒗 as 𝛿Π𝑤 = ∫ ∫ 𝝉̅
 

𝒮
⋅ 𝒗 d𝒮

 

𝛿𝑡
 𝑑𝑡, where 𝒮 is the top and bottom boundary of the specimen. 

Applying the divergence theorem, this integral can be converted into a volume integral over the 
specimen as: 
 

𝛿Π𝑤 = ∫ ∫ 𝝈: 𝑳
 

𝑉

𝑑𝑉
 

𝛿𝑡

𝑑𝑡 
(S11) 

 
The change of stored elastic energy 𝛿Π𝑒 is evaluated as: 
 

𝛿Π𝑒 = ∫ ∫ 𝜓̇
 

𝑉 

𝑑𝑉
 

𝛿𝑡

𝑑𝑡 
(S12) 

 
Lastly, the energy dissipated by bulk relaxation is calculated as: 
 

𝛿Π𝑑 = ∫ ∫ 𝑘𝑑𝜓
 

𝑉

𝑑𝑉
 

𝛿𝑡

𝑑𝑡 
(S13) 

 
Once eq. S9-S11 are evaluated, one can determine the crack driving force via eq. S8. For general 
problems, this usually require numerical simulations due to the complexity in geometry. An example 
can be found in our previous work 8 where a finite element numerical scheme is used to simulate 
the pure shear fracture. In the next section, we will briefly introduce this framework and show how 
it describes our experimental results. 
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S2. Finite element modeling of pure shear fracture 
 The finite element scheme is developed in our previous work 8 using a customized program written 
in Matlab. Figure S5 shows an example of numerical simulation, where only the top half of a shear 
crack sample is included due to the problem symmetry. The bottom boundary is divided into two 
parts, the traction free section of length 𝑐0 (crack surface) and a “solid” section whose vertical 
motion is constrained. When the crack is unstable, these vertical constraints are removed 
sequentially to create new crack surfaces. The model dimension is set according to the 
experimental condition. All material parameters (force sensitivity 𝑓0, crosslink density 𝑛, natural 

bond dissociation rate 𝑘𝑑
0) are calibrated via relaxation experiments in our previous work 9.The 

chain stiffness 𝑘 is calculated by assuming Gaussian chains 𝑘 = 3𝑘𝐵𝑇/√𝑁𝑏 where 𝑘𝐵𝑇 is the 
thermal energy, 𝑁 is the chain length and 𝑏 is the segment length. 𝛽 is treated as a fitting parameter, 
whose physical meaning is related to both the average energy threshold of chain damage and the 
size of damage zone ahead of the tip. In this work, 𝛽 is calibrated as 73 𝐽. Figure S5c and d show 
the matching between the model prediction and experiment corresponding to the cases shown in 
Fig.1. The solid lines are model predictions and scattered symbols are experimental 
measurements. 
 
S3. Analytical derivation of 𝓖 

The analytical approximation of 𝒢 can be obtained by considering the specimen at its reference 

configuration (Figure S6a) whose height 𝐻𝑎 is related to the deformed height 𝐻 as 𝐻𝑎 = 𝐻/√𝜇22. 
To simplify the problem, we made two assumptions similar to the derivation of Griffith 10 and Rivlin 
11. First, the stress distribution is approximated by a binary field where there is an unloaded zone 
behind the tip (the grey region in Figure S6a) and a uniformly deformed zone ahead of the tip, 
whose stored elastic energy density 𝜓 equals to the one in the far field. Second, we assume that 
the notch tip remains sharp during the deformation. Under these two assumptions, the effect of 
crack propagation is to unload a strip of loaded material (the orange region in Figure S6b) due to 
the advancement of the notch tip. Therefore, eq. S9-S11 can be evaluated by an imaginary process 
of the specimen evolving from state a to b, during which the notch extends by 𝛿𝑐 with velocity 𝑐̇ 

(𝛿𝑐 = 𝑐̇𝛿𝑡). 
 
Due to the simplicity in geometry, eq. S9-S11 can be evaluated by directly comparing the geometry 
and stress states between a and b. Further invoking the linear approximation of stored elastic 

energy 𝜓𝑏 = 𝜓𝑎 + 𝜓̇𝛿𝑡 + 𝒪(𝛿𝑡2) and the volume of loaded zone 𝑉𝑏 = 𝑉𝑎 + 𝑉̇𝛿𝑡 + 𝒪(𝛿𝑡2), 𝛿Π𝑤, 𝛿Π𝑒 

and 𝛿Π𝑑 are evaluated as: 
 
 

                                        𝛿Π𝑤 = ∫ 𝝈: 𝑳
 

𝑉𝑎

𝑑𝑉 𝛿𝑡 + 𝒪(𝛿𝑡2) 

                                         𝛿Π𝑒 = ∫ 𝜓𝑏
 

𝑉𝑏

𝑑𝑉 − ∫ 𝜓𝑎
 

𝑉𝑎

𝑑𝑉 +  𝒪(𝛿𝑡2) 

                                         𝛿Π𝑑 = ∫ 𝑘𝑑𝜓𝑎
 

𝑉𝑎

𝑑𝑉 𝛿𝑡 + 𝒪(𝛿𝑡2) 

(S13) 

 
 
Plugging eq. S12 into eq. S8, the crack driving force 𝒢 is obtained as 

𝒢 = lim
𝛿𝑐→0

1

𝛿𝑐
∫ 𝜓𝑎 

𝑉𝑏−𝑉𝑎
𝑑𝑉 = 𝜓𝑎𝐻𝑎 + 𝒪(𝛿𝑡). Further recalling that 𝐻𝑎 = 𝐻/√𝜇22  where 𝐻 is the 

specimen’s height at deformed state, we obtain: 
 
 

𝒢 =
𝐻

√𝜇22

𝜓 
(S14) 

 
Where we omit the superscript “𝛼” for 𝐻 and 𝜓 to be consistent with the main paper. 
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Fig. S1. 

 
Figure S1. Stress relaxation experiment at different strain 𝜆𝑒 with uniaxial tensile loading for small 

deformation (𝜆𝑒 < 1.1). 

 

 

Fig. S2. 

 

 

Figure S2. Evolution of average chain stretch 𝜆𝑒 as a function of specimen stretch 𝐻/𝐻0 for four 
different loading rates conducted in fracture experiment 
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Fig. S3.  

 

 
 
Fig. S4 

Figure S4 Schematic of a fractured pure-shear specimen made of transient network. 
 
 
 
 
 
 
Fig. S5 
 

Figure S3. When elongating a specimen at constant true strain rate, the stored elastic energy density 𝝍 
increases to a plateau value (characterizing the steady state creep condition) when 𝑾 < 𝟎. 𝟓. When 𝑾 >
𝟎. 𝟓, 𝝍 increases without bound. 
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Figure S5. Example of the finite element simulation and boundary condition for (a) the undeformed 

state and (b) deformed state. (c) The maching between simulation and experiment on crack velocity 𝒄̇. 

(d) The maching between simulatio nand experiment on crack opening angle 𝜽. 
 
 
 
 
Fig. S6 
 

 
Figure S6. Schematic of simplified stress field in a pure-shear sample (a) before and (b) after a crack 

propagates by a small increment 𝜹𝒄 
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Fig. S7 

 
Figure S7, comparison between crack extension 𝑐 as a function of time for different specimen 

thicknesses. The scatter symbols are experimental measurement and the solid lines are model 
prediction. 

 
 
 
SI Video1. Animation of experiment and simulation on 𝑯𝟎 = 𝟏𝟎 𝒎𝒎 and 𝑾𝟎 = 𝟎. 𝟎𝟔𝟓. 

SI Video2. Animation of experiment and simulation on 𝑯𝟎 = 𝟏𝟎 𝒎𝒎 and 𝑾𝟎 = 𝟎. 𝟏𝟑. 

SI Video3. Animation of experiment and simulation on 𝑯𝟎 = 𝟏𝟎 𝒎𝒎 and 𝑾𝟎 = 𝟎. 𝟐𝟔. 

SI Video4. Animation of experiment and simulation on 𝑯𝟎 = 𝟏𝟎 𝒎𝒎 and 𝑾𝟎. Varies in time follow 

the relation show in Figure. 5A. 
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