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Appendix A. Mathematical framework of cov-LDSC

Here, we will first provide a derivation of standard LD score regression that differs somewhat from published

derivations, and in particular gives a mathematical interpretation for the value of the intercept. Then we will extend

this derivation to cov-LDSC.

A.1 Review of LD score regression without covariates

A.1.1 Summary statistics without covariates

We begin by describing the input data to LD score regression, which is the output of a standard GWAS. In a

standard GWAS of a quantitative trait, a marginal linear model is fit for each SNP j. Let Y denote the N ×1 vector

of phenotypes and X j denote the N × 1 vector of genotypes for SNP j, centered to mean zero. In the absence of

covariates, we typically fit the model

Y = X jβ
(marg)
j + ε(marg), (A1)

where β
(marg)
j is the marginal effect size of SNP j and ε(marg) ∼ N(0,σ2

(marg)I).

The F-statistic, which at GWAS sample sizes is approximately chi-square distributed under the null and often

referred to as the chi-square statistic, is equal to

χ2
j =

(

β̂
(marg)
j

)2

/ŝ2
j (A2)

where

β̂
(marg)
j =

XT
j Y

XT
j X j

,

and

ŝ2
j =

σ̂2
(marg)

XT
j X j

,

where σ̂2
(marg) is an estimate of σ2

(marg) that, if β̂
(marg)
j is small, satisfies

σ̂2
(marg) ≈

1

N
Y TY.

We will assume that β
(marg)
j and its estimate β̂

(marg)
j are indeed small, so that this is a valid approximation.

Let V (X j) = XT
j X j/N and V (Y ) = Y TY/N be the empirical variances of X j and Y , and let X̃ j = X j/

√

V (X j),

and Ỹ =Y/
√

V (Y ) be X j and Y , normalized to empirical variance one. Note that when X j and Y are random, so are

V (X j),V (Y ), X̃ j, and Ỹ . Note also that X̃T
j X̃ j = Ỹ T Ỹ = N, deterministically. We can now simplify the expression
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for χ2
j :

χ2
j ≈

1

N
(X̃T

j Ỹ )2. (A3)

We will assume that we have as input χ2
j for a genome-wide set of SNPs j.

A.1.2 The polygenic model

In LD score regression, we take these chi-square statistics as input, and we derive their expectation under a standard

polygenic model. Specifically, instead of the marginal model used in GWAS, LD score regression is based on a

joint model with random SNP effect sizes:

Y = Xβ + ε ,

where Y is the phenotype vector, X = (X1 . . .XM) is the N×M genotype matrix, ε ∼N (0,σ2
ε I), and β is the M×1

vector of joint effect sizes. Let β̃ j = β j

√

V (X j), and note that Xβ = X̃ β̃ . We will model β̃ j as random with mean

zero, independent of each other and of ε . Here, we will perform derivations in which Var(β̃ j) = σ2

β̃
; these deriva-

tions extend easily to the case in which Var(β̃ j) depends on functional annotations. We don’t specify a distribution

for β̃ .

In LD score regression, we derive the expectation of χ2
j under this polygenic model, and we use the resulting

equation to estimate parameters such as σ2

β̃
. Because X is not observed, we ultimately treat it as random. Here, we

will derive E[χ2
j ] by first deriving E[χ2

j |X ] and then using the law of total expectation to remove the conditioning

on X .

A.1.3 Deriving the expression for E[χ2
j |X ]

Before deriving the expression for E[χ2
j |X ], we will first derive the expected empirical variance of Y , where the

variance is over the random individuals in our GWAS and the expectation is over random β and ε , conditional on

X .
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E[V (Y )|X ] =
1

N
E
[

(Xβ + ε)T (Xβ + ε) |X
]

=
1

N
E

[

(

X̃ β̃ + ε
)T (

X̃ β̃ + ε
)

|X

]

=
1

N
E
[

β̃ T X̃T X̃ β̃ |X
]

+
1

N
E
[

εT ε
]

=
1

N
∑
j,k

E
[

β̃ j(X̃
T X̃) j,kβ̃k|X

]

+σ2
ε

=
1

N
∑
j 6=k

E
[

β̃ j

]

E
[

β̃k

]

(X̃T X̃) j,k +
1

N
∑

j

E
[

β̃ 2
j

]

(X̃T X̃) j, j +σ2
ε

= 0+
1

N
∑

j

σ2

β̃
(X̃T X̃) j, j +σ2

ε

= Mσ2

β̃
+σ2

ε

We will let h2
g denote Mσ2

β̃
/E[V (Y )|X ], noting that definitions of heritability depend on the model on which they

are based, and so h2
g as used here is a different value than in a model in which β is fixed.

It will also be useful to have

E
[

(

X̃T
j ε
)2
|X
]

= E
[

X̃T
j εεT X̃ j|X

]

= X̃T
j E
[

εεT
]

X̃ j

= σ2
ε X̃T

j X̃ j

= Nσ2
ε
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We can now derive the expected chi-square statistic:

E[χ2
j |X ] = E

[

1

N

(

X̃T
j Ỹ
)2

|X

]

= E

[

1

NV (Y )

(

X̃T
j (Xβ + ε)

)2
|X

]

≈
1

NE[V (Y )|X ]
E
[

(

X̃T
j (Xβ + ε)

)2
|X
]

=
1

NE[V (Y )|X ]
E

[

(

X̃T
j

(

X̃ β̃ + ε
))2

|X

]

=
1

NE[V (Y )|X ]
E





(

∑
k

X̃T
j X̃kβ̃k + X̃T

j ε

)2

|X





=
N

E[V (Y )|X ] ∑
k

(

X̃T
j X̃k

N

)2

E[β̃ 2
k ]+

1

NE[V (Y )|X ]
E
[

(

X̃T
j ε
)2
|X
]

=
Nσ2

β̃

E[V (Y )|X ] ∑
k

(

X̃T
j X̃k

N

)2

+
σ2

ε

E[V (Y )|X ]

=
Nσ2

β̃

E[V (Y )|X ] ∑
k





(

X̃T
j X̃k

N

)2

−
1

N



+
Mσ2

β̃

E [V (Y )|X ]
+

σ2
ε

E[V (Y )|X ]

= N
h2

g

M
∑
k





(

X̃T
j X̃k

N

)2

−
1

N



+1

A.1.4 Removing the conditioning on X

When analyzing summary statistics, we do not have access to the true value of X , and so we need to compute

the expectation of χ2
j treating X as random and integrating it out. To do this, we use the law of total expectation,

and so the relevant quantity is E

[

(

X̃T
j X̃k

N

)2
]

. We would like our method to be applicable in the most general

circumstances, and so we do not want to assume a particular distribution on X , or even that its rows are drawn i.i.d.

from some distribution. Instead, we will let Wj denote the set of SNPs in an LD window around j, and we will

make three assumptions that will allow us to complete our derivation:

1. There is a c such that for k 6∈ Wj, we have E

[

(

X̃T
j X̃k

N

)2
]

≈ c, and the approximation is good enough that

N
h2

g

M ∑k 6∈W j

(

E

[

(

X̃T
j X̃k

N

)2
]

− c

)

is negligible. If there is no structure or relatedness in our samples (and if N

is high enough that the difference between standardization in the population and in our sample is negligible),

then c can be shown to be 1/N.
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2. For k ∈Wj, there is a value R jk satisfying R jk ≈ E

[

(

X̃T
j X̃k

N

)2
]

−c, where the approximation is good enough

that N
h2

g

M ∑k∈W j

(

E

[

(

X̃T
j X̃k

N

)2
]

− c−R2
jk

)

is negligible. Note that if the rows of X are drawn i.i.d. from

some distribution and R jk is the correlation between SNPs j and k in this underlying distribution, and if |Wj|

is small compared to M, then this condition in satisfied.

We can now apply the law of total expectation to complete the derivation:

E[χ2
j ]≈ N

h2
g

M
∑
k



E





(

X̃T
j X̃k

N

)2


−
1

N



+1

= N
h2

g

M
∑
k



E





(

X̃T
j X̃k

N

)2


− c



+N
h2

g

M
∑
k

(

c−
1

N

)

+1

≈ N
h2

g

M
∑

k∈W j



E





(

X̃T
j X̃k

N

)2


− c



+Nh2
g

(

c−
1

N

)

+1

≈ N
h2

g

M
∑

k∈W j

R2
jk +Nh2

g

(

c−
1

N

)

+1

= N
h2

g

M
∑

k∈W j

R2
jk +Na+1,

where a = h2
g(c−1/N). Letting

ℓ j = ∑
k∈W j

R2
jk,

denote the LD score of SNP j, we obtain the main LD score regression equation:

E[χ2
j ]≈ N

h2
g

M
ℓ j +Na+1. (A4)

We typically estimate ℓ j using a reference panel, and we estimate h2
g via weighted regression of χ2

j on ℓ( j), evalu-

ating significance with block jackknife across SNPs.

A.2 LD score regression in the presence of covariates

We will now discuss LD score regression for a quantitative trait, in the presence of covariates. For a treatment of

LD score regression for case-control traits with covariates?.

A.2.1 Summary statistics

Let C denote an N ×K matrix of covariates, each column centered to mean zero. In a GWAS of a quantitative trait

with covariates, we typically fit the model

Y = X jβ
(marg)
SNP, j +Cβ

(marg)
cov, j + ε

(marg)
j , (A5)
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where β
(marg)
SNP, j is the marginal effect size of SNP j and β

(marg)
cov, j is the effect size vector of the covariates.

The chi-square statistic is equal to

χ2
j =

(

β̂
(marg)
SNP, j

)2

/ŝ2
j , (A6)

where β̂
(marg)
SNP, j is the least-squares estimate of β

(marg)
SNP, j , and

ŝ2
j = σ̂2

(marg)(A
T
j A j)

−1

11
,

where A j is the design matrix, given by A j =(X j C), (AT
j A j)

−1
11

denotes the upper left entry of the matrix (AT
j A j)

−1,

and σ̂ 2
(marg), j is again an estimate of σ2

(marg), j.

Let P = I −C(CTC)−1CT . By the Frisch-Waugh-Lovell theorem, we have

β̂
(marg)
SNP, j =

(PX j)
T PY

(PX j)T PX j

,

and by block matrix inversion, we have

(AT
j A j)

−1
11 =

1

(PX j)T (PX j)
.

Again assuming that the effect size β
(marg)
SNP, j is small, we have

σ̂2
(marg) ≈

1

N
(PY )T PY.

Let V (PX j) = ((PX j)
T PX j)/N and V (PY ) = (PY )T PY/N, and let X̃ j = PX j/

√

V (PX j), and Ỹ = PY/
√

V (PY ).

Then, we can rewrite:

χ2
j ≈

1

N

(

X̃T
j Ỹ
)2

(A7)

A.2.2 Deriving the expression for E[χ2
j |X ]

In cov-LDSC, we assume that there are covariates in our GWAS model (Eq (A1)) and we include the same set of

covariates in the polygenic model that we would like to fit:

Y = Xβ +Cβcov + ε , (A8)

where Y , X , β , C, and ε are as before. Note that under this polygenic model,

PY = PXβ +Pε .
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Let β̃ j = β j

√

V (X j). Note that PXβ = X̃ β̃ . We will model β̃ j as random with mean zero and variance σ2

β̃
. Now we

have

E[V (PY )|X ] =
1

N
E[(PY )T PY |X ]

=
1

N
E
[

(PXβ +Pε)T (PXβ +Pε) |X
]

=
1

N
E

[

(

X̃ β̃ +Pε
)T (

X̃ β̃ +Pε
)

|X

]

=
1

N
E[β̃ T X̃T X̃ β̃ |X ]+

1

N
E[(εT PT Pε ]

=
1

N
∑
j,k

E
[

β̃ j(X̃
T X̃) j,kβ̃k|X

]

+
1

N
∑
j,k

E
[

ε j

(

PT P
)

j,k
εk

]

=
1

N
∑
j 6=k

E
[

β̃ j

]

E
[

β̃k

]

(X̃T X̃) j,k +
1

N
∑

j

E
[

β̃ 2
j

]

(X̃T X̃) j, j

+
1

N
∑
j 6=k

E [ε̃ j]E [ε̃k] (P
T P) j,k +

1

N
∑

j

E
[

ε2
j

]

(PT P) j, j

= 0+
1

N
∑

j

σ2

β̃
(X̃T X̃) j, j +σ2

ε +0+
1

N
∑

j

σ2
ε (P

T P) j, j

= Mσ2

β̃
+σ2

ε

N −K

N

where K is the rank of C. If K is small compared to N, as is typical of most GWAS, then we can say that

E[V (PY )|X ]≈ Mσ2

β̃
+σ2

ε .

We will let h2
g denote Mσ2

β̃
/E[V (PY )|X ]. It will again be convenient to have

E
[

(X̃T
j Pε)2|X

]

= E





(

1
√

V (PX j)
XT

j PT Pε

)2

|X





= E





(

1
√

V (PX j)
XT

j PT ε

)2

|X





= E
[

(

X̃T
j ε
)2
|X
]

= X̃T
j E
[

εεT
]

X̃ j

= σ2
ε X̃T

j X̃ j

= Nσ2
ε .
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Now we have:

E[χ2
j |X ]≈

1

N
E
[

(

X̃T
j Ỹ
)2
|X
]

= E

[

1

NV (PY )

(

X̃T
j PY

)2
|X

]

≈
1

NE [V (PY )|X ]
E
[

(

X̃T
j (PXβ +Pε)

)2
|X
]

=
1

NE [V (PY )|X ]
E

[

(

X̃T
j (X̃ β̃ +Pε)

)2

|X

]

=
1

NE [V (PY )|X ] ∑
k

(X̃T
j X̃k)

2E
[

β̃ 2
k

]

+
1

NE [V (PY )|X ]
E
[

(X̃T
j Pε)2|X

]

=
Nσ2

β̃

E [V (PY )|X ] ∑
k

(

X̃T
j X̃k

N

)2

+
σ2

ε

E [V (PY )|X ]

=
Nσ2

β̃

E[V (PY )|X ] ∑
k





(

X̃T
j X̃k

N

)2

−
1

N



+
Mσ2

β̃

E[V (PY )|X ]
+

σ2
ε

E [V (PY )|X ]

≈
Nh2

g

M
∑
k





(

X̃T
j X̃k

N

)2

−
1

N



+1

A.2.3 Removing the conditioning on X

We will make the same two assumptions as for LD score regression without covariates.

1. There is a c such that for k 6∈Wj, we have E

(

XT
j Xk

N

)2

≈ c. One way to formalize the notion that C captures

all structure in X is that c = 1/N in this case.

2. For k ∈ Wj, we have access, for example from a reference panel, to an estimate R jk satisfying R jk ≈

E

(

XT
j Xk

N

)2

− c. When X contains admixture or other structure, correlation as estimated from a reference

panel may not suffice. In that case, we can set R jk to be

(

X̃T
j X̃k

N

)2

, or an estimate of that quantity from a ran-

dom subsample of the GWAS. We note also that even if window size is 30 cM, this is still only approximately

1% of the genome, and so |Wj| is still small compared to M.

With these assumptions satisfied, the rest of the derivation is identical to the case without covariates.
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Appendix B. In-sample versus out-of-sample LD

To test the reliability of using an out-of-sample reference LD panel for cov-LDSC applications, we first examined

the performance of out-of-sample LD scores obtained from 1,000 samples with a perfectly matching demographic

history in the simulated genotypes. cov-LDSC yielded less biased estimates when using 1,000 samples in an out-of-

sample reference panel with a perfectly matching population structure (Figure S11). Next, we tested the accuracy

of heritability estimates and type I error of enrichment analysis when using 1000 Genomes Project Admixed Amer-

ican (AMR) samples to obtain out-of-sample LD scores. When using the AMR panel as a reference panel for the

SIGMA cohort, we observed a less biased h2
g estimate (P = 0.33, Figure 2(d)), However, as we decreased the num-

ber of samples included in the subsampling, the cov-LDSC regression intercepts deviated further from one (Figure

S10(d)). This is probably due to attenuation bias from noisily estimated LD scores at N < 1,000. We observed

similar tissue type specific enrichment results for BMI, height and T2D (Figure S20). We further assessed the

power and biases of using 1000 Genomes AMR samples as an external reference panel when applying it in the

SIGMA cohort for tissue type specific analysis via simulation. We observed well calibrated type I error and similar

power compared to in-sample LD reference panel (Figure S19). This suggested that the AMR panel included in

the 1000 Genomes Project has similar demographic history compared to the SIGMA cohort (Figure S6, S22).

Next, we explored the feasibility of applying 1000 Genomes AMR samples in heritability estimation and its en-

richment analyses in the 23andMe cohort. We obtained stratified LD scores using 1000 Genomes AMR samples

(N = 347) and applied it on summary statistics obtained from 23andMe. In contrast to the SIGMA cohort, we

discovered total heritability estimates are significantly different from those estimated using in-sample LD scores

(Table S12) and discovered no significant tissue type enrichment (Figure S21). This suggested that 1000 Genome

AMR samples might have different demographic history compared to 23andMe samples (Figure S23).

We therefore caution that when using 1000 Genomes or any out-of-sample reference panels for a specific ad-

mixed cohort, users should ensure that the demographic histories are shared between the reference and the study

cohort. We highly recommend computing in-sample LD scores on a randomly chosen subset of at least 1,000

individuals from a GWAS. We also strongly encourage cohorts to release their summary statistics and in-sample

covariate-adjusted LD scores at the same time to facilitate future studies.
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