S1 Appendix

Ē

Simulation Details

Network systems described in this manuscript involve two data types, $\mathcal G$ and $\mathcal X$ with a continuous outcome Y. For our simulations, it is assumed that there are latent variables that describe sub-matrices contained in G and X . It is assumed that there are latent variables that describe the sub-matrix of network features G contained in $\mathcal G$ that lead to the behavior of network features **X** contained in $\mathcal X$, which ultimately explain Y. There is also an interactive effect between **G** and **X**. In addition to the network features, there may be other features that comprise G and \mathcal{X} . There are latent variables that describe sub-matrices S and H within $\mathcal G$ and $\mathcal X$ that are individually related to Y but not each other. These relationships may be expressed as a system of linear equations shown in (1). The covariance matrix Σ' for the latent variables (Y, X, G, S, Σ) H ^T is defined in (2).

$$
\mathbf{Y} = \beta_{Y|X,G}\mathbf{X} + \beta_{Y|G,X}\mathbf{G} + \beta_{Y|S}\mathbf{S} + \beta_{Y|H}\mathbf{H} + \epsilon_{Y|X,G,S,H}
$$
\n
$$
\mathbf{X} = \beta_{X|G}\mathbf{G} + \epsilon_{X|G}
$$
\n
$$
\mathbf{G} = \epsilon_G
$$
\n(1)

$$
\Sigma' = \begin{bmatrix}\n\sigma_{Y|X.G.S.H} + \sigma_{X|G}\beta_{Y|X.G}^2 + \sigma_{G}\tau^2 + \sigma_{S}\beta_{Y|S}^2 + \sigma_{H}\beta_{Y|H}^2 & \sigma_{X|G}\beta_{Y|X.G} + \tau\sigma_{G}\beta_{X|G} & \sigma_{G}\tau & \beta_{Y|S}\sigma_{S} & \beta_{Y|H}\sigma_{H} \\
\sigma_{X|G}\beta_{Y|X.G} + \tau\sigma_{G}\beta_{X|G} & \beta_{X|G}^2\sigma_{G} + \sigma_{X|G} & \sigma_{G}\beta_{X|G} & 0 & 0 \\
\sigma_{G}\tau & \sigma_{G}\beta_{X|G} & \sigma_{G} & 0 & 0 \\
\beta_{Y|S}\sigma_{S} & 0 & 0 & \sigma_{S} & 0 \\
\beta_{Y|H}\sigma_{H} & 0 & 0 & 0 & \sigma_{H}\n\end{bmatrix}
$$

There are also latent variables that describe sub-matrices \mathbf{G}' and \mathbf{X}' within G and X that are related

to each other but not related to Y. Additionally, there are also sub-matrices e_G and e_X within $\mathcal G$ and $\mathcal X$ that contain independent noise variables. The covariance matrix Σ defined in (3) describes the relationships between all latent variables $(Y, X, G, S, H, X', G', e_X, e_G)^T$.

$$
\Sigma = \begin{bmatrix}\n\Sigma' & 0 & 0 & 0 & 0 \\
0 & \beta_{X|G}^2 \sigma_G + \sigma_{X|G} & \sigma_G \beta_{X|G} & 0 & 0 \\
0 & \sigma_G \beta_{X|G} & \sigma_G & 0 & 0 \\
0 & 0 & 0 & \sigma_{e_X} & 0 \\
0 & 0 & 0 & 0 & \sigma_{e_G}\n\end{bmatrix}
$$
\n(3)

All simulations performed were generated under a multivariate normal distribution with the covariance structure defined in (3) . For a given "subject" i, the latent values are first randomly generated from $MVN(\mathbf{0}, \Sigma)$. Denote the generated latent values for subject i as $\mathbf{L}_i = (y_i, x_i, g_i, s_i, h_i, x', g', e_{X_i}, e_{G_i})^T$. The features for subject i are then completed by generating each sub-matrix through a normal distribution with a mean of the latent value and the corresponding standard deviation. Thus, the i^{th} row of submatrix **X** is generated by randomly sampling p' values from $N(L_i[2], Var(X))$, where p' is the number of features contained in sub-matrix X. A similar process is repeated for the other sub-matrices to complete all components within G and X for each subject. After the simulation is complete for Y, G, and X, the values are then centered as a final step. The signal strength may be controlled by calibrating the covariance structure to contain higher correlations amoungst the signal latent variables within $\mathcal X$ and $\mathcal G$.

Algorithm 1 describes the full details for the steps to execute the simulations performed in this manuscript. Additionally, the simulations may be performed through the simPathwaySystem function from the SuMOFil R package available at https://github.com/lorinmil/SuMOFil. The simPathwaySystem function involves many parameters to specify the strength of the network (alpha, Rsq, rind, noiseSD), number of features within the datasets $(nx, nxPrime, ns, ng, ng Prime, nh, ntranscriptNoise, ngeneNoise)$, and sample size (nsample).

This manuscript performed simulations under 9 different simulation settings accounting for all possible

Algorithm 1 Network Simulation

Require: alpha, Rsq, rind, noiseSD, nx, nxPrime, ns, ng, ngPrime, nh, ntranscriptNoise, ngeneNoise, nsample $\tau = 1$ $\beta_{Y|X.G}^2 = \beta_{X|G}^2 = \beta_{Y|S} = \beta_{Y|H} = alpha$ $tau = (1 - Rsq)/Rsq$ $\sigma_{Y|X.G.S.H} = tau + (alpha * tau)^2 + 2 * tau * alpha^2$ $\sigma_{X|G} = alpha * tau$ $\sigma_G = 1$ $\sigma_S = \sigma_{X|G} + \sigma_G * alpha$ $\sigma_H = \sigma_G$ $\sigma_{e_{X}}=\sigma_{e_{G}}=noiseSD^{2}$ Construct $\Sigma_{9\times 9}$ using formulas from (2) and (3) $tauImd = (1 - rind^2)/rind^2$ for $i = 1$ to *nsample* do $\mathbf{L} \sim \mathbf{N}_9(\mathbf{0},\boldsymbol{\Sigma})$ $\mathbf{Y}[i] \sim N(\mathbf{L}[1], \text{tauInd} * \Sigma[1,1])$ for $j = 1$ to nx do $\mathcal{X}[i, j] \sim N(\mathbf{L}[2], \text{tauInd} * \Sigma[2, 2])$ end for for $j = nx + 1$ to $nx + ns$ do $\mathcal{X}[i, j] \sim N(\mathbf{L}[4], taulnd * \Sigma[4, 4])$ end for for $j = nx + ns + 1$ to $nx + ns + nxPrime$ do $\mathcal{X}[i, j] \sim N(\mathbf{L}[6], \text{tauInd} * \Sigma[6, 6])$ end for for $j = nx + ns + nxPrime + 1$ to $nx + ns + nxPrime + ntranscriptNoise$ do $\mathcal{X}[i, j] \sim N(0, \text{tauInd} * \Sigma[8, 8] * \Sigma[1, 1])$ end for for $j = 1$ to ng do $\mathcal{G}[i, j] \sim N(\mathbf{L}[3], \mathit{tauInd} * \Sigma[3, 3])$ end for for $j = ng + 1$ to $ng + nh$ do $\mathcal{G}[i, j] \sim N(\mathbf{L}[5], \text{tauInd} * \Sigma[5, 5])$ end for for $j = ng + nh + 1$ to $ng + nh + ngPrime$ do $\mathcal{G}[i, j] \sim N(\mathbf{L}[7], tauInd * \Sigma[7, 7])$ end for for $j = ng + nh + ngPrime + 1$ to $ng + nh + ngPrime + ngeneNoise$ do $\mathcal{G}[i, j] \sim N(0, tauInd * \Sigma[9, 9] * \Sigma[1, 1])$ end for end for $Y = Y - mean(Y)$ $\mathcal{X} = \mathcal{X}$ – mean (\mathcal{X}) $\mathcal{G} = \mathcal{G} - \text{mean}(\mathcal{G})$ return Y, \mathcal{X}, \mathcal{G}

combinations of weak, moderate, and strong network signal strength and small, medium, and large sized datasets. The parameters used in this manuscript are summarized in Table A.

Signal Strength			
Parameter	Weak	Moderate	Strong
alpha	0.35	0.35	0.35
Rsq	0.35	0.85	0.85
rind	0.35	0.35	0.85
noiseSD	0.5	1	$\overline{2}$
Number of Features			
Parameter	Small	Medium	Large
n x	15	15	15
$n_{\rm s}$	50	50	50
nx Prime	100	100	100
ntranscriptNoise	5000	15000	25000
nq	10	10	10
nh	30	30	30
ngPrime	100	100	100
nqeneNoise	5000	10000	20000

Table A: Simulation Parameter Settings.