
S1 Appendix

Simulation Details

Network systems described in this manuscript involve two data types, G and X with a continuous outcome

Y. For our simulations, it is assumed that there are latent variables that describe sub-matrices contained

in G and X . It is assumed that there are latent variables that describe the sub-matrix of network features

G contained in G that lead to the behavior of network features X contained in X , which ultimately explain

Y. There is also an interactive effect between G and X. In addition to the network features, there may be

other features that comprise G and X . There are latent variables that describe sub-matrices S and H within

G and X that are individually related to Y but not each other. These relationships may be expressed as

a system of linear equations shown in (1). The covariance matrix Σ′ for the latent variables (Y, X, G, S,

H)T is defined in (2).

Y = βY |X.GX + βY |G.XG + βY |SS + βY |HH + εY |X,G,S,H

X = βX|GG + εX|G

G = εG

(1)

Σ′ =



σY |X.G.S.H + σX|Gβ
2
Y |X.G + σGτ

2 + σSβ
2
Y |S + σHβ

2
Y |H σX|GβY |X.G + τσGβX|G σGτ βY |SσS βY |HσH

σX|GβY |X.G + τσGβX|G β2
X|GσG + σX|G σGβX|G 0 0

σGτ σGβX|G σG 0 0

βY |SσS 0 0 σS 0

βY |HσH 0 0 0 σH


(2)

There are also latent variables that describe sub-matrices G′ and X′ within G and X that are related
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to each other but not related to Y. Additionally, there are also sub-matrices eG and eX within G and X

that contain independent noise variables. The covariance matrix Σ defined in (3) describes the relationships

between all latent variables (Y, X, G, S, H, X′, G′, eX, eG)T.

Σ =



Σ′ 0 0 0 0

0 β2
X|GσG + σX|G σGβX|G 0 0

0 σGβX|G σG 0 0

0 0 0 σeX 0

0 0 0 0 σeG


(3)

All simulations performed were generated under a multivariate normal distribution with the covariance

structure defined in (3). For a given “subject” i, the latent values are first randomly generated from

MVN(0,Σ). Denote the generated latent values for subject i as Li = (yi, xi, gi, si, hi, x
′
i, g
′
i, eXi

, eGi
)T .

The features for subject i are then completed by generating each sub-matrix through a normal distribution

with a mean of the latent value and the corresponding standard deviation. Thus, the ith row of sub-

matrix X is generated by randomly sampling p′ values from N(Li[2], V ar(X)), where p′ is the number of

features contained in sub-matrix X. A similar process is repeated for the other sub-matrices to complete

all components within G and X for each subject. After the simulation is complete for Y, G, and X , the

values are then centered as a final step. The signal strength may be controlled by calibrating the covariance

structure to contain higher correlations amoungst the signal latent variables within X and G.

Algorithm 1 describes the full details for the steps to execute the simulations performed in this manuscript.

Additionally, the simulations may be performed through the simPathwaySystem function from the SuMOFil

R package available at https://github.com/lorinmil/SuMOFil. The simPathwaySystem function involves

many parameters to specify the strength of the network (alpha, Rsq, rind, noiseSD), number of features

within the datasets (nx, nxPrime, ns, ng, ngPrime, nh, ntranscriptNoise, ngeneNoise), and sample size

(nsample).

This manuscript performed simulations under 9 different simulation settings accounting for all possible

2



Algorithm 1 Network Simulation

Require: alpha,Rsq, rind, noiseSD, nx, nxPrime, ns, ng, ngPrime, nh, ntranscriptNoise, ngeneNoise, nsample
τ = 1
β2
Y |X.G = β2

X|G = βY |S = βY |H = alpha

tau = (1−Rsq)/Rsq
σY |X.G.S.H = tau+ (alpha ∗ tau)2 + 2 ∗ tau ∗ alpha2
σX|G = alpha ∗ tau
σG = 1
σS = σX|G + σG ∗ alpha
σH = σG
σeX = σeG = noiseSD2

Construct Σ9×9 using formulas from (2) and (3)
tauInd = (1− rind2)/rind2

for i = 1 to nsample do
L ∼ N9(0,Σ)
Y[i] ∼ N(L[1], tauInd ∗ Σ[1, 1])
for j = 1 to nx do
X [i, j] ∼ N(L[2], tauInd ∗ Σ[2, 2])

end for
for j = nx+ 1 to nx+ ns do
X [i, j] ∼ N(L[4], tauInd ∗ Σ[4, 4])

end for
for j = nx+ ns+ 1 to nx+ ns+ nxPrime do
X [i, j] ∼ N(L[6], tauInd ∗ Σ[6, 6])

end for
for j = nx+ ns+ nxPrime+ 1 to nx+ ns+ nxPrime+ ntranscriptNoise do
X [i, j] ∼ N(0, tauInd ∗ Σ[8, 8] ∗ Σ[1, 1])

end for
for j = 1 to ng do
G[i, j] ∼ N(L[3], tauInd ∗ Σ[3, 3])

end for
for j = ng + 1 to ng + nh do
G[i, j] ∼ N(L[5], tauInd ∗ Σ[5, 5])

end for
for j = ng + nh+ 1 to ng + nh+ ngPrime do
G[i, j] ∼ N(L[7], tauInd ∗ Σ[7, 7])

end for
for j = ng + nh+ ngPrime+ 1 to ng + nh+ ngPrime+ ngeneNoise do

G[i, j] ∼ N(0, tauInd ∗ Σ[9, 9] ∗ Σ[1, 1])
end for

end for
Y = Y−mean(Y)
X = X−mean(X )
G = G−mean(G)
return Y, X , G
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combinations of weak, moderate, and strong network signal strength and small, medium, and large sized

datasets. The parameters used in this manuscript are summarized in Table A.

Table A: Simulation Parameter Settings.

Signal Strength
Parameter Weak Moderate Strong
alpha 0.35 0.35 0.35
Rsq 0.35 0.85 0.85
rind 0.35 0.35 0.85
noiseSD 0.5 1 2

Number of Features
Parameter Small Medium Large
nx 15 15 15
ns 50 50 50
nxPrime 100 100 100
ntranscriptNoise 5000 15000 25000
ng 10 10 10
nh 30 30 30
ngPrime 100 100 100
ngeneNoise 5000 10000 20000
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