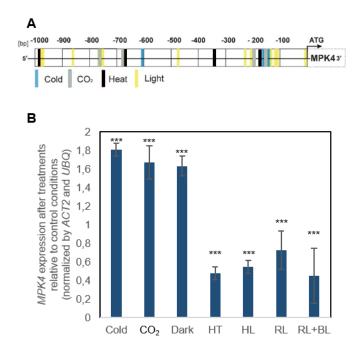
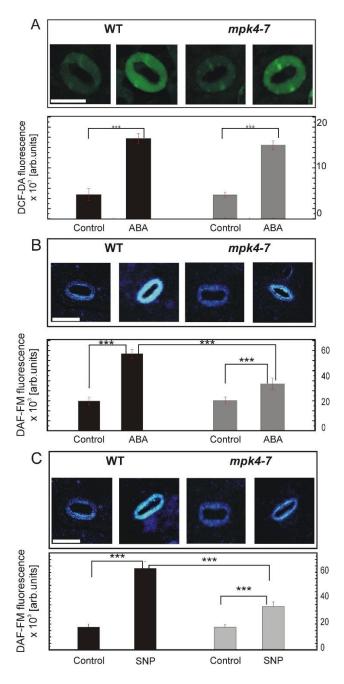
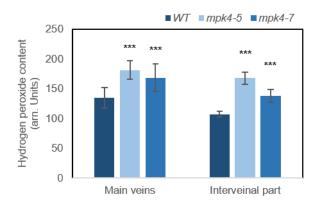
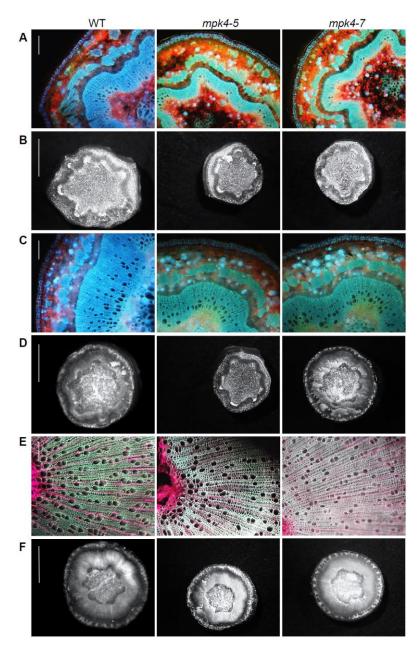

Supplemental Figure S1. WT and *mpk4* **phenotype.** (A) Six-month-old plants; and (B) oneyear-old plants in greenhouse conditions; (C) first and second season; and (D) third season of tree growth in field conditions.


Supplemental Figure S2. MPK4 localization in the cytoplasm of guard cells. A control was prepared without primary antibody. Scale bars: 10 µm. Presented pictures are representative for 10 independent analysis.


Supplemental Figure S3. No antibody control for Fig. 2. A control was prepared without primary antibody. Scale bars: 5 μ m. Presented pictures are representative for 10 analysis.


Supplemental Figure S4. Anti-tubulin antibody for microtubule distribution in wild type (WT) and transgenic *mpk4-7* guard cell wall. Scale bars: 5 μ m. Presented pictures are representative for 10 analysis.


Supplemental Figure S5. MPK4 expression under environmental control. (A) The distribution of cis-regulatory elements (CREs, specific non-coding DNA motifs) in the 1 kb of 5' promoter region of MPK4 from P. trichocarpa. The CREs are located in the promoter region upstream of a coding sequence, positions are with respect to the first base of the translation start site (ATG). The presence of various motifs responsible for the regulation of gene expression under different environmental stimuli was predicted and their positions are marked on the figure. Analysis of MPK4 promoter sequence allowed to identify CREs composed of 5-20 nucleotides that were localized in the proximal promoter i.e. several hundred nucleotides upstream of a transcription start site (TSS) of MPK4 gene. The distribution of CREs was random, however, CREs frequency was highly enriched at 100-250 bp upstream of the TSS (high and low temperature, CO_2 , and light). (B) MPK4 expression pattern in response to different environmental stimuli in WT plants after 2 h-treatment of leaves with different environmental factors: cold (4 °C), high CO₂ (CO₂; 2000 ppm), dark, high temperature (HT, 42 °C), red-orange light (RL, 617 nm, Light 2), and red-orange supplemented with blue royal light (RL+BL, 447 nm, Light 3). Moreover, MPK4 transcript abundance was also measured in leaves exposed by 1 h to high light intensity (HL, 2000 µmol of photons m⁻² s⁻¹, Light 1). 21 °C, and ambient CO₂ were used as control conditions. Expression level is presented relatively to WT control plants, referred to 1. Bars represent means \pm SD (n = 6). The asterisks indicate significant differences from the WT revealed by the Tukey HSD test (***) P < 0.001.

Supplemental Figure S6. Unaffected ABA-induced H₂O₂ accumulation in transgenic *mpk4-7* guard cells, and impaired ABA- and SNP-induced NO production in *mpk4-7* guard cells, when compared to wild type (WT) guard cells. To examine whether MPK4 acts upstream or downstream in H₂O₂- and NO-dependent signal transduction pathways and ABA-triggered H₂O₂ and NO production, fluorescent dye 2',7'-dichlorofluorescin diacetate (DCF-DA) to detect H₂O₂ level and diaminofluorescein (DAF-FM) to detect NO level in GCs were used. (A) H₂O₂ production in response to ABA treatment examined with DCF-DA analyzed microscopically. Samples treated with ABA-free solution were used as control. (B and C) NO production in response to ABA and SNP (NO donor) treatments examined with DAF-FM. Samples treated with ABA- and SNP-free solution were used as a control. Scale bars: 30 µm. Presented values are means \pm SD (n = 6). The asterisks indicate significant differences from the WT revealed by the Tukey HSD test (***) P < 0.001.

Supplemental Figure S7. Hydrogen peroxide content in main veins and interveinal part of the leaf. Content was determined with 3,3'-diaminobenzidine (DAB) staining and ImageJ software (v. 1.52a, 32 bits photo, greyscale from 0 (black) to 256 (white), NIH USA) \pm SD (n = 18-30). The value of hydrogen peroxide content is calculated as function 256 minus the read value to express proportional relationship. The asterisks indicate significant differences from the WT revealed by the Tukey HSD test (***) P < 0.001.

Supplemental Figure S8. Growth of *mpk4* **plants.** Cross-section of stem was performed in wild type (WT), and transgenic *mpk4-5, mpk4-7* plants. (**A, C, E**) Cross-sections were made at the distance from the apex of the plant: 1 cm, 10 cm, 30 cm, respectively, and photographed under fluorescent microscopy (UV-2A, EX330-380) at magnitude: 100x, scale bar: 100 μ m. (**B, D, F**) Cross-sections were made at the distance from the tip of plant: 10 cm (magnitude 15x, scale bar: 0.6 cm), 30 cm (magnitude 15x, scale bar: 0.6 cm), 50 cm (magnitude 10x, scale bar: 1cm), respectively, and photographed under lupa binocular.

Environmental stimuli				
low temperature, high CO ₂ , darkness high temperature, high light intensit red light, red + blue light				
CREs				
MPK4 in GC cytoplasm				
leaf	development			
cell size, intercellular space, tissue density	cell number			
guard cells development and	their cell wall differentiation			
	stomatal density			
cell wall irregular thickness	cell wall regular thickness			
chemical composition: homogalacturonan	con wan regular anomiess			
domain of pectic polysaccharides, methyl-				
esterification status of pectins, unesterified				
pectin abundance, extensins abundance				
cortical microtubules polymerization	cortical microtubules depolymerisation			
	cell vacuolization			
COP1	CRY1, CRY2, PHYA, FAMA, MYB88			
guard cells	movement			
kidney-shaped cells	round shape			
close/open state	open state only			
H ₂ O ₂ , NO, ABA and dark dependent closure	open state only			
abscisic acid-dependent	signalling in guard cells			
OST1, ATRBOHD, SLAC1, SLAH3, ALMT12,				
GORK, MRP5, NFYA5, MYB61				
ABA-induced NO in the cytoplasm of GCs				
physiological	responses			
total quantum yield of the primary PSII	light energy absorption and dissipation,			
photochemistry and total electron transport	trapped energy and electron transport per			
	reaction centre			
water use efficiency	repair PSII proteins (Lhcb1, PsbO1, PSBQA)			
	leaf temperature, transpiration			
final	H_2O_2 accumulation in leaf mesophyll and veins			
	response			
leaves size, wood formation, cell death	PSII photoprotection			
growth acclimation responses				
transgenic	mpk4 plants			
genetic modification				

Supplemental figure S9. List of acclimation and growth responses / mechanisms affected by MPK4.

Supplemental Table S1. Cell number, area, and the circularity index in wild type (WT), and transgenic *mpk4-5*, and *mpk4-7* plants. The parameters were measured with ImageJ v.1.52a and presented relatively to WT, referred as 100. The asterisks indicate significant differences from the WT revealed by the Tukey HSD test (*) P < 0.05, (**) P < 0.01, (***) P < 0.001.

		Area		Cell number		Circularity index	
	WT	mpk4-5	<i>mpk</i> 4-7	mpk4-5	mpk4-7	mpk4-5	<i>mpk</i> 4-7
Adaxial epidemis	100.00	46.88 *	79.13	150.00 *	133.33	120.17 *	111.40
Palisade parenchyma	100.00	41.88 ***	69.69 *	150.00	121.43	102.36	98.99
Spongy parenchyma	100.00	78.59 *	55.01	140.00	160.00	126.23	112.86
Abaxial epidermis	100.00	50.74 *	38.86 **	144.44	133.33	116.79	118.22

Supplemental Table S2. *In silico* analysis of the cis-regulatory elements (CREs) distribution in the *MPK4* promoter of *P. trichocarpa* under different environmental stimuli. The 1 kb promoter region was analyzed for the presence of motifs responsible for the regulation of gene expression under low temperature, high CO₂, drought, high temperature, high light. *ID/IUPAC – Identification code in International Union of Pure and Applied Chemistry.

Related function	ID/IUPAC*	Organism described	Position	Strand
Low temperature responsive element	MYCCONSENSUSAT	A. thaliana	602	+
			602	-
			155	+
			155	-
	LTREATLTI78	A. thaliana; H. vulgare	146	+
	CBFHV	H. vulgare	146	+
	LTRECOREATCOR15	A. thaliana; B. napus	145	+
CO ₂ responsive element	EECCRCAH1	Ch. reinhardtii	677	-
			191	-
Drought responsive element	MYBATRD22	A. thaliana	756	+
	MYB1AT	-	755	+
	DRE2COREZMRAB17	Z. mays	146	+
High temperature	HSE	B. oleracea	169	-
responsive element			331	-
			673	-
			975	-
Light responsive element	Sp1	O. sativa	137	-
		Z. mays	111	+
		Z. mays	116	+
	-10PEHVPSBD	H. vulgare	981	-
	MRE	P. crispum	760	+
	Box-I	P. sativum	865	+
	GT-1 CONSENSUS	O. sativa;	970	-
		N. tabacum;	650	-
		A. thaliana; S. oleracea	475	-
		5. <i>Gieracea</i>	233	+
			206	+
			4	+

Supplemental Table S3. *In silico* analysis of the *cis*-regulatory elements (CREs) distribution in the *MPK4* promoter of *P. trichocarpa* under different hormonal stimuli. The 1 kb promoter region was analysed for the presence of motifs responsible for the regulation of gene expression under gibberellin, auxin, salicylic acid stimuli. *ID/IUPAC – Identification code in International Union of Pure and Applied Chemistry.

Related function	ID/IUPAC	Organism described	Position	Strand
Gibberellin responsive element	GARE-motif	B. oleracea	415	+
Auxin responsive element	TGA	B. oleracea	959	-
Salicylic acid responsive element	TCA	N. tabacum	850	+

Supplemental Table S4. The promoter sequence upstream of the coding sequence of *MPK*4. (*XM*_002302563.2).

> POPTR_0002s16400| Chr02:12265644..12270287 reverse

AAGTCTAGAGTTTGTATTAGAATAATTAAATTATCATGATTAAAGATGT CGAGGTTATTTATTTTGTGTTTTAAATTTTTTTTAAATTAAATTTATT TATTTATTTATTTGCTTAAAATATTTTTTTTGTTGTTTTCAAATATTTTAAT ΑΤΑΤCΤΑΤGTTAAAAATAAAATTTTAAAAAATAAAAAATATTTTTTAAA AAATTGCTGCTACTATTCAAAAAGGCTTGTCACCGGACCTAACCTAACC ATTCTTTAATTAACAAAAAAAAAAAAGTTTTCTTTACTAAACAGACCCAAC ATAAAAACAATATAAAAAAGGTCAGCAATTCTCGAGGCACGAGGGCA AAGCTTTACCTGTTCAAAGGTTCACCCTACACATAAACGGTTCAAAGA TATATATAAAATAAAATATAAAGCAAGTTTTTTTATCAAATTTTAAAA AAAATTGCTGGGAACAAAAAAATAAATTTTATGACCTGTTTAAAAAATAT AATAAAAAGAAAAACTCCCACGCGCAAATCAAAAGAAATGTCAAAAC GACAAAACTTTACACCTGCCTACCGACACGCCCGCCCCAAATATTAGC CCTTCCTCCCCTCCCCTCTGCTTTCTACTTCATCAACAACTTTAGTACTG GACGGACTGCTTAATCACCTCTCTCTCTCTAGCTTGTAATCGGATCCTT ACTAGTTGCTGCTACTGAAAA

Gene name Acc		Gene name Accession Primer sequence $(5' \rightarrow 3')$	
UBQ	POPTR_001G41850	00 F: GTTGATTTTTGCTGGGAAGC R: GATCTTGGCCTTCACGTTGT	efficiency 0,856
ACT2	POPTR_0001s3170		0,965
<i>COP1</i> POPTR_0014s15740 F:G0			0,898
CRY1	POPTR_0002s0973	0 F:CTCCAATTGCCTTCCCTCAAG R: CCTCATAGCGGCGATTTGTAG	0,864
CRY2	POPTR_0005s1710	0 F:GGAAAACCATGAGCCTGTGAG R:AGGAAGATGTCATGCTTGGGA	0,870
РНҮА	POPTR_0013s0022	0 F:ACATCCTGTTCTTGGCATTGG R:GAAACATCCCCGAATCCCATG	0,856
FAMA	POPTR_0017s0816	60 F:TGGCTGATGTTGAAGTGAAGC R:GTGCTGCAATGGTCTTACTCA	0,890
<i>MYB</i> 88	POPTR_0010s1031	0 F:GGAGACAGATCACACCCACAA R:GGGAAGCCACGTTAACATTGT	0,932
MYB61	POPTR_0005s0034	R: CCTGCTGTGAAAATGCTCCT	0,892
NFYA5	POPTR_0006s1474	.0 F: GGGACCAATTCACAAGGTCA R: GAGAACTGGCCTCATTTTGC	0,880
ALMT12	POPTR_0001s0270	0 F: CGTCATGACTGTTGTTGTTGTG R: CCCTGCTAAGAGGGTTCCTAAG	0,936
MRP5	POPTR_0014s1867	R: TGACTGTGAGACATAAGCAGCA	0,925
OST1	POPTR_0004s1527	0 F:GGAGACCGGTATGAGTTAGTGAAA R: CTGTTTATCCCTCATCAACCTAGC	0,886
SLAC1	POPTR_0005s2024	.0 F: CGTTCGCAAGAAGAACAGC R: TTGCTTCTCAATTGTGCCTTT	0,892
SLAH3	Potri.015G026700	F: GCTGCCTTTGAGAACCAAAC R: CAAGGTGGCAAGCTGATGTA	0,884
RBOH D	POPTR_0003s1581	0 F: GCTTCTACCAGTGGCCTACTTC R: TAATTCTCCGGCAAATTCCTTA	0,912
GORK	POPTR_0017s0243	60 F: CTGAGTCGTGAATCGGTCATTA R: AATTTTGTCCATGCTCGATACC	0,911
HSP70	POPTR_0010s2135	60 F: AGCCCTGATCAAATCAATCG R: TCAACAAAACCCCCGAACAAT	0,889
HSP90	POPTR_0017s0116	60 F: CTGATTTGCTCCGGTACCAT R: TTCCACTGCCTTCTTGCTTT	0,931
HSFA1	POPTR_0001s0214	0 F: CCCCATGTTTCTCAAATGCT R:CCATCATTGCATGTCTCTGG	0,965
LHCB1.2	POPTR_0005s2608	60 F: CCGCATCATCAGCTAAACAA R: AGAGCTTCACTGCCTTTCCA	0,919
LHCB2.3	POPTR_0014s1630		
LHCB5	POPTR_0019s09140 F: AAATTTGGAGCCAACTGTGG R: GGTTGATGGGGATGTTCTTG		0,908
PSBO1	POPTR_0005s13860 F: AGTGCTGAAGGAGTCCCAAA R: GGCTTGAAGGCAAATGACTC		0,916
PSBQA	POPTR_0004s0316		0,906
MPK4	POPTR_0002s1640		0,881

Supplemental Table S5. List of primers used in RT-qPCR.