Tracking oxidation-induced alterations in fibrin clot formation by NMRbased methods

Wai-Hoe Lau¹, Nathan J. White², Tsin-Wen Yeo^{1,4}, Russell L. Gruen^{3*}, Konstantin Pervushin^{5*}

¹Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore

²Department of Emergency Medicine, University of Washington School of Medicine, Seattle, Washington

³ANU College of Health and Medicine, The Australian National University, Canberra ACT, Australia

⁴Communicable Diseases Centre, Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Singapore

⁵School of Biological Sciences, Nanyang Technological University, Singapore

*Corresponding authors. E-mail address: russell.gruen@anu.edu.au, kpervushin@ntu.edu.sg

Supplementary Figure S1

Figure S1. a) The amino acid sequence of recombinant human fibrinogen A α C419 - 502 (A α C fragment) composed of α -helix residues (H), β -strand residues (B), and coiled residues (C). It contained disorder (D) structure at the C-terminal and ordered (O) structure at the N-terminal. The amino acid residues sequence of A α C fragment was analyzed by PASTA 2.0 server (http://old.protein.bio.unipd.it/pasta2/index.html). The A α C fragment consisted of 6x His-linker-TEV cleavage (MGHHHHHHMGNSENLYFQ) and followed by the coding sequences. b) Homolog model of human A α C fragment was predicted by I-TASSER server (https://zhanglab.dcmb.med.umich.edu/I-TASSER/) and analyzed by PyMOL. A α C fragment exhibited a α C-domain consisting of β -sheet, hairpin, and a Met476 residue at the N-terminal sub-domain. The side chain of Met476 is shown as stick and ball representation. c) Electrostatic potential surface of A α C fragment showed a local concentration of negative charge at the N-terminal sub-domain and Met476 residue was exposed on the surface. Negative charge indicated in red, positive in blue, and neutral in white.

Supplementary Figure S2

7500 10000 12500 15000 17500 20000 22500 25000 27500 30000 32500 35000 37500 Counts vs. Deconvoluted Mass (amu)

Figure S2. a) SDS-PAGE analysis of non-oxidized A α C fragment (A α C 419 - 502) (lane 2) and 150 μ M HOCl oxidized A α C fragment (A α C 419 - 502) (lane 3) under non-reduced condition. Protein marker was loaded into lane 1. The non-oxidized A α C fragment was used as a control. **b**) Molecular mass determination of A α C fragment was analyzed by ESI-TOF mass spectrometry. The mass range from 7250 to 40000 Da was analyzed. The peak with the highest intensity in the mass spectrum indicated the measured molecular mass of A α C fragment. **c**) SDS-PAGE analysis of fibrinogen control (0 HOCl μ M) and the oxidized fibrinogen solutions under reduced condition. The purified fibrinogen was oxidized by increasing HOCl concentrations. Lane 1: protein marker, lane 2: control fibrinogen (0 μ M HOCl), lane 3 - 9: fibrinogen solutions oxidized by increasing HOCl concentrations (10, 25, 50, 75, 100, 125, 150 μ M). Fibrinogen without HOCl oxidation (0 μ M HOCl) was used as a control. Full-length SDS-PAGE gels were presented.

Supplementary Figure S3

Figure S3. a) CD analysis of fibrinogen control (0 μ M HOCl) and fibrinogen oxidized with increasing HOCl concentrations (10, 25, 50, 75, 100, 125, 150 μ M). The acquired CD spectra were analyzed by the secondary structure prediction program supplied with the spectropolarimeter. All CD data were expressed as the mean residue ellipticity [θ], in units of degrees square centimeter per decimole. **b**) Hydrodynamic radius distribution by intensity for fibrinogen control and fibrinogen oxidized with increasing HOCl concentrations (10, 25, 50, 75, 100, 125, 150 μ M) analyzed by DLS. **c**) Correlation coefficient decay curves of fibrinogen control and oxidized fibrinogen with increasing HOCl concentrations. Fibrinogen without oxidation (0 μ M HOCl) was used as a control.

Figure S4. ¹H 1D NMR spectra of fibrinogen control (0 μ M HOCl) and fibrinogen oxidized with increasing HOCl concentrations (10, 25, 50, 75, 100, 125, 150 μ M). **a**) The ¹H signals of fibrinogen solutions were found at the amide region from 6.5 to 8.5 ppm. **b**) The fibrinogen methyl protons were observed at aliphatic region from 0.7 to 0.9 ppm. DSS (2,2-dimethyl-2-silapentane-5-sulfonic acid) was used as a chemical shift standard reference. The ¹H of DSS exhibited resonances at 2.91 ppm, 1.75 ppm, and 0.63 ppm with intensities lower than the reference resonance at 0 ppm. **c**) DOSY NMR analysis of diffusion coefficient (D) for fibrinogen and bound water protons in the fibrinogen solutions oxidized with increasing HOCl concentrations (0, 10, 25, 50, 75, 100, 125, 150 μ M). Fibrinogen solution without oxidation (0 μ M HOCl) was used as a control. The averaged ¹H fibrinogen signals (0.7 – 0.9 ppm) and water proton (4.72 ppm) were subjected for the analysis. The acquired data from the spectra were fitted to Stejskal-Tanner equation and diffusion coefficient of the samples were analyzed by NMRgenerator and CARA.

Supplementary Table

	Fibrinogen solutions ^a		Fibrin gels ^b		
HOCl (µM)	$\begin{array}{c} \text{Diffusion coefficient} \\ (x10^{-9} \text{ m}^2 \text{s}^{-1}) \end{array}$	T ₂ (ms)	Diffusion coefficient (x10 ⁻⁹ m ² s ⁻¹)	T ₂ (ms)	
0 °	4.64	256.6	4.64	211.5	
25	4.64	210.5	4.23	335.0*	
50	4.64	210.5	4.64	335.2*	
75	4.64	210.5	4.64	335.2*	
100	4.64	210.5	3.85	335.2*	
150	4.04	187.4	3.51	377.5*	

Table S1. Diffusion coefficient and T_2 relaxation times of water protons in the purified fibrinogen solutions and fibrin gels oxidized by an increasing HOCl concentrations

^a = Diffusion coefficient (D), and T₂ relaxation times of bulk water protons in the purified fibrinogen solutions and fibrinogen oxidized by an increasing concentration of HOCl (0, 25, 50, 75, 100, 150 μ M HOCl); ^b = Diffusion coefficient and T₂ relaxation times of bulk water protons in the fibrin gels oxidized by an increasing concentration of HOCl (0, 25, 50, 75, 100, 150 μ M HOCl). ^c = 0 μ M HOCl fibrinogen solution and fibrin gel were used as their respective controls. ^{*} = Significant difference vs control at \geq 1.5-fold change.

Table S2. Diffusion coefficient, T_1 , and T_2 relaxation times of water protons in the plasma fibrinogen solutions and plasma fibrin gels formed by adding with an increasing % HOCl-oxidized fibrinogen

	Plasma fibrinogen solutions ^a			Plasma fibrin gels ^b			
% HOCl-oxidized fibrinogen ^c	$\begin{array}{c} \text{Diffusion coefficient} \\ (x10^{-9} \text{ m}^2 \text{s}^{-1}) \end{array}$	T ₁ (ms)	T ₂ (ms)	$\begin{array}{c} \text{Diffusion coefficient} \\ (x10^{-9} \text{ m}^2 \text{s}^{-1}) \end{array}$	T ₁ (ms)	T ₂ (ms)	
0 ^d	3.85	2154	104.8	3.20	1918	148.5	
10	3.85	2154	117	3.20	1918	166.8	
20	3.85	2154	132.2	3.20	1918	187.4	
30	4.23	2154	148.5	3.20	1918	187.4	
40	4.23	2154	148.5	3.20	1918	236.4^{*}	
50	4.23	1918	236.4^{*}	3.51	2420	335.3*	

^a = Diffusion coefficient (D), T₁, and T₂ relaxation times of bulk water protons in the plasma fibrinogen solutions added with an increasing % of HOCl-oxidized fibrinogen solution (10, 20, 30, 40, 50%); ^b = Diffusion coefficient (D), T₁, and T₂ relaxation times water protons in the plasma fibrin gel formed by an increasing % HOCl-oxidized fibrinogen solution; ^c = Purified fibrinogen solution was oxidized by 150 μ M HOCl and added into plasma fibrinogen solution prior to clotting; ^d = 0% HOCl-oxidized fibrinogen solution and plasma fibrin gel were used as their respective controls. ^{*} = Significant difference vs control at \geq 1.5-fold change.

Table S3. Fast acquisition of T_1 and T_2 relaxation times of water protons in the plasma fibrinogen solutions and plasma fibrin gels formed by adding with an increasing % HOCl-oxidized fibrinogens

	Plasma fibrinog	gen solutions ^a	Plasma fibrin gels ^b			
% HOCl-oxidized fibrinogen ^c	T ₁ (ms)	T ₂ (ms)	T ₁ (ms)	T_{2i} (ms) ^d	T ₂ (ms) ^e	
0 f	2656	46.4	2656	25.6	187.4	
10	2656	53.4	2656	30.5	215.4	
20	2656	61.4	2656	35.1	284.8^*	
30	2656	61.4	2656	40.4^{*}	284.8^*	
40	2656	70.6^*	3054	61.4*	-	
50	2656	123.3*	3054	81.1*	-	

^a = T_1 and T_2 relaxation times of bulk water protons in plasma fibrinogen solutions added with an increasing % of HOCl-oxidized fibrinogen (10, 20, 30, 40, 50%); ^b = T_1 and T_2 relaxation times of water protons in the plasma fibrin gels formed by an increasing % HOCl-oxidized fibrinogen solution; ^c = Purified fibrinogen was oxidized by 150 µM HOCl and added into plasma fibrinogen solution prior to clotting; ^d = T_{2i} relaxation time of intermediate water; ^e = T_2 relaxation time of bulk water; ^f = 0% HOCl-oxidized fibrinogen solution and plasma fibrin gel were used as their respective controls. ^{*} = Significant difference vs control at \geq 1.5-fold change. The T_1/T_2 correlations were measured by 2D-NMR with fast acquisition.