Supplementary Information for

High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting

Long et al.

Supplementary Fig. 1: The photograph of the VMC.

Supplementary Fig. 2: Initial charge without charge self-excitation.

Supplementary Fig. 3: Schematic diagram of the slider with two pairs of excitation electrodes reaching a stable state.

Supplementary Fig. 4: The output performance of different pairs of electrodes for slider with charge self-excitation.

Supplementary Fig. 5: Initial charge of different pairs of electrodes for TENG without charge self-excitation.

Supplementary Fig. 6: Charge output increment of the electrode with different electrode length-width with charge self-excitation under air gap is 1 mm.

Supplementary Fig. 7: Initial charge of the electrode with different electrode areas and air gaps without charge self-excitation.

Supplementary Fig. 8: Dynamic output charge of one electrode FSS-TENG.

Supplementary Fig. 9: Dynamic output charge of FSS-TENG with different materials (FEP, PTFE and Kapton) in 0.35 mm air gap.

Supplementary Fig. 10: The excitation voltage of FSS-TENG under different capacitors.

Supplementary Fig. 11: The surface charge density of FSS-TENG under different temperature **a** and humidity **b**.

Supplementary Fig. 12. The surface charge density of FSS-TENG under the simulated solar light.

Supplementary Fig. 13: Structure and performance of floating TENG (F-TENG).

Supplementary Fig. 14: Voltage curves of capacitors charging by F-TENG at 300 rpm.

Supplementary Fig. 15: Stability test of F-TENG.

Supplementary Fig. 16: The output charge curves for the first hour and the last hour.

Supplementary Fig. 17: SEM images of unused film.

Supplementary Fig. 18: Device abrasion photographs of the stator of S-TENG after 100 thousand times cycles.

Supplementary Table 1: The comparison of charge density with the reported works.

Supplementary Table 2: The rotational speed of the rotator at different wind speeds.

Supplementary Movie 1: Demonstration of the dynamic process of charge self-

excitation driven by wind.

Supplementary Movie 2: Demonstration of 912 LEDs lit by the FSS-TENG at 5 m s⁻ $\frac{1}{1}$ wind speed.

Supplementary Movie 3: Demonstration of the simulated road warning lights driven by the FSS-TENG at 5 m s^{-1} wind speed.

Supplementary Movie 4: Demonstration of two temperature hygrometers in parallel driven by the FSS-TENG at 3 m s^{-1} wind speed.

Supplementary Fig. 1 The photograph of the VMC. a The connecting circuit of VMC. **b** Ceramic capacitor.

Supplementary Fig. 2 Initial charge without charge self-excitation.

Supplementary Fig. 3 The schematic diagram of the slider with two pairs of excitation electrodes reaching a stable state.

Supplementary Fig. 4 The output performance of different pairs of sliders (a PTFE and an electrode in one pair) with charge self-excitation. a The transferred charges and **(b)** excitation voltage.

Supplementary Fig. 5 Initial charge of different pairs of sliders for the TENG without charge self-excitation.

Supplementary Fig. 6 Charge output increment of the electrode with different electrode length-width ratio with charge self-excitation under air gap is 1 mm. The surface of the stator electrode is coated with Kapton film, and the slider electrode is none.

Supplementary Fig. 7 Initial charge of the electrode with different electrode areas and air gaps without charge self-excitation. The surface of the stator electrode is coated with Kapton film, and no film is for the slider electrode.

Supplementary Fig. 8 Dynamic output charge of one electrode FSS-TENG. No dielectric film is attached to the Cu electrode of the slider, and a 25μm Kapton film is attached to the Al electrode on the stator.

Supplementary Fig. 9 Dynamic output charge of FSS-TENG with different materials (FEP/ PTFE / Kapton) in 0.35 mm air gap.

Supplementary Fig. 10 The excitation voltage of FSS-TENG under different capacitors.

Supplementary Fig. 11 The surface charge density of FSS-TENG under different temperature (a) and humidity (b). a The test humidity is controlled at around 40%. **b** The test temperature is controlled at around 20 °C.

Supplementary Fig. 12 The surface charge density of FSS-TENG under the simulated solar light. The standard light intensity is 100 mW/cm². The test humidity is controlled at around 50%.

Supplementary Fig. 13 Structure and performance of floating TENG (F-TENG). a Device photographs of the rotator. The stator is the same as FSS-TENG. **b** Transferred charge and (**c**) current curves of the F-TENG at 300 rpm, respectively. The right side of the figure is the enlarged output curve. **d** Matching impendence and output power of F-TENG at 300 rpm.

Supplementary Fig. 14 Voltage curves of capacitors charging by F-TENG at 300 rpm.

Supplementary Fig. 15 Stability test of F-TENG. We tested the induced output charge of F-TENG intermittently of 15 days. And the ambient humidity is controlled at 40% to 50%.

Supplementary Fig. 16 The output charge curves for the first hour and the last hour. a The stability of FSS-TENG. **b** The stability of S-TENG.

Supplementary Fig. 17 SEM images of unused film. a PTFE and **b** PA.

Supplementary Fig. 18 Device abrasion photographs of stator of S-TENG after 100 thousand times cycles.

Supplementary Table 1. The comparison of charge density with the reported works.

Supplementary Table 2. The rotational speed of the rotator at different wind speeds.

At different wind speeds, the rotator speed is obtained by calculating the cycle number of measured transfer charge per second.