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1 Supplementary Methods

1.1 Overview

In Section 4 of the main paper, we provide a high-level algorithm description for OrientAGraph ,
which takes a vector X of f -statistics as input and searches for a maximum likelihood (ML)
admixture graph (N,ΘN ) with h admixture events. The ML search proceeds as follows.

1. Search for a ML starting tree N0, rooting it at outgroup g.

2. For i = 1, 2, . . . , h:

(a) (Ni,ΘNi) ← Search for a ML network in the gene flow )edge addition neighborhood of
Ni−1.

(b) (Ni,ΘNi
)← Search from Ni for a network with higher likelihood using tail moves.

(c) (Ni,ΘNi
)← Search for a ML network in the (outgroup-rooted) orientation neighborhood

of Ni|u.

3. Return (Ni,ΘNi)

OrientAGraph is implemented on top of TreeMix [5]. Steps 1 and 2b are the same as TreeMix. Step
2a can be performed using the same heuristic as TreeMix or using an exhaustive search (Sections 1.3
and 1.4). The exhaustive search can be executed by using the -addmigs option in OrientAGraph.
Step 2b is new to OrientAGraph and can be performed using a heuristic or an exhaustive search
for the MLNO (Section 1.5). The exhaustive search can be executed using the -mlno options in
OrientAGraph; we plan to implement the heuristic described in Section 7 in the near future.

1.2 Data Structures

The admixture graph data structure implemented by TreeMix, and thus OrientAGraph, must include
a directed phylogenetic network NC with an edge labeling L : E(NC) → {0, 1}. The network NC

must have the following properties:

• the root is a vertex with indegree 0 and outdegree 2,

• the leaves are vertices with indegree ≥ 1 and outdegree 0, and

• internal vertices have indegree ≥ 1 and outdegree 2.

The edge labeling ψ must have the following properties:

• for the root vertex, both of the outgoing edges must be labeled 0,

• for any non-root vertex, exactly one of the incoming edges must be labeled 0, and

• for any non-root, non-leaf vertex, at least one of the outgoing edges must be labeled 0.

Such an edge labeling ψ is said to be tree-based, and we can verify whether a given an edge labeling
for NC is tree-based in O(|V (NC)|) time when the number h of admixture nodes is fixed. Any
network N for which a tree-based labeling exists is referred to as tree-based; a tree-based labeling
for N , if one exists, can be found in linear time via a reduction to 2-SAT [1].

Although NC is not a binary phylogenetic network, it can be viewed as such, as we now describe.
Let N be a binary, directed phylogenetic network, and let ψ be a tree-based labeling of N . Because
N is binary, every admixture node in N has indegree 2 and outdegree 1. For some admixture node
in N , let e, f denote the two incoming edges and let g denote the outgoing edge. Because ψ is
tree-based, either e and g are drawn as part of base tree (in which case f is drawn as gene flow);
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otherwise, f and g are drawn as part of the base tree (in which case e is drawn as gene flow). As
discussed in Section 2.2 of the main paper, in the former case, TreeMix forces f and g to have length
0, and in the latter case, TreeMix forces e and g to have length 0. It follows that we do not need
to store edge g and can contract it (Definition 1). Contracting edges in N until there are no edges
with outdegree 1 produces a contracted version of the binary phylogenetic network N , denoted NC ,
that satisfies the requirements given above. This is the data structure implemented by TreeMix,
and thus OrientAGraph.

Definition 1 (Refinements and Contractions). An edge contraction corresponds to deleting edge
e = u 7→ v but not its vertices u and v from the graph G and then identifying u and v (i.e. combining
u and v into a single vertex in the natural way). A vertex refinement is simply the opposite of a
contraction.

1.3 Edge Addition Neighborhood

In Step 2a, TreeMix and OrientAGraph search for a ML network in what we will call the gene flow
edge addition neighborhood of a given the contracted version of a binary network NC

i with tree-based
labeling ψi. First, we consider the edge addition neighborhood of a binary network. An edge addition
takes a binary network Ni as input and returns a binary network Ni+1 such that there exists an
edge e ∈ E(Ni+1) whose deletion from Ni+1 produces a network that is isomorphic to Ni, after
suppressing vertices with indegree 1 and outdegree 1. This is encoded as the following operation.

Definition 2 (Edge Addition Operation). An edge addition is an operation in which two different
edges of a binary, directed phylogenetic network Ni, the source edge es = us 7→ ws and the target
edge et = ut 7→ wt, are subdivided with new vertices vs and vt, respectively, and then an edge e′ is
added from vs to vt. An edge addition is only legal if the resulting network Ni+1 is a binary, directed
phylogenetic network.

Now we consider the case where Ni has a tree-based labeling ψi. If we require the new edge e′

to be labeled as gene flow in Ni+1 and es and et to be labeled as part of the base tree in Ni, then
the labeling ψi can be extended to Ni+1, denoted ψi+1, in the natural way (i.e. ψi+1(e′) = 1 and
ψi+1(us 7→ vs) = ψi+1(vs 7→ ws) = 0). Nothing is done for the remaining edges (i.e. ψi(e) = ψi+1(e)
for all e ∈ E(Ni)∩E(Ni+1)). We refer to edge additions of this form as being in the gene flow edge
addition neighborhood of Ni.

Recall that TreeMix and OrientAGraph operate on the contracted version of a binary network, so
they would immediately contract the edge vt 7→ wt. Therefore, edge additions can be implemented
on the contracted version of a binary network NC

i by subdividing an edge es = us 7→ ws ∈ E(NC
i )

with a new vertex vs, and then adding an edge e′ from vs to some target vertex vt ∈ V (NC
i ). In

order for this edge addition to be legal, ws 6= vt (as the edge addition would produce a parallel
edge in NC

i+1) and vt cannot be on a some directed path from the root to ws (as the edge addition
would produce a cycle in NC

i+1). TreeMix and OrientAGraph constrain their search to the gene
flow edge addition neighborhood, so es must be labeled as part of the base tree in NC

i (note
that we can view the edge addition as being on the incoming edge to vt that is labeled as part
of the base tree). Lastly, TreeMix restricts edge additions to meet some additional requirements
that are likely important for preventing issues when estimating numerical parameters (see function
PopGraph::is legal migration). It appears that these constraints can be verified by looking
locally around es and vt. We will broadly refer to edge additions that meet the requirements of
TreeMix (and thus OrientAGraph) as being in the gene flow edge addition neighborhood of NC

i .

1.4 Maximum Likelihood Edge Addition

We now turn to the task of searching for a ML network in the gene flow edge addition neighborhood of
NC

i , defined in Section 1.3. TreeMix builds a subset of possible edge additions in this neighborhood
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that seem promising by using the residual matrix to identify pairs of populations for which the current
model is a poor fit to the input data. For each edge addition in this subset, TreeMix determines the
legality and then, if possible, fits parameters and evaluates the log-likelihood function. The most
computationally intensive step of checking the legality of an edge addition on edge es = us 7→ ws and
vertex vt is to determine whether vt is on any directed path from the root to ws (because an edge
addition in this case produces a cycle). OrientAGraph enables an exhaustive search of the gene flow
edge addition neighborhood (Algorithm 1), so it makes sense to compute this information for each
vertex in a dynamic programming preprocessing step. Afterward, the legality of an edge addition
is fast to compute. However, if an edge addition is legal, then we still need to fit parameters and
evaluate the log-likelihood function. Doing this work for the |V (NC

i )|×|E(NC
i )| possible (gene flow)

edge additions will not scale to large admixture graphs, although it is suitable for modestly-sized
graphs.

1.5 Maximum Likelihood Network Orientation

Lastly, we discuss how to find the maximum likelihood network orientation (MLNO) of a binary,
directed phylogenetic network N with root r and h admixture nodes (i.e. vertices with indegree
> 1). Let Y = V (N) \ L(N) \ {r}, and recall that an orientation of the undirected version of N ,
denoted N |u, is uniquely determined by a set A ⊆ Y of h admixture nodes (i.e. nodes with indegree
2) and an edge er that determines the position of the root [2]. If a valid orientation exists for some
pair A, er, it can be found in linear time by running Algorithm 2 (adapted from [2]). To exhaustively
search the orientation neighborhood of N , we consider the directed networks found by orientating
N |u for every possible subset of Y with size h (note that we fix the root r on an edge er, typically
chosen so that the root is incident to an outgroup).

There are some technicalities to consider as OrientAGraph operates on the contracted-version
of a binary phylogenetic network, denoted NC , with tree-based labeling ψ. First, we need to refine
vertices in NC (Definition 1), until every vertex with indegree 2 has outdegree 1. If all vertices in NC

have indegree ≤ 2, then applying this process to NC produces a unique binary network. Otherwise,
the resulting network, denoted NR, will have stacked admixture nodes (i.e. there exists an edge that
has an admixture node as its source and its target) and the branching order of admixture nodes in
this stack will have been arbitrarily resolved. It is possible that the chosen branching order could
impact orientation, but we speculate that if there exists a set of stacked admixture nodes, the utility
of orientation will be greatest for the first edge addition that produces an admixture node in a stack
(also note that there will be issues with parameter identifiability in the case of stacked admixture
nodes). Then, after applying the orientation algorithm, we need form the contracted version of
the resulting network and evaluate its likelihood using a tree-based labeling. The entire process is
summarized in Algorithm 3.

We want to emphasize that this work is only necessary because we implemented MLNO on top
of TreeMix, with the goal of taking advantage of TreeMix’s existing functions for fitting parameters,
computing likelihood, etc. Moving forward, it would be advantageous, at least from the perspective
of computational complexity, to take the approach of admixturegraph (setting all admixture edges
to length 0) so that we can optimize parameters without finding a tree-based labeling (and to store
a binary tree rather than the contracted version of one). For these reasons, we did not focus on
optimizing the compute kernels specific to TreeMix.
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1.6 Algorithms

Algorithm 1: Exhaustive search ML network in the (gene flow) edge addition neighborhood
of NC

i ; see Section 1.4 above and Section 4 in the main paper.

Input : A network NC
i with tree-based labeling ψi, and the vector X of observed

f -statistics (note that NC
i is the contracted version of a binary network)

Output: A ML network NC
i+1 with tree-based labeling ψi+1 in the gene flow edge addition

neighborhood of NC
i (note that NC

i+1 is the contracted version of a binary
network). If the result is a network with a worse score than NC

i , then NC
i is

returned.

Function FindMLGFEdgeAdditionExhaustive(NC
i , ψi,X):

(NC
i ,ΘNC

i
)← Fit(NC

i , ψi)

sbest ← LogLikelihood(NC
i ,ΘNC

i
,X)

Nbest ← NC
i ; ψbest ← ψi

for (es, vt) ∈ GetGFEdgeAdditionNeighborhood(NC
i , ψi) do

(NC
i+1, ψi+1)← AddGeneFlowEdgeToBaseTree(NC

i , ψi, es, vt)

(NC
i+1,ΘNC

i
)← Fit(NC

i+1, ψi+1)

s← LogLikelihood(NC
i+1,ΘNi+1C ,X)

if s > sbest then
Nbest ← NC

i+1; ψbest ← ψi+1; sbest ← s

return Nbest, ψbest, sbest

Function GetGFEdgeAdditionNeighborhood(NC , ψ):
A← ∅
Proot ← GetAllPathsToRoot(NC)

for es = us 7→ ws ∈ E(NC
i ) do

for vt ∈ V (NC) do
if ψ(es) = 1 then continue
if ws = vt then continue
if vt ∈ Proot[ws] then continue
// Verify other (local) requirements of TreeMix so that edge

additions do not cause numerical issues.

A← A ∪ {(es, vt)}
return A

Function GetAllPathsToRoot(NC):
Proot ← Dictionary()

for v ∈ BreadthFirstTraversal(NC) do
Proot[v]← ∅
for p ∈ GetParents(v) do Proot[v]← Proot[v] ∪ {p} ∪ Proot[p]

return Proot
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Algorithm 2: Reorient a directed phylogenetic network given a set of admixture nodes
and a location for the root using the algorithm from [2].

Input : A directed binary phylogenetic network N , a set A ⊂ V (N) of vertices to be
designated as admixture nodes, and an edge er ∈ E(N) on which to place the root.

Output: A reoriented version of N

Function Reorient(N,A, er):
// Step 1: Set current/desired in-degrees of vertices, and set edges as

undirected.

r ← GetRoot(N )

for v ∈ V (N) \ {r} do
v.currentIndegree← 0
if v ∈ A then v.desiredIndegree← 2
else v.desiredIndegree← 1

for e ∈ E(N) do e.isDirected← False

// Step 2: Move the root vertex r to edge er.
if GetSource(er) != r then
{x, y} ← GetChildren(r)
AddEdge(x 7→ y, N)

DeleteEdge(r 7→ x, N); DeleteEdge(r 7→ y, N)

s← GetSource(er); t← GetTarget(er)
AddEdge(r 7→ s, N); AddEdge(r 7→ t, N)

DeleteEdge(s 7→ t, N);

// Step 3: Direct the edges.

n← 0; vqueue← Queue(); vqueue.PushBack(r)
while vqueue is not empty do

v ← vqueue.Pop()
X ← ∅
for e ∈ GetOutgoingEdges(v) do

if not e.isDirected then X ← X ∪ {e}
for e ∈ GetIncomingEdges(v) do

if not e.isDirected then
e← SwapSourceAndTarget(e)
X ← X ∪ {e}

for e ∈ X do
e.isDirected← True; n← n+ 1; t← GetTarget(e)
t.currentIndegree← t.currentIndegree+ 1
if t.currentIndegree == t.desiredIndegree then vqueue.PushBack(t)

// Step 4: Check for success.

if n == |E(N)| then return N
else return Null
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Algorithm 3: Exhaustive search ML network in the orientation neighborhood of NC
i ; see

Section 1.5 above and Section 4 in the main paper. Note that this is pseudocode showing
the algorithm structure and that the work related to transforming data structures and
evaluating different labelings could be avoided by optimizing parameters differently, i.e. it
is a result of building on top of existing code.

Input : A network NC (with tree-based labeling ψ, h admixture nodes, and root r with
edge er incident to the outgroup), and the vector X of observed f -statistics (note
that NC is the contracted version of a binary network)

Output: A MLNO network of NC with a tree-based labeling.

Function FindMLNOExhaustive(NC , ψ,X):
(NC ,ΘNC )← Fit(NC , ψ)

sbest ← LogLikelihood(NC ,ΘNC ,X)

Nbest ← NC ; ψbest ← ψ

for NC ∈ GetOrientationNeighborhood(NC) do
for ψ ∈ GetBaseTreeNeighborhood(N) do

(NC ,ΘNC )← Fit(NC , ψ)

s← LogLikelihood(NC ,ΘNC ,X)

if s > sbest then
Nbest ← NC ; ψbest ← ψ; sbest ← s

return Nbest, ψbest, sbest

Function GetOrientationNeighborhood(NC):
N ← Refine(NC)

Y ← V (N) \ L(N) \ {r}
Z ← ∅
for A ∈ AllSubsetsOfSize(Y, h) do

M ← Reorient(N,A, er)
M ← Contract(M)

Z ← Z ∪M
return Z

1.7 Topological Accuracy

We computed topological accuracy as the triplet distance compute the true and estimated admixture
graph topology, using the first algorithm from [3] implemented in ntd. Triplets are rooted phylogenetic
trees on three leaves and can be identified in a phylogenetic network by restricting it to three
populations; if at least one of the populations is admixed, the restricted graph implies multiple
triplets. The triplet distance between two networks is the number of triplets in the true graph that
are not in the estimated graph plus the number of triplets in the estimated graph that are not
in the true graph. Before computing the triplet distance, we rooted all estimated networks at the
outgroup—this changes the position of the root but NOT the admixed populations. In some cases,
TreeMix identifies gene flow into the outgroup; in this case, we place the root directly above this
admixture node, as shown in Figure S2a, S5a, S6a.
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1.8 Model M2
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Figure S1: M2 based on Figure 5 of 4
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2 Supplementary Results
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(a) TreeMix (log-lik = -366944; triplet dist = 9)
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(b) OrientAGraph (MLNO only) (log-lik = 83; triplet dist = 0)

Figure S2: On M1, TreeMix finds an incorrect directed admixture graph topology, but
OrientAGraph (with -mlno option only) finds the true one. There is a difference in the log-likelihood
scores of these two graphs.
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(b) OrientAGraph (MLNO only)

Figure S3: On M1, TreeMix finds an incorrect directed admixture graph topology, but
OrientAGraph (with -mlno option only) finds the true one. There is a difference in residuals of
these two estimated admixture graphs. Note that the standard error of all f2-statistics was set to
0.0001.
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(a) TreeMix (log-lik = 137; triplet dist = 14)
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(b) OrientAGraph (MLNO only) (log-lik = 137; triplet dist = 14)

Figure S4: On M4, TreeMix and OrientAGraph (with -mlno only) recover different directed graph
topologies for different population orders. All of the topologies returned were incorrect and had a
triplet distance of 14 to the true admixture graph. TreeMix and OrientAGraph (with -mlno only)
returned a graph with a log-likehood score of 137 on 60% and 86% of population orders, respectively.
Some graphs returned by these methods with these scores are shown above.
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OrientAGraph (ALLMIGS only) (log-lik = 373; triplet dist = 0)

Figure S5: On M4, OrientAGraph (with -allmigs only or with -allmigs -mlno options) recovers
true directed admixture graph topology. This graph has a log-likelihood score of 373, whereas the
graphs found by TreeMix or OrientAGraph (with -mlno option) had log-likelihood scores of 137.
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(b) OrientAGraph (ALLMIGS only)

Figure S6: On M4, TreeMix finds an incorrect directed admixture graph topologies, but
OrientAGraph (with -allmigs only or with -allmigs -mlno) finds the true one. There is a
difference in residuals of the estimated graphs. The residuals shown here are for the trees plotted
in Figure S4a (TreeMix) and Figure S5 (OrientAGraphwith -allmigs), respectively. Note that the
standard error of all f2-statistics was set to 0.0001.

12



Drift parameter

0.00 0.02 0.04 0.06 0.08 0.10 0.12

BakaDG

MixeDG

FrenchDG

HanDG

UlchiDG

10 s.e.

0

0.5

Migration
weight

(a) TreeMix (log-lik = -33; triplet dist = 9)

Drift parameter

0.00 0.02 0.04 0.06 0.08

BakaDG

MixeDG

FrenchDG

HanDG

UlchiDG

10 s.e.

0

0.5

Migration
weight

(b) OrientAGraph (MLNO only) (log-lik = 83; triplet dist = 0)

Figure S7: On M5, TreeMix finds an incorrect directed admixture graph topology, but
OrientAGraph (with -mlno option only) finds the correct one. There is a difference in the
log-likelihood scores of these two graphs.
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(b) OrientAGraph (MLNO only)

Figure S8: On M5, TreeMix finds an incorrect directed admixture graph topologies, but
OrientAGraph (with -mlno option only) finds the true one. There is a difference in residuals of
the estimated graphs. Note that the standard error of all f2-statistics was set to 0.0001.

14



Drift parameter

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

FrenchDG

HanDG

UlchiDG

MixeDG2

MixeDG1

BakaDG
10 s.e.

0

0.5

Migration
weight

(a) TreeMix (log-lik = -30; triplet dist = 15)

Drift parameter

0.00 0.02 0.04 0.06 0.08 0.10

FrenchDG

HanDG

UlchiDG

MixeDG2

MixeDG1

BakaDG
10 s.e.

0

0.5

Migration
weight

(b) OrientAGraph (MLNO only) (log-lik = 124; triplet dist = 0)

Figure S9: On M6, TreeMix finds an incorrect directed admixture graph topology, but
OrientAGraph (with -mlno option only) finds the true one. There is a difference in the log-likelihood
scores of these two graphs.
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(b) OrientAGraph (MLNO only)

Figure S10: On M6, TreeMix finds an incorrect directed admixture graph topology, but
OrientAGraph (with -mlno option only) finds the true one. There is a difference in residuals of
these two estimated admixture graphs. Note that the standard error of all f2-statistics was set to
0.0001.
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(a) TreeMix (log-lik = -2883; triplet dist = 20)
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(b) OrientAGraph (MLNO only) (log-lik = -2883; triplet dist = 16)

Figure S11: On M7, we ran TreeMix and OrientAGraph, both with 100 different population addition
orders, selected uniformly at random. TreeMix returned a graph with triplet distance of 20 to the
correct admixture graph on 67% of runs. OrientAGraph (MLNO only) returned a graph with triplet
distance of 16 on 55% of runs. OrientAGraph (ALLMIGS only and MLNO+ALLMIGS) returned a
graph with a triplet distance of 20 on 100% of runs. Both of these graphs seem to have the same
base tree, but there is an edge of length 0 (it looks like there is a vertex with outdegree 3, which is
not allowed by TreeMix’s data structure). Different resolutions in the branching order around this
edge would explain why these graphs have the same likelihood score but slightly different triplet
scores.
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Figure S12: On M7, we used OrientAGraph to score the true admixture graph topology; the result
is shown above.
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(a) TreeMix / OrientAGraph
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(b) True Graph (scored by OrientAGraph)

Figure S13: On M7, TreeMix and OrientAGraph find incorrect directed admixture graph topologies
with likelihood score of -2883. We gave OrientAGraph the true graph topology as input, so that it
could fit its parameters and compute its likelihood score (373). There is a difference in residuals of
these graphs. Note that the standard error of all f2-statistics was set to 0.0001.
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