Supporting Information

Direct Electrochemical Hydrodefluorination of Trifluoromethylketones Enabled by Non-protic Conditions

John R. Box, Alexander P. Atkins, Alastair J. J. Lennox*

University of Bristol, School of Chemistry, Cantock's Close, Bristol, BS8 1TS, UK

Contents

General Experimental Details	3
Full Optimisation Studies	5
Cyclic voltammograms of model substrates and defluorinated derivatives	6
Synthesis and Characterisation of Substrates	7
General Defluorination Procedures	
Characterisation of Products	
Less successful and unsuccessful substrates	
Electrochemical Set Up	
Product Diversification Experiments	
Determination of H-bonding strength (A value)	113
Computational Studies	
CIF of 3ae	140
NMR Spectra of Novel Substrates	
NMR Spectra of Novel Products	
References	

General Experimental Details

<u>Techniques</u>

Manipulations involving air and moisture sensitive materials were conducted employing standard Schlenk-line and glovebox techniques, using vacuum lines attached to a double manifold with greaseless J. Youngs valves equipped with an oil pump (0.1 mmHg) under an atmosphere of dry nitrogen. All glassware was dried overnight before use, in a 180° oven and then allowed to cool under vacuum at 0.1 mmHg. The removal of solvents in vacuo was achieved using a Büchi rotary evaporator (bath temperatures up to 40 °C) at a pressure of 15 mmHg (diaphragm pump), or at 0.1 mmHg (oil pump) on a vacuum line at room temperature. The addition of < 200uL of liquids was achieved using a Gilson PIPETMAN p20, otherwise standard syringe practices were employed.

Solvents

THF (tetrahydrofuran), CH₂Cl₂, CH₃CN and Et₂O was dried using an Anhydrous Engineering alumina column drying system situated in the University of Bristol's chemistry department. All solvents were collected using Strauss flasks using a gastight J. Youngs valve. CH₃CN was degassed by four freeze-pump-thaw cycles under N₂. Deuterated solvents for NMR analysis were purchased from Sigma Aldrich.

Chromatography

TLC analysis was performed on Merck Silica gel $60F_{254}$ glass backed plates. Visualisation was achieved by UV fluorescence (254 nm). Flash column chromatography was conducted using Sigma 60 silica: 230-400 mesh (40-63 µm) or using a Biotage Selekt automated flash purification system using Biotage Sfar Duo pre-packed columns of size 5 g or 25 g.

Reagents

All reagents were purchased from TCI UK, Apollo Scientific, Sigma Aldrich, Alfa Aeser or Fluorochem and used as received unless otherwise stated. Anhydrous TMSCI was purchased from Sigma Aldrich and stored under N₂ over 3A molecular sieves. Electrolyte salts (TEAPF₆, TBAPF₆, TBAB) were purchased from Sigma Aldrich and stored in a vacuum desiccator between uses.

<u>Analysis</u>

NMR spectra were recorded on Bruker Nano 400 or Bruker Advance III HD 500 cryo spectrometers. Chemical shifts (δ) are quoted in parts per million (ppm), referenced to the residual solvent peak (1H and 13C NMR) and coupling constants (J) are given in Hz. Multiplicities are abbreviated as: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) or combinations thereof. NMR shifts for novel compounds have been assigned with the use of the appropriate 2D NMR experiments, such as COSY, HSQC and HMBC. Infrared spectra were recorded using a Perkin Elmer Spectrum Two FTIR spectrometer.

Electrochemical techniques

All cyclic voltametric (CV) and chronopotentiometric measurements were performed at room temperature using an Autolab M101 or MultiPalmsens 4 instrument and the ElectraSyn 2.0 (purchased from IKA). CV experiments were carried out with a working electrode (GC = glassy carbon, Pt, Au, 1-3 mm diameter), a counter electrode (platinum wire) and a 0.1 M Ag/AgNO₃ reference electrode. All working electrodes were polished before each experiment. Before each CV, the solution was stirred for approximately 10 seconds, whilst being degassed by a stream of N₂.

Full Optimisation Studies

	$ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array}\\ & \end{array}\\ & \begin{array}{c} & \end{array}\\ & \end{array}\\ & \begin{array}{c} & \\ & \end{array}\\ & \end{array} \\ & \begin{array}{c} & \\ & \end{array}\\ & \end{array} \\ & \begin{array}{c} & \\ & \end{array}\\ & \end{array} \\ & \begin{array}{c} & \end{array}\\ & \begin{array}{c} & \end{array}\\ & \end{array} \\ & \begin{array}{c} & \end{array}\\ & \end{array} \\ & \begin{array}{c} & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \\ & \end{array} \\ & \begin{array}{c} & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \\ & \end{array} \\ & \begin{array}{c} & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \\ & \end{array} $ & \\ & \end{array} \\ & \end{array} \\ & \end{array} & \\ & \end{array} \\ & \end{array} & \\ & \end{array} \\ & \end{array} & \\ & \end{array} & \\ & \end{array} \\ & \end{array} & \\ \\ & \end{array} & \\ & \end{array} & \\ & \\ & \end{array} & \\ & \\ \end{array} & \\ & \end{array} & \\ & \\ \end{array} & \\ & \\ \end{array} & \\ & \\ & \end{array} & \\ & \\ & \\ \end{array} & \\ & \end{array} & \\ & \end{array} & \\ & \\ & \\ & \\ & \\ & \\ & \end{array} & \\ & \\ & \\			
	Proton source, Reductant	Yie	Yield/%	
Entry	Conditions different from above	1a	(2a) 3a	
1	Mg ⁰ , THF, no electricity (<i>Prakash conditions for 2a</i>)	100	(0) n/a	
2 ^a	Undivided cell, sacrificial Mg anode, TBAPF ₆ (4 eq.)	100	(0) n/a	
3ª	Pb:C (Cath:An), TBABr (4 eq.), 0 °C, 30 mA	33	(32) 0	
	(Uneyama conditions for 2a)			
4 ^a	a) TMSCI (3 eq.), Acetic acid (1 eq.), TBABr (2 eq.)	51;	(0) 0;	
	b) TMSCI (3 eq.), Oxalic acid (1 eq.), TBABr (2 eq.)	100	(0) 0	
5ª	TMSCI (3 eq.), Dimethylurea (2 eq.), TBABr (2 eq.)	82	(0) 0	
6 ^a	TMSCI (3 eq.), TEAPF ₆ (4 eq.), TBABr (2 eq.)	49	(0) 45	
7	TMSCI (0 eq.), TEAPF ₆ (4 eq.), TBABr (2 eq.)	87	(0) 0	
8 ^a	TMSCI (6 eq.), TEAPF ₆ (4 eq.), TBABr (2 eq.)	49	49	
9 ^b	TMSCI (3 + 3 eq.), TEAPF ₆ (4 eq.), TBABr (2 eq.)	0	(0) 97	
10 ^b	Entry 9 but Pt:Gr (Cath:An)	0	(0) 94	
11 ^b	Entry 9 but Ni:Pt (Cath:An)	0	(0) 83	
12 ^b	Entry 9 but Stainless steel:Pt (Cath:An)	0	(0) 85	
13 ^b	Entry 9 but Gr:Pt (Cath:An)	0	(0) 18	
14 ^b	TMSCI (3 + 3 eq.), Dimethylmalonate (1 eq.), TBABr (2 eq.)	0	(0) 90	
15 ^b	TMSCI (3 + 3 eq.), TEAPF ₆ (4 eq.), NH <i>i</i> Pr ₂ (2 eq.)	28	(0) 65	
16 ^a	Entry 6 but extra 3 eq. TMSCI added by syringe pump to cathode	0	(0) 93	
17 ^b	TMSCI (3 + 3 eq.), TEAPF ₆ (4 eq.), TBABr (2 eq.), -10 mA	0	(0) 92 ^c	
18 ^b	Entry 9 but TEABF ₄ (4 eq.) not TEAPF ₆ (4 eq.)	0	(0) 90 ^c	

Table S1. 1a (0.5 mmol), TEAPF₆ (1 (cathodic chamber) + 1 mmol (anodic chamber)), TBABr (1 mmol), TMSCI (1.5 + 1.5 mmol), MeCN (2.5 + 2.5 mL), N₂, RT. Pt:Pt (coil), -5 mA CCE, 2 F (19300 s). ¹⁹F NMR yields relative to internal C₆F₆ standard. ^a TMSCI only added to cathodic chamber; ^bTMSCI added to both cathodic and anodic chambers. ^c Remaining material was over reduced product R-CFH₂.

Cyclic voltammograms of model substrates and defluorinated derivatives

Figure S1. CVs of model substrate **1a**, **3a**, **4** and 1-(1-methyl-1H-indol-3-yl)ethan-1-one. Conditions: Pt (disk): Pt(disk), 0.1 M TBAPF₆, 5 mM substrate, 2.5 mL degassed MeCN under N₂, scan rate = 100 mv/s, Ag/AgNO₃ (0.1 M) pseudo reference electrode.

Synthesis and Characterisation of Substrates

General procedure A – for the synthesis of indole-based substrates

In a 20 ml vial, under air, a suspension of NaH (1.2 equiv., 60% dispersion in mineral oil) in DMF (0.5 M with respect to substrate) was cooled to 0°C using an ice bath. To this, the indole substrate (1.0 equiv.) was added portion wise (with care to avoid violent H₂ evolution) and then stirred for 15 minutes at 0°C. The resulting suspension was warmed to RT over 45 minutes and Mel (1.1 equiv.) added dropwise. The reaction was stirred at RT until complete conversion observed by TLC (generally 20% Et₂O/Hexane). Upon completion (*c.a* 4 h) sat. aq. NH₄Cl was added. The resulting mixture was partitioned, and the organic layer diluted with EtOAc and washed three times with water and then once with brine. The organic layer was dried over MgSO₄, filtered and concentrated *in vacuo* (40°C bath, 100 mBar). To the resulting crude material, under air, was added DCM (0.5 M) then trifluoroacetic anhydride (TFAA) (1.5 equiv.) dropwise with stirring (potential exotherm). When the reaction was complete as observed by TLC (generally 20% Et₂O /Hexane), sat. aq. Na₂CO₃ was added and the layers partitioned. The organic layer was dried with DCM and washed once with water and once with brine. The organic layer was dried with MgSO₄, filtered and concentrated *in vacuo* (40°C bath, 100 mBar) to yield analytically pure product.

<u>General procedure B – Pd-catalysed cross-coupling</u>

In a 20 ml vial, under air, was added Pd(PPh₃)₄ (28.9 mg, 0.075 mmol, 2.5 mol%), boronic acid (3.3 mmol, 1.1 equiv.), and 4'-bromo-2,2,2-trifluoroacetophenone (759 mg, 3 mmol, 1.0 equiv.) sequentially. DME (7 mL) and 2 M aq. Na₂CO₃ (3 mL) were then added and the vial capped and placed in a pre-heated oil bath at 100°C and the biphasic mixture was stirred overnight. The vial was removed from the heating bath, allowed to cool and filtered through a pad of Celite, rinsing the vial and eluting with CHCl₃ (15 mL). The resulting solution was concentrated *in vacuo* (40°C bath, 10 mBar) to yield sufficiently pure product.

General procedure C - lithiation-trifluoroacetylation of aryl bromides

nBuLi (1.2 equiv.), Ar CF3 Ar^{,Br} -78°C, THF then EtOCOCF₃ (1.2 equiv.), $BF_3Et_2O(1.2 equiv)$ -78°C. THF

To a flame-dried Schlenk tube under a N₂ atmosphere was added substrate (1.0 equiv.) and THF (0.25 M with respect to substrate). The reaction mixture was cooled to -78 °C and nBuLi (1.2 equiv., 2.5 M solution in hexanes) was added dropwise and the resulting solution stirred at -78 °C for 1 hour. Ethyl trifluoroacetate (1.2 equiv.) and boron trifluoride diethyl etherate (1.2 equiv.) were premixed at RT and added dropwise to the reaction mixture which was then allowed to stir for 2 hours or until complete conversion was observed by TLC control (generally 20% EtOAc in Hexane). The reaction mixture was warmed to RT and quenched with sat. aq. NH₄Cl and partitioned. The organic layer was diluted with EtOAc and washed three times with water and then once with brine. The organic layer was dried over MgSO₄, filtered and concentrated *in vacuo* (40 °C bath, 100 mBar) to yield crude product which was purified by flash column chromatography (EtOAc in Hexane).

2,2,2-trifluoro-1-(1-methyl-1H-indol-3-yl)ethan-1-one, 1a

1a was synthesised from indole following **General Procedure A** on a 30 mmol scale to yield a yellow-orange solid (4.65 g, 98%).

 $R_{f} = 0.3$ (20% Et₂O in Hexane)

¹H NMR (400 MHz, CDCl₃) δ: 8.61 – 8.63 (m, 1H), 7.94 – 7.85 (m, 1H), 7.42 – 7.36 (m, 3H), 3.92 (s, 3H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 174.7 (q, *J* = 34.9 Hz), 138.3 (q, *J* = 4.9 Hz), 137.3, 126.9, 124.6, 124.0, 122.6, 117.1 (q, *J* = 291.2 Hz), 110.1, 109.4, 34.0.

¹⁹F NMR (376 MHz, CDCl₃) δ: -72.3 (s, 3F).

Spectral data in accordance with literature.¹

1-(4-cyclopropylphenyl)-2,2,2-trifluoroethan-1-one, 1i

1i was synthesised from cyclopropylboronic acid following **General Procedure B** on a 3 mmol scale, purified using silica gel chromatography eluting with 0% Et_2O in Hexane to 30% Et_2O in Hexane to give a colourless solid (347 mg, 54%).

 $R_{f} = 0.3$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.02 – 7.93 (m, 2H), 7.24-7.14 (m, 2H), 2.04 (tt, *J* = 8.4, 5.0 Hz, 1H), 1.23 – 1.12 (m, 2H), 0.84 (dt, *J* = 6.8, 4.8 Hz, 2H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 179.9 (q, *J* = 34.7 Hz), 153.9, 130.4 (q, *J* = 2.3 Hz), 127.2, 126.0, 116.9 (q, *J* = 291.5 Hz), 16.2, 11.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -71.2 (s, 3F).

Spectral data in accordance with literature.¹²

1j was prepared on a 5 mmol scale from 1-bromo-4-pentylbenzene using **General Procedure C** to yield a colourless oil (639 mg, 52%)

 $\mathbf{R}_{f} = 0.4$ (Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 7.6 Hz, 1H), 7.36 (d, *J* = 8.6 Hz, 1H), 2.70 (t, *J* = 7.9 Hz, 1H), 1.66 (m, 1H), 1.34 (m, 2H), 0.90 (t, *J* = 7.0 Hz, 1H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -71.2 (s, 3F).

¹³**C NMR** (101 MHz, CDCl₃) δ 180.2 (q, *J* = 34.7 Hz), 152.1, 130.4, 129.3, 127.7, 117.0 (q, *J* = 291.5 Hz), 36.3, 31.5, 30.7, 22.6, 14.0.

HRMS (EI⁺) calc: [M]⁺ (C₁₃H₁₅OF₃) 244.1070; measured: 244.1068 = 0.8 ppm difference

IR (neat) vmax/ cm⁻¹: 2932, 1714, 1607, 1140, 1172, 939, 853, 740.

1-(4-(benzyloxy)-2-methylphenyl)-2,2,2-trifluoroethan-1-one, 1k

1k was prepared on a 5 mmol scale from 4-(benzyloxy)-1-bromo-2-methylbenzene using **General Procedure C** to yield a white solid (384 mg, 26%)

 $\mathbf{R}_{f} = 0.3 (1\% \text{ EtOAc in Hexane})$

¹**H NMR** (400 MHz, CDCl₃) δ 7.95-7.89 (m, 1H), 7.52 – 7.36 (m, 5H), 7.00 – 6.90 (m, 2H), 5.17 (s, 2H), 2.65 (s, 3H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -70.1 (s, 3F).

¹³**C NMR** (101 MHz, CDCl₃) δ 180.1 (q, *J* = 33.1 Hz), 163.2, 146.6, 135.9, 134.0 (q, *J* = 4.2 Hz), 128.8, 128.5, 127.6, 121.9, 119.3, 117.0 (q, *J* = 293.0 Hz), 111.9, 70.3, 22.9.

HRMS (ESI⁺) calc: [M+Na]⁺ (C₁₆H₁₃F₃NaO₂) 317.0760; measured: 317.0773 = 4.3 ppm difference

IR (neat) vmax/ cm⁻¹: 1690, 1309, 1251, 1179, 959, 762.

1I was prepared on a 5 mmol scale from 2-(4-bromophenyl)pyridine **General Procedure C** to yield a yellow solid (559 mg, 48%).

 $R_f = 0.3$ (30% EtOAc in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ 8.79 – 8.73 (m, 1H), 8.25 - 8.18 (m, 4H), 7.86 – 7.81 (m, 2H), 7.34 (q, *J* = 4.0 Hz, 1H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -71.3 (s, 3F).

¹³**C NMR** (101 MHz, CDCl₃) δ 180.4 (q, *J* = 35.1 Hz), 155.3, 150.2, 145.9, 137.2, 130.7, 129.9, 127.5, 123.6, 121.4, 116.8 (q, *J* = 292.1 Hz).

HRMS (EI⁺) calc: [M]⁺ (C₁₃H₈NOF₃) 251.0553; measured: 251.0550 = 1.2 ppm difference

IR (neat) vmax/ cm⁻¹: 1716, 1605, 1469, 1338, 942, 858, 753.

1-([1,1'-biphenyl]-4-yl)-2,2,2-trifluoroethan-1-one, 1m

1m was synthesised from phenylboronic acid following **General Procedure B** on a 3 mmol scale to yield a colourless solid (630 mg, 84%).

 $\mathbf{R}_{f} = 0.3 (30\% \text{ Et}_{2}\text{O in Hexane})$

¹H NMR (400 MHz, CDCl₃) δ: 8.24 – 8.12 (m, 2H), 7.81 – 7.74 (m, 2H), 7.65-7.58 (m, 2H), 7.59 – 7.43 (m, 3H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 180.1 (q, *J* = 35.0 Hz), 148.2, 139.1, 130.8 (q, *J* = 2.1 Hz), 129.2, 128.9, 128.6, 127.7, 127.4, 116.8 (q, *J* = 291.4 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -71.2 (s, 3F).

Spectral data in accordance with literature.²

1-(4-(benzo[b]thiophen-3-yl)phenyl)-2,2,2-trifluoroethan-1-one, 1n

1n was synthesised from 3-benzo[b]thiophenylboronic acid following **General Procedure B** on a 3 mmol scale to yield a brown oil (593 mg, 65%). Note: isolated with 3% of remaining boronic acid, yield corrected to reflect this.

 $R_{f} = 0.3$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.21-8.11 (m, 2H), 7.98 – 7.91 (m, 2H), 7.82 – 7.77 (m, 2H), 7.57 (s, 1H), 7.48 – 7.41 (m, 2H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 180.0 (q, *J* = 35.0 Hz), 143.3, 140.9, 137.1, 136.3, 130.7 (d, *J* = 2.1 Hz), 129.1, 128.8, 125.8, 125.0, 124.9, 123.2, 122.5, 116.8 (q, *J* = 291.4 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -71.2 (s, 3F).

HRMS (APCI+) calc: [M]⁺ (C₁₆H₉OSF₃) 306.0321, measured = 306.0318, 1.0 ppm difference.

IR (neat) vmax/ cm⁻¹: 3043, 1715, 1415, 1153, 942.

1-(3'-amino-[1,1'-biphenyl]-4-yl)-2,2,2-trifluoroethan-1-one 10

1o was synthesised from 3-aminophenylboronic acid according to **General Procedure B** on a 5 mmol scale and purified using silica gel chromatography (30% Et₂O in pentane to 80% Et₂O in pentane) to yield a yellow oil that was assessed to be 94% pure, the yield has been adjusted to reflect this (895 mg, 67%).

 $\mathbf{R}_{f} = 0.1$ (30% Et₂O in Pentane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.18 – 8.11 (m, 2H), 7.77 – 7.71 (m, 2H), 7.34 – 7.27 (m, 1H), 7.10 – 7.03 (m, 1H), 6.98 – 6.94 (m, 1H), 6.82 – 6.76 (m, 1H), 3.78 (brs, 2H).

¹³C NMR (131 MHz, CDCl₃) δ: 180.2 (q, J = 35.0 Hz), 148.5, 147.1, 140.3, 130.7 (q, J = 2.2 Hz), 130.1, 128.5, 127.6, 119.3 (d, J = 323.3 Hz), 116.6 (q, J = 291.3 Hz), 115.6, 113.8

¹⁹F NMR (376 MHz, CDCl₃) δ: -71.2 (s, 3F)

HRMS (ESI+) calc: $[M+H^+]$ (C₁₄H₁₀ONF₃) 266.0715, measured = 266.0715, 0 ppm difference.

IR (neat) vmax/ cm⁻¹: 3388, 1712, 1602, 1177, 941, 766.

1p was synthesised from (2-methoxypyrimidin-5-yl)boronic acid following **General Procedure B** on a 3 mmol scale and purified using column chromatography on silica gel (0% MeOH in CHCl₃ to 10% MeOH in CHCl₃) to yield a white solid (431 mg, 51%).

 $R_{f} = 0.1$ (40% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.80 (s, 2H), 8.23 (d, *J* = 7.6 Hz, 2H), 7.72 (d, *J* = 8.6 Hz, 2H), 4.09 (s, 3H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 179.9 (q, *J* = 35.3 Hz), 165.8, 157.6, 157.0, 141.5, 131.2 (q, *J* = 2.1 Hz), 129.3, 126.7 (d, *J* = 56.1 Hz), 116.6 (q, *J* = 291.2 Hz), 55.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -71.3 (s, 3F).

HRMS (APCI+) calc: [M]⁺ (C₁₃H₉O2N2F₃) 282.0611, measured = 282.0609, 0.7 ppm difference.

IR (neat) vmax/ cm⁻¹: 3013, 1701, 1402, 1021, 765.

1q was prepared on a 5 mmol scale from 4-(3-bromophenyl)-2,6-diphenylpyrimidine using **General Procedure C** to yield a yellow solid (325 mg, 16%)

 $R_f = 0.3$ (20% EtOAc in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ 8.97 (s, 1H), 8.75 – 8.71 (m, 2H), 8.68 – 8.65 (m, 1H), 8.34 – 8.29 (m, 2H), 8.25 – 8.21 (m, 1H), 8.06 (s, 1H), 7.80 – 7.73 (m, 1H), 7.62 – 7.54 (m, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 180.5 (q, *J* = 34.8 Hz), 165.4, 164.8, 162.9, 138.9, 137.8, 137.2, 134.2, 132.0, 131.3, 131.1, 130.7, 129.9, 129.5 – 128.3 (m), 127.5, 116.8 (q, *J* = 290.9 Hz), 110.3.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -71.2 (s, 3F).

HRMS (ACPI⁺) Calc: [M+H]⁺ (C₂₄H₁₅F₃N₂O) 405.1209; measured: 405.1195 = 3.5 ppm difference

IR (neat) vmax/ cm⁻¹: 2927, 1717, 1590, 1568, 1531, 860, 740.

1-(4-(benzo[b]thiophen-3-yl)phenyl)-2,2,2-trifluoroethan-1-one, 1r

1r was synthesised following literature precedent³ from 4-(dibutylamino)-benzaldehyde to yield an orange oil that solidified on standing (1.40 g, 51% over 2 steps).

 $R_{f} = 0.7$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.31 – 7.92 (m, 2H), 7.71 – 7.52 (m, 2H), 7.44 (d, J = 8.8 Hz, 2H), 7.23 (d, J = 16.2 Hz, 1H), 6.93 (d, J = 16.1 Hz, 1H), 6.61 (d, J = 8.9 Hz, 2H), 4.19 – 3.1 (m, 4H), 2.11 – 1.52 (m, 4H), 1.42 (hept, J = 8.4, 7.9 Hz, 4H), 1.04 (t, J = 7.3 Hz, 6H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 179.5 (q, *J* = 34.6 Hz), 148.7, 145.9, 133.9, 130.7 (d, *J* = 2.1 Hz), 128.7, 127.3, 126.0, 123.3, 121.3, 116.9 (q, *J* = 291.5 Hz), 111.5, 50.8, 29.5, 20.3, 14.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -70.9 (s, 3F).

Spectral data in accordance with literature.³

(E)-2,2,2-trifluoro-1-(4-styrylphenyl)ethan-1-one, 1s

1s was synthesised from styrylboronic acid following **General Procedure B** on a 3 mmol scale to yield a brown solid (572 mg, 69%).

 $R_{f} = 0.3$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.10 – 8.04 (m, 2H), 7.70 – 7.63 (m, 2H), 7.60 – 7.54 (m, 2H), 7.44 – 7.38 (m, 2H), 7.37 – 7.27 (m, 2H), 7.15 (d, *J* = 16.3 Hz, 1H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 179.8 (q, *J* = 34.9 Hz), 144.5, 136.3, 133.3, 130.7 (q, *J* = 1.9 Hz), 128.9, 128.8, 127.1, 126.9, 126.8, 126.4, 116.8 (q, *J* = 291.4 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -71.1 (s, 3F).

HRMS (APCI+) calc: [M]⁺ (C₁₆H₁₁OF₃) 276.0757, measured = 276.0756, 0.4 ppm difference.

IR (neat) vmax/ cm⁻¹: 2938, 1768, 1208, 1048, 691.

2,2,2-trifluoro-1-(naphthalen-2-yl)ethan-1-one, 1u

1u was prepared on a 3.0 mmol scale from 2-bromonaphthalene using General ProcedureC to yield a white solid (499 mg, 74%)

 $\mathbf{R}_{f} = 0.4$ (10% EtOAc in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ 8.63 (s, 1H), 8.08 (d, J = 8.5 Hz, 1H), 8.02 (d, J = 8.2 Hz, 1H), 7.97 (d, J = 8.8 Hz, 1H), 7.92 (d, J = 8.2 Hz, 1H), 7.74 – 7.59 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 180.6 (q, *J* = 35.0 Hz), 136.6, 134.0 – 133.0 (m), 132.3, 130.3, 130.2, 129.2, 128.0, 127.6, 127.3, 124.3, 117.0 (q, *J* = 291.3 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -70.6 (s, 3F).

Spectral data in accordance with literature.⁴

tert-butyl 3-(2,2,2-trifluoroacetyl)-1H-indole-1-carboxylate, 1w

In a 20 ml vial, under air, to a solution of 3-trifluoroacetyl-1H-indole (1.07 g, 5 mmol, 1 equiv.) in DCM (10 ml, 0.5 M) was added Et₃N (759 mg, 7.5 mmol, 1.5 equiv.) and then Boc₂O (1.09 g, 5 mmol, 1 equiv.) with stirring. A white precip_itate formed and the suspension was stirred overnight. Sat. aq. NH₄Cl and DCM was added and the layers partitioned. The organic layer was washed twice wit_h water and once with brine. The organic layer was dried with MgSO₄, filtered and concentrated *in vacuo* (40°C bath, 100 mBar) to yield the title material as a white solid (1.31 g, 84%).

 $\mathbf{R}_{f} = 0.3 (30\% \text{ Et}_{2}\text{O in Hexane})$

¹**H NMR** (400 MHz, CDCl₃) δ: 8.44 (d, *J* = 1.8 Hz, 1H), 8.36 (dd, *J* = 7.1, 2.0 Hz, 1H), 8.25 – 8.12 (m, 1H), 7.43 (m, 2H), 1.73 (s, 9H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 176.2 (q, *J* = 36.0 Hz), 148.5, 135.4 (d, *J* = 5.2 Hz), 135.3, 127.2, 126.5, 125.2, 122.4, 116.5 (q, *J* = 290.8 Hz), 115.3, 113.0, 86.6, 28.0

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -78.2 (s, 3F).

Spectral data in accordance with literature.⁵

In a 20 ml vial, under air, to a solution of 3-trifluoroacetyl-1H-indole (1.07 g, 5 mmol, 1 equiv.) in DCM (10 ml, 0.5 M) was added Et_3N (759 mg, 7.5 mmol, 1.5 equiv.) and then perfluoropyridine (845 mg, 5 mmol, 1 equiv.) with stirring. A red precipitate formed and the suspension was stirred overnight. Sat. aq. NH₄Cl and DCM was added and the layers partitioned. The organic layer was washed twice with water and once with brine. The organic layer was dried with MgSO₄, filtered and concentrated *in vacuo* (40°C bath, 100 mBar) to yield the title material as a red solid (1.45 g, 80%).

 $\mathbf{R}_{f} = 0.2$ (30% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.56 – 8.47 (m, 1H), 8.11 - 8.04 (m, 1H), 7.60 – 7.48 (m, 2H), 7.28 - 7.19 (m, 1H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 175.6 (q, *J* = 36.2 Hz), 145.5 – 143.1 (m), 138.8 – 136.3 (m), 136.1 (d, *J* = 5.3 Hz), 135.9, 128.1 (d, *J* = 12.1 Hz), 126.4, 126.2, 125.4, 123.1, 116.5 (d, *J* = 290.7 Hz), 114.0, 111.0.

¹⁹F NMR (376 MHz, CDCl₃) δ: -72.8 (s, 3F), -85.0 – -85.5 (m, 2F), -144.7 – -145.0 (m, 2F).

HRMS (ESI⁺) calc: [M+Na⁺] (C₂₅H₅F₇N₂NaO) 385.0182, measured = 385.0178, -1.0 ppm difference.

IR (neat) vmax/ cm⁻¹: 2967, 1658, 1537, 1183, 748.

1-(1-benzyl-1H-indol-3-yl)-2,2,2-trifluoroethan-1-one, 1y

In a 20 ml vial, under air, to a solution of 3-trifluoroacetyl-1H-indole (1.07 g, 5 mmol, 1 equiv.) in DCM (10 ml, 0.5 M) was added Et_3N (759 mg, 7.5 mmol, 1.5 equiv.) and then BnBr (855 mg, 5 mmol, 1 equiv.) with stirring. A white precipitate formed and the suspension was stirred overnight. Sat. aq. NH₄Cl and DCM was added and the layers partitioned. The organic layer was washed twice with water and once with brine. The organic layer was dried with MgSO₄, filtered and concentrated in vacuo (40°C bath, 100 mBar) to yield the title material as a white solid (1.24 g, 4.1 mmol, 82%).

 $\mathbf{R}_{f} = 0.3$ (30% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.45 (d, *J* = 7.7 Hz, 1H), 8.00 (s, 1H), 7.36 (m, 6H), 7.19 (d, *J* = 6.9 Hz, 2H), 5.40 (s, 2H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 174.9 (q, *J* = 34.9 Hz), 137.7 (q, *J* = 5.0 Hz), 136.9, 134.8, 129.2, 128.6, 127.2, 127.0, 124.8, 124.1, 122.7, 117.1 (q, *J* = 291.1 Hz), 110.8, 109.9, 51.4

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -72.1 (s, 3F).

Spectral data in accordance with literature.⁶

2,2,2-trifluoro-1-(6-methoxy-1-methyl-1H-indol-3-yl)ethan-1-one, 1aa

1aa was synthesised from 6-methoxyindole following **General Procedure A** on a 5 mmol scale to yield a colourless solid (1.17 g, 91%).

 $R_{f} = 0.2$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 7.98 (d, *J* = 8.0 Hz, 1H), 7.75 - 7.69 (m, 1H), 7.36 - 7.14 (m, 1H), 6.78 (d, *J* = 7.9 Hz, 1H), 4.14 (s, 3H), 3.95 (s, 3H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 174.7 (q, *J* = 34.4 Hz), 147.9, 138.9 (d, *J* = 5.0 Hz), 129.5, 126.9, 124.9, 117.2 (d, *J* = 291.1 Hz), 114.9, 109.3, 105.5, 55.6, 38.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -72.1 (s, 3F).

Spectral data in accordance with literature.⁶

1-methyl-3-(2,2,2-trifluoroacetyl)-1H-indole-5-carbonitrile, 1ab

1ab was synthesised from 5-cyanoindole following **General Procedure A** on a 5 mmol scale to yield a brown solid (958 mg, 76%).

 $R_{f} = 0.3$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.75 (dd, J = 1.6, 0.7 Hz, 1H), 8.03 (d, J = 1.7 Hz, 1H), 7.64 (dd, J = 8.6, 1.6 Hz, 1H), 7.50 (dd, J = 8.5, 0.7 Hz, 1H), 3.98 (s, 3H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 174.8 (q, *J* = 36.1 Hz), 139.8 (q, *J* = 4.8 Hz), 138.8, 127.9, 127.7, 126.7, 119.4, 116.7 (q, *J* = 290.7 Hz), 111.2, 109.8, 107.5, 34.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -72.7 (s, 3F).

HRMS (APCI+) calc: [M+H]⁺ (C₁₂H₇N₂OF₃) 253.0583, measured = 253.0577, 2.4 ppm difference.

IR (neat) vmax/ cm⁻¹: 3111, 1686, 1253, 754, 575.

1-(4-fluoro-1-methyl-1H-indol-3-yl)-2,2,2-trifluoroethan-1-one, 1ac

1ac was synthesised from 4-fluoroindole following **General Procedure A** on a 5 mmol scale to yield a colourless solid (1.11 g, 91%).

 $R_{f} = 0.3$ (20% Et₂O in Hexane)

¹H NMR (400 MHz, CDCl₃) δ: 7.86 (s, 1H), 7.27 (td, *J* = 8.0, 4.4 Hz, 1H), 7.13 (d, *J* = 8.2 Hz, 1H), 6.96 (dd, *J* = 10.7, 7.9 Hz, 1H), 3.87 (s, 3H).

¹³**C NMR** (131 MHz, CDCl₃) δ : 172.9 (q, J = 34.7 Hz), 156.6 (d, J = 255.0 Hz), 140.2 (d, J = 10.5 Hz), 139.2 (d, J = 5.2 Hz), 125.6 (d, J = 7.8 Hz), 117.4 (q, J = 291.9 Hz), 114.5 (d, J = 21.3 Hz), 109.8 (d, J = 21.4 Hz), 108.8 (d, J = 5.8 Hz), 106.5 (d, J = 4.2 Hz), 34.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ : -71.2 (s, 3F), -107.7 (dd, J = 10.8, 4.5 Hz, 2F).

1-(4-chloro-1-methyl-1H-indol-3-yl)-2,2,2-trifluoroethan-1-one, 1ad

1ac was synthesised from 4-chloroindole following **General Procedure A** on a 5 mmol scale to yield a brown solid (1.16 g, 89%).

 $R_{f} = 0.3$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 7.91 (q, *J* = 1.8 Hz, 1H), 7.45 – 7.26 (m, 3H), 3.89 (s, 3H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 172.9 (q, *J* = 34.4 Hz), 139.4 (q, *J* = 5.3 Hz), 139.2, 127.9, 125.5, 125.1, 124.3, 117.3 (q, *J* = 292.5 Hz), 109.5, 108.8, 34.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -71.0 (s, 3F).

HRMS (ESI⁺) calc: [M+Na⁺] (C₁₁H₇³⁵CIF₃NNaO) 284.0060 measured 284.0064, 0.8 ppm difference.

IR (neat) vmax/ cm⁻¹: 2924, 1682, 1527, 1079, 721.

1-(4-bromo-1-methyl-1H-indol-3-yl)-2,2,2-trifluoroethan-1-one, 1ae

1ae was prepared on a 4 mmol scale from 4-bromoindole using **General Procedure A** to yield a brown solid (989 mg, 81%)

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 – 7.85 (m, 1H), 7.51 (d, *J* = 7.7 Hz, 1H), 7.30 (d, *J* = 8.2 Hz, 1H), 7.16 (app. t, *J* = 8.0 Hz, 1H), 3.87 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 173.0 (q, *J* = 34.3 Hz), 139.5 (q, *J* = 5.3 Hz), 139.2, 129.2, 126.0, 125.3, 117.4 (q, *J* = 291.2 Hz), 114.9, 109.5, 109.4, 34.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -71.1 (s, 3F).

HRMS (ESI⁺) calc: $[M+Na]^+$ (C₁₁H₇⁷⁹BrF₃NNaO) 327.9555; measured: 327.9563 = 2.4 ppm difference

IR (neat) vmax/ cm⁻¹: 2955, 1676, 1526, 1079, 720.

1-(5-bromo-1-methyl-1H-indol-3-yl)-2,2,2-trifluoroethan-1-one, 1af

1af was synthesised from 5-bromoindole following **General Procedure A** on a 5 mmol scale to yield an orange solid (1.20 g, 80%).

 $R_{f} = 0.3$ (20% Et₂O in Hexane)

¹H NMR (400 MHz, CDCl₃) δ: 8.62 – 8.50 (m, 1H), 8.06 – 7.82 (m, 1H), 7.56 – 7.43 (m, 1H), 7.34 – 7.21 (m, 1H), 3.90 (s, 3H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 174.6 (q, *J* = 35.₂ Hz), 138.4 (q, *J* = 4.9 Hz), 136.0, 128.4, 127.7, 125.2, 119.2 (q, *J* = 290.9 Hz), 117.8, 111.6, 108.9, 34.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -72.4 (s, 3F).

Spectral data in accordance with literature.⁶

1ag was synthesised from 5-iodoindole following **General Procedure A** on a 5 mmol scale to yield a brown solid (1.52 g, 86%).

 $\mathbf{R}_{f} = 0.3 (20\% \text{ Et}_{2}\text{O in Hexane})$

¹**H NMR** (400 MHz, CDCl₃) δ: 8.74 (s, 1H), 7.83 (s, 1H), 7.64 (d, *J* = 8.5 Hz, 1H), 7.15 (d, *J* = 8.6 Hz, 1H), 3.89 (s, 3H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 174.6 (q, *J* = 35.2 Hz), 138.4 (q, *J* = 4.9 Hz), 136.5, 133.3, 131.4, 128.9, 116.9 (q, *J* = 290.9 Hz), 111.9, 108.7, 88.5, 34.2

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -72.4 (s, 3F).

HRMS (ESI+) calc: [M+Na]⁺ (C₁₁H₇F₃INNaO) 375.9417, measured 375.9414, 0.6 ppm difference.

IR (neat) vmax/ cm⁻¹: 3119, 2924, 1656, 1527, 883, 722.

2,2,2-trifluoro-1-(1-methyl-2-(thiophen-2-yl)-1H-indol-3-yl)ethan-1-one, 1ah

1ah was synthesised from 2-thiophenylindole following **General Procedure A** on a 5 mmol scale to yield a yellow solid (1.39 g, 90%).

 $R_{f} = 0.3 (10\% Et_{2}O in Hexane)$

¹**H NMR** (400 MHz, CDCl₃) δ: 8.31 – 8.24 (m, 1H), 7.63-7.55 (m, 1H), 7.47 – 7.38 (m, 3H), 7.24 – 7.19 (m, 2H), 3.64 (s, 3H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 176.1 (q, *J* = 36.5 Hz), 141.4, 137.2, 131.7, 129.4, 129.3, 127.2, 126.2, 124.5, 123.9, 121.9 (q, *J* = 2.2 Hz), 116.5 (q, *J* = 289.9 Hz), 110.9, 110.3, 31.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -72.9 (s, 3F).

HRMS (ESI+) calc: [M+H]⁺ (C₁₅H₁₀NOSF₃) 310.0508, measured 310.0505, 1.0 ppm difference.

IR (neat) vmax/ cm⁻¹: 3098, 1591, 1482, 1311, 742.

2,2,2-trifluoro-1-(1-methyl-2-phenyl-1H-indol-3-yl)ethan-1-one, 1ai

1ai was synthesised from 2-phenylindole following **General Procedure A** on a 5 mmol scale to yield a colourless solid (1.24 g, 82%).

 $R_{f} = 0.4$ (30% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.38 – 8.29 (m, 1H), 7.59 – 7.50 (m, 3H), 7.45 – 7.37 (m, 5H), 3.54 (s, 3H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 175.97 (q, *J* = 36.3 Hz), 149.2, 136.5, 130.6, 130.2, 129.8, 128.2, 126.5, 124.2, 123.9, 122.5, 116.5 (q, *J* = 289.9 Hz), 110.3, 108.9, 31.3.

¹⁹F NMR (376 MHz, CDCl₃) δ: -72.6 (s, 3F).

2,2,2-trifluoro-1-(1-methyl-1H-indol-5-yl)ethan-1-one, 1aj

1aj was synthesised from 5-bromo-1-methyl indole (as prepared from 5-bromoindole using **General Procedure A**) following **General Procedure C** on a 8.6 mmol scale and purified using column chromatography on silica gel (23% Et_2O in Hexane to 43% Et_2O in Hexane) to yield an orange solid (804 mg, 41%).

 $R_{f} = 0.3 (30\% Et_{2}O in Hexane)$

¹**H NMR** (400 MHz, CDCl₃) δ: 8.43 (s, 1H), 8.04 (dd, *J* = 8.9, 1.7 Hz, 1H), 7.53 – 7.24 (m, 1H), 7.21 (d, *J* = 3.2 Hz, 1H), 6.84 – 6.53 (m, 1H), 3.81 (s, 3H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 180.5 (q, *J* = 34.2 Hz), 140.3, 131.4 (d, *J* = 19.3 Hz), 128.2, 126.0, 123.4, 121.8, 117.4 (d, *J* = 291.9 Hz), 109.9 (q, *J* = 15.2 Hz), 104.0, 33.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -69.9 (s, 3F).

2,2,2-trifluoro-1-(9-methyl-9H-carbazol-3-yl)ethan-1-one, 1ak

1ak was synthesised from carbazole according to literature precedent to yield a yellow oil that solidified overnight to a green-yellow solid (452 mg, 83%).

 $\mathbf{R}_{f} = 0.4$ (30% Et₂O in Pentane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.77 (s, 1H), 8.22 – 8.14 (m, 1H), 8.11 (d, *J* = 7.8 Hz, 1H), 7.55 (ddd, *J* = 8.3, 7.1, 1.2 Hz, 1H), 7.43 – 7.29 (m, 3H), 3.82 (s, 3H).

¹³C NMR (131 MHz, CDCl₃) δ: 179.8 (q, J = 34.0 Hz), 144.8, 141.8, 128.1 (q, J = 2.2 Hz), 127.2, 124.0 (q, J = 2.8 Hz), 123.0, 122.9, 121.1, 120.9, 120.8, 117.5 (q, J = 291.6 Hz), 109.4, 108.8, 29.4.

¹⁹F NMR (376 MHz, CDCl₃) δ: -69.8 (s, 3F)
2,2,2-trifluoro-1-(1-methyl-1H-pyrazol-4-yl)ethan-1-one, 1an

To a 50 mL round-bottomed flask equipped was added 1-methyl-1*H*-pyrazole (821 mg, 10 mmol, 1.0 equiv.) and pyridine (5 mL). The reaction mixture was cooled to 0 °C in an ice bath and TFAA (2.8 mL, 20 mmol, 2.0 equiv.) was added dropwise. The reaction was stirred at reflux for 24 hours before being quenched with water. The reaction mixture was partitioned and extracted into DCM (3x 20 mL). The organic layers were combined, dried over MgSO₄, filtered and concentrated in *vacuo* to afford **1an** as a brown oil (942 mg, 53%).

 $\mathbf{R}_{f} = 0.3$ (20% EtOAc in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (d, *J* = 6.9 Hz, 2H), 4.00 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 174.4 (q, *J* = 36.7 Hz), 141.9, 135.1, 116.4 (p, *J* = 290.7 Hz), 39.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -74.9 (s, 3F).

Spectral data in accordance with literature.¹⁰

2,2,2-trifluoro-1-(1-(pentan-3-yl)-1H-pyrazol-4-yl)ethan-1-one, 1ao

1ao was prepared according to literature precedent¹¹ and purified by flash column chromatography (20% EtOAc in Hexane) to yield a yellow oil (398 mg, 34%)

 $R_f = 0.4$ (20% EtOAc in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ 8.10 (s, 1H), 8.04 (s, 1H), 4.02 – 3.92 (m, 1H), 2.02 – 1.79 (m, 4H), 0.79 (t, *J* = 7.4 Hz, 6H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -74.7 (s, 3F).

¹³**C NMR** (101 MHz, CDCl₃) δ 174.8 (q, *J* = 36.6 Hz), 141.9, 133.9, 116.6 (q, *J* = 290.2 Hz), 115.7, 68.0, 28.0, 10.6.

Spectral data in accordance with literature.¹²

(Z)-1,1,1-trifluorononadec-10-en-2-one, 1ap

To a 7 mL vial, under air, was added methyl oleate (1.01 mL, 3 mmol, 1 equiv.) and TESCF₃ (2.07 mL, 9 mmol, 3 equiv.). With stirring, TBAT (162 mg, 0.3 mmol, 10 mol%) was added and the vial capped quickly (caution: exotherm). After stirring for 1 h (or until complete consumption of the starting material, determined by TLC) was added TBAF (3.2 mL of a 1 M THF solution, 3.2 mmol, 1.06 equiv). The resulting solution was stirred for 5 minutes before being concentrated directly onto silica. The crude material was purified in 3 portions through silica gel chromatography (7% Et₂O in Hexane to 17% Et₂O in Hexane) to yield the title material (440 mg, 41%) as a colourless oil. *Note: This product was isolated alongside c.a 5% TBAT which proved difficult to remove – the yield has been adjusted accordingly.*

 $R_{f} = 0.4$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 5.53 – 5.31 (m, 2H), 2.72 (t, *J* = 7.2 Hz, 2H), 2.01 (tt, *J* = 6.5, 3.4 Hz, 4H), 1.74 (q, *J* = 7.1 Hz, 2H), 1.54 – 1.25 (m, 20H), 0.91 – 0.95 (m, 3H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 191.7 (q, *J* = 34.6 Hz), 130.2, 129.7, 115.7 (q, *J* = 292.3 Hz), 36.4, 32.0, 31.7, 29.9, 29.7, 29.6, 29.4, 29.2, 29.1, 28.8, 27.3, 27.2, 22.8, 22.4, 14.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -79.2 (s, 3F).

Spectral data in accordance with literature.¹³

N-4-Fluorophenyl trifluoroacetamide, 1as

To a solution of 4-fluoroaniline (556 mg, 5 mmol, 1 equiv.) in DCM (0.7 M) at 0°C was added TFAA (1.0 ml, 10 mmol, 2 equiv.) with stirring. After addition was complete, the reaction was warmed to RT and monitored by TLC (20% EA/hexane) until complete consumption of the SM was observed. One complete, saturated aq. Na₂CO₃ was added and the layers partitioned. The organic layer was washed once with saturated aq. Na₂CO₃, once with water and once with brine. The organic layer was dried over MgSO₄ and concentrated *in vacuo* to yield analytically pure title material (856 mg, 4.6 mmol, 83%) as an off white solid.

 $\mathbf{R}_{f} = 0.3$ (20% EtOAc in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 7.92 (br. s, 1H), 7.54 (dd, *J* = 4.6, 4.3 Hz, 2H), 7.09 (dd, *J* = 4.6, 1.1 Hz, 2H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -75.5 (s, 3F), -114.6 - -114.8 (m, 1F).

¹³**C NMR** (131 MHz, CDCl₃) δ: 161.8 (q, *J* = 28.2 Hz), 159.4 (d, *J* = 245.4 Hz), 131.0 (d, *J* = 4.1 Hz), 122.6 (d, *J* = 8.1 Hz), 116.3 (d, *J* = 22.5 Hz), 115.8 (q, *J* = 286.3 Hz).

Spectral data in accordance with literature.¹⁴

To a stirred solution of phenylethylamine (0.62 mL, 5 mmol, 1 equiv.) in CHCl₃ (5 mL) was added glacial acetic acid (0.29 mL, 5 mmol, 1 equiv.). 2,2,2-Trifluoroacetophenone (0.70 mL, 5 mmol, 1 equiv.) was added as a solution in CHCl₃ (1 mL) and the solution stirred at reflux overnight. Once cooled, sat. aq. Na₂CO₃ was added and the layers separated. The aqueous layer was extracted with once with CHCl₃ and the combined organic extracts dried with MgSO₄ and concentrated *in vacuo* (100 mBar, 40°C bath). The crude material was purified by chromatography on silica gel (7% Et₂O in Pentane to 30% Et₂O in pentane) to yield **1au** as a colourless oil (795 mg, 57%).

 $\mathbf{R}_{f} = 0.3$ (20% Et₂O in Pentane)

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 – 7.34 (m, 3H), 7.32 – 7.17 (m, 3H), 7.15 – 7.04 (m, 2H), 6.94 – 6.80 (m, 2H), 3.66 (t, J = 7.1, 2H), 3.02 (t, J = 7.1 Hz, 2H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -71.1 (s, 3F).

¹³**C NMR** (101 MHz, CDCl₃) δ 158.9 (q, *J* = 33.6 Hz), 139.1, 130.2, 129.9, 129.1, 128.6, 128.4, 127.5, 126.4, 119.7 (q, *J* = 278.6 Hz), 54.8, 36.5.

HRMS (ESI⁺) calc: [M+Na]⁺ (C₁₆H₁₄F₃NNa) 300.0971, measured 300.0966, 2 ppm difference.

IR (neat) vmax/ cm⁻¹: 2838, 1667, 1512, 1329, 1035, 700.

To a stirred solution of 4-methoxybenzylamine (0.65 mL, 5 mmol, 1 equiv.) in CHCl₃ (5 mL) was added glacial acetic acid (0.29 mL, 5 mmol, 1 equiv.). 2,2,2-Trifluoroacetophenone (0.70 mL, 5 mmol, 1 equiv.) was added as a solution in CHCl₃ (1 mL) and the solution stirred at reflux overnight. Once cooled, sat. aq. Na₂CO₃ was added and the layers separated. The aqueous layer was extracted with once with CHCl₃ and the combined organic extracts dried with MgSO₄ and concentrated *in vacuo* (100 mBar, 40°C bath). The crude material was purified by chromatography on silica gel (10% Et₂O in Pentane to 30% Et₂O in pentane) to yield **1av** as a colourless oil (965 mg, 66%).

 $\mathbf{R}_{f} = 0.3$ (20% Et₂O in Pentane)

¹**H NMR** (400 MHz, CDCl₃) δ 7.59 – 7.46 (m, 3H), 7.32 – 7.27 (m, 2H), 7.21 – 7.10 (m, 2H), 6.95 – 6.72 (m, 2H), 4.56 (d, *J* = 1.9 Hz, 2H), 3.80 (s, 3H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -70.8 (s, 3F).

¹³C NMR (101 MHz, CDCl₃) δ 158.6 (q, J = 35.9 Hz), 130.4, 130.3, 130.2, 129.0, 129.0, 127.8, 119.8 (d, J = 278.7 Hz), 114.4, 114.1, 56.5, 55.4.

HRMS (ESI⁺) calc: [M+Na]⁺ (C₁₆H₁₄F₃NNaO) 316.0920, measured 316.0926, 2 ppm difference.

IR (neat) vmax/ cm⁻¹: 2931, 1669, 1495, 1333, 1190, 697.

General Defluorination Procedures

General Procedure D - Standard 0.5 mmol scale procedure

An oven-dried (180°C) H-type divided cell equipped with a porous glass frit was evacuated and backfilled with N₂ three times. TEAPF₆ (275 mg, 1 mmol, 2 equiv.) was added to both the catholyte and anolyte. Trifluoromethylketone substrate (0.5 mmol, 1 equiv.) was added to the catholyte and TBAB (320 mg, 1 mmol, 2 equiv.) was added to the anolyte. To each compartment was added (with stirring) degassed, anhydrous MeCN (2.5 mL, 0.2 M) and then TMSCI (0.19 mL, 1.5 mmol, 3 equiv.). Under a strong flow of N₂ the septa were replaced with ones containing platinum coil electrodes (entire coil area made of ~ 10 cm Pt wire submerged). A constant current of -5 mA was applied for 19300 s (2 *F*). When the electrolysis was finished, the catholyte was concentrated directly onto silica and purified by flash column chromatography or concentrated and triturated with Et₂O to yield the product.

Scale-up 5 mmol scale experiment

An oven-dried (180°C) H-type divided cell equipped with a porous glass frit was evacuated and backfilled with N₂ three times. TEAPF₆ (2.75 g, 10 mmol, 2 equiv.) was added to both the catholyte and anolyte. **1a** (1.14 g, 5.0 mmol, 1 equiv.) was added to the catholyte compartment and TBAB (3.2 g, 10 mmol, 2 equiv.) was added to the anolyte compartment. To each compartment was added degassed, anhydrous MeCN (25 mL, 0.2 M) and then TMSCI (1.9 mL, 15 mmol, 3 equiv.). Under a strong flow of N₂ the septa were replaced with ones containing a Nickel foil cathode (6.0 cm x 2.0 cm plate, 5.0 cm x 2.0 cm submerged area) and a graphite rod anode (60 mm diameter, 5.0 cm length submerged). A constant current of -30 mA was applied for 32167 s (2 *F*) with stirring at 1000 RPM ($E_{cell} \sim -3.0$ V rising to -3.7 V after ~1.3 F). When the electrolysis was finished, the catholyte was concentrated and triturated with cold Et₂O (30 mL). The suspension was filtered, and the filtrate concentrated to yield analytically pure product as an off white solid (989 mg, 94%).

Electrasyn 2.0 experiment

TEAPF₆ (275 mg, 1.0 mmol, 2 equiv.) was added to both the catholyte and anolyte of the IKA ProDivide cell. **1a** (114 mg, 0.5 mmol, 1 equiv.) was added to the catholyte compartment and TBAB (320 mg, 1 mmol, 2 equiv.) was added to the anolyte compartment. To each compartment was added degassed, anhydrous MeCN (2.5 mL, 0.2 M) and then TMSCI (0.19 mL, 15 mmol, 3 equiv.). The cell was sealed with a Ni cathode and Graphite anode (used as received with the IKA Electrasyn 2.0) in place and a N₂ inlet added through a syringe. A canula was placed between the catholyte and anolyte compartments to ensure pressure equalisation. A constant current of -5 mA was applied for 19300 s (2 *F*). When the electrolysis was finished, the catholyte was concentrated and triturated with cold Et₂O (30 mL). The suspension was filtered, and the filtrate concentrated and analysed by ¹⁹F NMR relative to an internal C₆F₆ standard which showed 50% conversion of **1a** to yield 50% of **3a**. Note: given poor seals, leaving the reaction running for longer than 2 F in the ProDivide cell saw an increase in cell potential corresponding to the reduction of O₂.

Characterisation of Products

2,2-difluoro-1-(1-methyl-1H-indol-3-yl)ethan-1-one, 3a

3a was synthesised from **1a** following **General Procedure D** and purified by Et_2O trituration of the concentrated crude material to yield an off white solid that turned pink on standing (101.9 mg, 97%).

 $R_f = 0.2$ (20% EtOAc in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.42 – 8.31 (m, 1H), 8.02 (t, *J* = 1.8 Hz, 1H), 7.43 – 7.34 (m, 3H), 6.11 (t, *J* = 54.3 Hz, 1H), 3.91 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 182.7 (t, *J* = 25.2 Hz), 137.9 (t, *J* = 7.1 Hz), 137.2, 126.9, 124.2, 123.5, 122.5, 112.1 (t, *J* = 252.8 Hz), 110.1, 109.9, 33.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ : -120.1 (d, J = 54.4 Hz).

Spectral data in accordance with literature.14

1-(4-bromophenyl)-2,2-difluoroethan-1-one, 3b

3b was synthesised from 4'-bromo-2,2,2-trifluoroacetophenone following **General Procedure D** and purified by Et₂O trituration of the concentrated crude material to yield a colourless solid (110.4 mg, 94%).

 $R_{f} = 0.3$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 7.92 (d, *J* = 7.9, 2H), 7.75 (d, *J* = 8.8 Hz, 2H), 6.22 (t, *J* = 53.4 Hz, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 186.9 (t, *J* = 25.9 Hz), 132.5, 131.1 (t, *J* = 2.5 Hz), 130.7, 130.2, 111.4 (t, *J* = 254.1 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ : -121.5 (d, J = 53.9 Hz).

Spectral data in accordance with literature.¹⁵

2,2-difluoro-1-(4-fluorophenyl)ethan-1-one, 3c

3c was synthesised from 4',2,2,2-tetrafluoroacetophenone following **General Procedure D** and purified using silica gel chromatography (2% Et₂O in Hexane to 19% Et₂O in Hexane) to yield a colourless oil (67.8 mg, 78%).

 $R_{f} = 0.3$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.01 (dd, *J* = 8.7, 5.4 Hz, 2H), 7.13 (dd, *J* = 8.6 Hz, 1.0 Hz, 2H), 6.34 (t, *J* = 53.3 Hz, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 187.9 (t, *J* = 25.4 Hz), 131.5, 131.1, 130.2, 129.1, 111.1 (t, *J* = 254.4 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ : -122.8 (d, *J* = 53.5 Hz).

Spectral data in accordance with literature.¹⁶

1-(4-(dimethylamino)phenyl)-2,2-difluoroethan-1-one, 3d

3d was synthesised from 1-(4-(dimethylamino)phenyl)-2,2,2-trifluoroethan-1-one following **General Procedure D** and purified using silica gel chromatography (2% Et_2O in Hexane to 19% Et_2O in Hexane) to yield a yellow solid (96.5 mg, 97%).

 $R_{f} = 0.3$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.02 (d, *J* = 9.3, 2H), 6.73 (d, *J* = 9.2 Hz, 2H), 6.31 (t, *J* = 54.0 Hz, 1H), 3.11 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ: 185.1 (t, J = 24.2 Hz), 154.4, 132.0 (t, J = 2.3 Hz), 119.3, 111.3 (d, J = 110.2 Hz), 40.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ : -120.9 (d, J = 54.1 Hz).

Spectral data in accordance with literature.¹⁷

2,2-difluoro-1-(4-methoxyphenyl)ethan-1-one, 3e

3e was synthesised from 2,2,2-trifluoro-1-(4-methoxyphenyl)ethan-1-one following **General Procedure D** and purified using silica gel chromatography (12% Et_2O in Hexane to 42% Et_2O in Hexane) to yield a colourless solid (81.8 mg, 88%).

 $R_{f} = 0.2$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.44 – 7.91 (m, 2H), 7.12 – 6.61 (m, 2H), 6.32 (t, *J* = 53.7 Hz, 1H), 3.91 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 186.2 (t, *J* = 25.0 Hz), 165.0, 132.3 (t, *J* = 2.4 Hz), 124.6, 114.4, 111.6 (t, *J* = 253.7 Hz), 55.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ : -121.3 (d, J = 53.9 Hz).

Spectral data in accordance with literature.¹⁶

2,2-difluoro-1-(4-methylphenyl)ethan-1-one, 3f

3f was synthesised from 2,2,2-trifluoro-1-(4-methylphenyl)ethan-1-one following **General Procedure D** and purified using silica gel chromatography (10% Et₂O in Hexane to 40% Et₂O in Hexane) to yield a colourless solid (71.4 mg, 84%).

 $R_{f} = 0.3$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: δ 7.96 (d, *J* = 8.1 Hz, 2H), 7.35 (d, *J* = 8.2 Hz, 2H), 6.29 (t, J = 53.5 Hz, 2H), 2.45 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 187.1 (t, *J* = 25.0 Hz), 146.2, 129.7 (t, *J* = 2.2 Hz), 129.7, 129.0, 111.3 (t, *J* = 254.1 Hz), 21.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -121.8 (d, *J* = 53.7 Hz, 2F).

Spectral data in accordance with literature. ¹⁵

2,2-difluoro-1-phenylethan-1-one, 3g

3g was synthesised from 2,2,2-trifluoroacetophenone following **General Procedure D** and purified using silica gel chromatography (10% Et_2O in Hexane to 19% Et_2O in Hexane) to yield a colourless oil (73.3 mg, 94%).

 $\mathbf{R}_{f} = 0.2 (10\% \text{ Et}_{2}\text{O in Hexane})$

¹**H NMR** (400 MHz, CDCl₃) δ: 8.13 – 8.04 (m, 2H), 7.73 – 7.64 (m, 1H), 7.65 – 7.43 (m, 2H), 6.32 (t, J = 53.5 Hz, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 187.5 (t, *J* = 25.1 Hz), 134.8, 131.3, 129.6, 129.1, 111.1 (t, *J* = 252.1 Hz)

¹⁹**F NMR** (376 MHz, CDCl₃) δ : -121.8 (d, J = 53.6 Hz).

Spectral data in accordance with literature.¹⁸

1-(2,3-dihydrobenzofuran-5-yl)-2,2-difluoroethan-1-one, 3h

3h was synthesised from 1-(2,3-dihydrobenzofuran-5-yl)-2,2,2-trifluoroethan-1-one following **General Procedure D** and purified by using silica gel chromatography (18% Et₂O in Hexane to 27% Et₂O in Hexane) to yield a white solid (55.1 mg, 55%).

 $R_{f} = 0.3$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 7.93 (d, J = 8.9 Hz, 2H), 6.86 (d, J = 8.4 Hz, 1H), 6.24 (t, J = 53.7 Hz, 1H), 4.70 (t, J = 8.8 Hz, 2H), 3.28 (t, J = 8.8 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ: 185.9 (t, J = 24.9 Hz), 166.1, 132.2, 128.5, 127.1, 124.8, 111.7 (t, J = 253.8 Hz), 109.8, 72.6, 28.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -121.0 (d, *J* = 53.9 Hz, 2F).

Spectral data in accordance with literature.¹⁹

1-(4-cyclopropylphenyl)-2,2-difluoroethan-1-one, 3i

3i was synthesised from **1i** following **General Procedure D** and purified using silica gel chromatography (5% Et_2O in Hexane to 20% Et_2O in Hexane) to yield a colourless solid (80.3 mg, 82%).

 $R_{f} = 0.2$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.01 (d, *J* = 8.1 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 6.32 (t, *J* = 53.6 Hz, 1H), 2.04 (tt, *J* = 8.4, 5.0 Hz, 1H), 1.25 – 0.94 (m, 2H), 0.81 (dt, *J* = 7.0, 4.8 Hz, 2H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 187.0 (t, *J* = 25.1 Hz), 152.9, 129.8, 128.8, 125.8, 111.3 (t, *J* = 253.6 Hz), 16.0, 10.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ : -121.7 (d, J = 53.6 Hz).

Spectral data in accordance with literature.¹⁶

3j was synthesised from **1j** following **General Procedure D** and purified using silica gel chromatography (0% Et₂O in Hexane to 3% Et₂O in Hexane) to yield a yellow oil (102 mg, 90%).

 $\mathbf{R}_{\mathbf{f}} = 0.4 (10\% \text{ Et}_2 \text{O in Hexane})$

¹**H NMR** (400 MHz, CDCl₃) δ: 7.99 (d, J = 8.0 Hz, 2H), 7.43 (d, J = 8.1 Hz, 2H), 6.28 (t, J = 53.6 Hz, 1H), 2.69 (t, J = 7.8 Hz, 2H), 1.65 (pent, J = 7.5 Hz, 2H), 1.33 (dhept, J = 7.0, 4.0, 3.3 Hz, 4H), 0.90 (t, J = 6.8 Hz, 3H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 187.2 (t, *J* = 25.0 Hz), 151.1, 129.8 (t, *J* = 2.3 Hz), 129.3 – 129.2 (m), 129.1, 111.3 (t, *J* = 253.6 Hz), 36.2, 31.4, 30.6, 22.5, 14.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ : -121.8 (d, *J* = 53.6 Hz, 2F).

HRMS (ESI+) calc: $[M+Na^+]$ (C₁₃H₁₆NaOF₂) 249.1061; measured: 249.1066 = 2 ppm difference.

IR (neat) vmax/ cm⁻¹: 2903, 1708, 1607, 1057, 572.

3k was synthesised from **1k** following **General Procedure D** and purified by using silica gel chromatography (7% Et_2O in Pentane to 60% Et_2O in Pentane) to yield a colourless solid (42.4 mg, 41%).

 $R_{f} = 0.6$ (30% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: δ 7.93 (dt, *J* = 8.7, 1.9 Hz, 1H), 7.43 – 7.32 (m, 5H), 6.97 – 6.84 (m, 2H), 6.24 (t, *J* = 53.9 Hz, 1H), 5.14 (s, 2H), 2.60 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 187.5 (t, *J* = 23.8 Hz), 162.6, 145.5, 135.9, 133.4 (t, *J* = 4.6 Hz), 128.8, 128.4, 127.5, 123.7, 119.1, 111.7, 111.3 (t, *J* = 254.2 Hz), 70.1, 22.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -120.5 (d, *J* = 54.0 Hz, 2F).

HRMS (ESI+) calc: [M+Na⁺] (C₁₆H₁₄F₂NaO₂) 299.0854, measured 299.0857, 0.8 ppm difference.

IR (neat) vmax/ cm⁻¹:. 2954, 1719, 1635, 1407, 788, 564.

3I was synthesised from **1I** following **General Procedure D** and purified using silica gel chromatography (0% Et_2O in Hexane to 60% Et_2O in Hexane) to yield a white solid (45.5 mg, 39%).

 $\mathbf{R}_{f} = 0.2$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.75 (dt, *J* = 4.8, 1.4 Hz, 1H), 8.26 – 8.11 (m, 4H), 7.88 – 7.76 (m, 2H), 7.44 – 7.29 (m, 1H), 6.33 (t, *J* = 53.5 Hz, 1H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 187.3 (t, *J* = 25.4 Hz), 155.6, 150.1, 145.3, 137.0, 131.5 (t, *J* = 1.9 Hz), 130.2 (t, *J* = 2.3 Hz), 127.3, 123.4, 121.2, 111.3 (t, *J* = 253.7 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -121.8 (d, *J* = 53.6 Hz, 2F).

HRMS (EI+) calc: [M⁺] (C₁₃H₉NOF₂) 233.0647; measured: 233.0647 = 0 ppm difference.

IR (neat) vmax/ cm⁻¹: 2987, 1702, 1603, 1151, 1051.

1-([1,1'-biphenyl]-4-yl)-2,2-difluoroethan-1-one, 3m

3m was synthesised from **1m** following **General Procedure D** and purified using silica gel chromatography (5% Et_2O in Hexane to 40% Et_2O in Hexane) to yield a yellow solid (113.4 mg, 96%).

 $R_{f} = 0.3$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.24 – 8.15 (m, 2H), 7.93 – 7.72 (m, 2H), 7.65 – 7.69 (m, 2H), 7.54 – 7.44 (m, 3H), 6.32 (t, *J* = 53.5 Hz, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 187.3 (t, *J* = 25.4 Hz), 147.7, 139.5, 130.4 (t, *J* = 2.4 Hz), 130.2, 129.2, 128.8, 127.7, 127.4, 111.4 (t, *J* = 253.8 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ : -121.6 (d, *J* = 53.7 Hz).

Spectral data in accordance with literature.²⁰

1-(4-(benzo[b]thiophen-3-yl)phenyl)-2,2-difluoroethan-1-one, 3n

3n was synthesised from **1n** following **General Procedure D** and purified by using silica gel chromatography (12% Et_2O in Hexane to 52% Et_2O in Hexane) to yield a brown oil (125.3 mg, 87%).

 $\mathbf{R}_{f} = 0.3$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.25 – 8.18 (m, 2H), 7.99 – 7.99 (m, 2H), 7.80 – 7.75 (m, 2H), 7.55 (s, 1H), 7.48 – 7.48 (m, 2H), 6.34 (t, *J* = 53.5 Hz, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 187.2 (t, *J* = 25.3 Hz), 142.7, 140.9, 137.2, 136.6, 130.4, 130.4, 129.1, 125.6, 125.0, 124.9, 123.2, 122.7, 111.5 (t, *J* = 253.8 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ : -121.5 (d, J = 53.5 Hz).

HRMS (ESI+) calc: [M⁺] (C₁₆H₁₀OSF₂) 288.0415, measured 288.0413, 0.7 ppm difference.

IR (neat) vmax/ cm⁻¹: 3011, 1703, 1603, 1137, 877.

1-(3'-amino-[1,1'-biphenyl]-4-yl)-2,2-difluoroethan-1-one 30

3o was synthesised from **1o** following **General Procedure D** and purified using silica gel chromatography (60% Et₂O in Pentane) to yield a pale yellow oil (112 mg, 91%).

 $\mathbf{R}_{f} = 0.1 (40\% \text{ Et}_{2}\text{O in Pentane})$

¹**H NMR** (400 MHz, CDCl₃) δ: 8.20 – 8.10 (m, 2H), 7.78 – 7.68 (m, 2H), 7.32 – 7.23 (m, 1H), 7.10 – 7.03 (m, 1H), 6.98 – 6.93 (m, 1H), 6.83 – 6.73 (m, 1H), 6.34 (t, J = 53.5 Hz, 1H), 3.57 (brs, 2H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 187.2 (t, *J* = 25.3 Hz), 147.8, 146.9, 140.6, 130.2 (t, *J* = 2.3 Hz), 130.0, 127.5, 125.5, 117.8, 115.5, 113.8, 111.3 (t, *J* = 253.6 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -121.7 (d, *J* = 53.4 Hz).

HRMS (ESI+) calc: [M+H⁺] (C₁₄H₁₂ONF₂) 248.0881, measured 248.0878, 1.3 ppm difference.

IR (neat) vmax/ cm⁻¹: 3379, 2965, 1702, 1602, 1062, 769.

3p was synthesised from **1p** following **General Procedure D** and purified by using silica gel chromatography (24% Et₂O in Hexane to 50% Et₂O in Hexane) to yield a brown oil (92.4mg, 71%). Despite numerous attempts at purification, **3p** was isolated with *ca*. 10% of an unidentified inseparable impurity and the yield has been adjusted accordingly.

 $R_{f} = 0.3 (20\% Et_{2}O in Hexane)$

¹**H NMR** (400 MHz, CDCl₃) δ: 8.79 (s, 2H), 8.25-8.12 (m, 2H), 7.72 – 7.67 (m, 2H), 6.30 (t, *J* = 53.5 Hz, 1H), 4.09 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 187.0 (t, *J* = 25.8 Hz), 165.7, 157.6, 140.8, 132.1, 130.7 (t, *J* = 2.5 Hz), 128.6, 126.8, 111.4 (t, *J* = 254.0 Hz), 55.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ : -121.5 (d, J = 53.4 Hz).

HRMS (EI+) calc: [M⁺] (C₁₃H₁₀N₂O₂F₂) 264.0705, measured 264.0705, 0 ppm difference.

IR (neat) vmax/ cm⁻¹: 2986, 1706, 1596, 1411, 878.

This product, **3q** was synthesised from **1q** following **General Procedure D** and purified by using silica gel chromatography (24% Et_2O in Hexane to 50% Et_2O in Hexane) to yield a brown oil (82.7mg, 37%).

 $\mathbf{R}_{f} = 0.3$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.94 (s, 1H), 8.76 – 8.70 (m, 2H), 8.66 – 8.60 (m, 1H), 8.36 – 8.28 (m, 2H), 8.26 – 8.21 (m, 1H), 8.05 (s, 1H), 7.78 – 7.71 (m, 1H), 7.63 – 7.51 (m, 6H), 6.39 (t, *J* = 53.4 Hz, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 187.4 (t, J = 25.6 Hz), 165.3, 164.8, 163.1, 138.7, 137.8, 137.2, 133.5, 131.1, 130.9, 129.7, 129.0, 128.6, 128.5, 128.3 (t, J = 2.1 Hz), 127.4, 111.3 (t, J = 253.9 Hz), 110.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -121.6 (d, *J* = 53.3 Hz).

HRMS (APCI+) calc: [M+H⁺] (C₂₄H₁₆N₂OF₂) 387.1303, measured 387.1302, 0.3 ppm difference.

IR (neat) vmax/ cm⁻¹: 2891, 1702, 1505, 1152, 782.

(E)-1-(4-(dibutylamino)styryl)phenyl)-2,2-difluoroethan-1-one, 3r

3r was synthesised from **1r** following **General Procedure D** and purified using silica gel chromatography (0% Et₂O in Hexane to 15% Et₂O in Hexane) to yield an orange solid (165.8 mg, 86%).

 $\mathbf{R}_{f} = 0.4 (10\% \text{ Et}_{2}\text{O in Hexane})$

¹**H NMR** (400 MHz, CDCl₃) δ: 8.02 (d, J = 8.2 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.7 Hz, 2H), 7.21 (d, J = 16.2 Hz, 1H), 6.89 (d, J = 16.2 Hz, 1H), 6.64 (d, J = 8.8 Hz, 2H), 6.29 (t, J = 53.6 Hz, 1H), 3.35 – 3.27 (m, 4H), 1.65 – 1.53 (m, 4H), 1.38 (h, J = 7.4 Hz, 4H), 0.97 (t, J = 7.4 Hz, 6H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 186.6 (t, *J* = 25.0 Hz), 148.6, 145.3, 133.3, 130.2 (t, *J* = 2.3 Hz), 129.0 (t, *J* = 1.7 Hz), 128.6, 126.0, 123.4, 121.6, 111.6, 111.3 (t, *J* = 253.5 Hz), 50.8, 29.5, 20.4, 14.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -121.6 (d, *J* = 53.7 Hz, 2F).

HRMS (ESI+) calc: [M+H⁺] (C₂₄H₃₀OF₂) 386.2290; measured: 386.2301 = 3 ppm difference.

IR (neat) vmax/ cm⁻¹: 2969, 1697, 1583, 1181, 878.

3s was synthesised from **1s** following **General Procedure D** and purified using silica gel chromatography (5% Et_2O in Hexane to 40% Et_2O in Hexane) to yield a white solid (105.9 mg, 82%).

 $\mathbf{R}_{f} = 0.3$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.06 (d, *J* = 8.2 Hz, 2H), 7.63 (d, *J* = 8.5 Hz, 2H), 7.59 – 7.50 (m, 2H), 7.44 – 7.23 (m, 4H), 7.13 (d, *J* = 16.3 Hz, 2H), 6.29 (t, *J* = 53.5 Hz, 1H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 186.9 (t, *J* = 25.3 Hz), 143.9, 136.5, 132.9, 130.3, 130.2, 129.0, 128.8, 127.1, 127.1, 126.9, 111.4 (t, *J* = 253.8 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -121.6 (d, *J* = 53.6 Hz, 2F).

HRMS (ESI+) calc: $[M+Na^+]$ (C₁₆H₁₂NaOF₂) 281.0748; measured: 281.0762 = 5 ppm difference.

IR (neat) vmax/ cm⁻¹: 3675, 2901, 1702, 1074, 691.

1-(Anthracen-9-yl)-2,2-difluoroethan-1-one, 3t

3t was synthesised from 1-(Anthracen-9-yl)-2,2,2-trifluoroethan-1-one following **General Procedure D** and purified using silica gel chromatography (7% Et₂O in Hexane to 20% Et₂O in Hexane) to yield an orange-yellow solid (96 mg, 75%).

 $R_{f} = 0.3$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.61 (s, 1H), 8.11 – 8.04 (m, 2H), 7.85-7.74 (m, 2H), 7.62 – 7.56 (m, 4H), 6.35 (t, *J* = 53.9 Hz, 1H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 198.1 (t, *J* = 25.9 Hz), 130.8, 130.6, 129.0, 128.6, 127.7, 125.8, 124.0, 109.5 (t, *J* = 253.3 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ : -124.8 (d, *J* = 54.1 Hz, 2F).

HRMS (ESI+) calc: $[M+Na^+]$ (C₁₆H₁₀ONaF₂) 279.0592; measured: 279.0604 = 4 ppm difference.

IR (neat) vmax/ cm⁻¹: 2988, 1722, 1449, 1394, 1027.

2,2-difluoro-1-(naphthalen-2-yl)ethan-1-one, 3u

3u was synthesised from **1u** following **General Procedure D** and purified using silica gel chromatography (5% Et_2O in Hexane to 20% Et_2O in Hexane) to yield a colourless solid (96.8 mg, 94%).

 $\mathbf{R}_{f} = 0.3$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.63 (d, *J* = 1.4 Hz, 1H), 8.24 – 7.81 (m, 4H), 7.72 – 7.58 (m, 2H), 6.42 (t, *J* = 53.5 Hz, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 187.7 (t, *J* = 25.2 Hz), 136.4, 132.6 (t, *J* = 3.3 Hz), 132.4, 130.2, 129.8, 129.1, 128.9, 128.0, 127.4, 124.2, 111.5 (t, *J* = 253.8 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ : -121.1 (d, J = 53.6 Hz).

Spectral data in accordance with literature.¹⁵

3v was synthesised from 1,1'-(4-(dimethylamino)naphthalene-1,3-diyl)bis(2,2,2-trifluoroethan-1-one) following **General Procedure D** on a 0.25 mmol scale at -10 mA and purified using silica gel chromatography (65% Et_2O in Hexane) to yield a yellow solid (111.3 mg, 68%).

 $\mathbf{R}_{f} = 0.2 (50\% \text{ Et}_{2}\text{O in Hexane})$

¹**H NMR** (400 MHz, CDCl₃) δ: 9.03 (ddd, J = 8.6, 1.3, 0.6 Hz, 1H), 8.42 (s, 1H), 8.23 (ddd, J = 8.6, 1.3, 0.6 Hz, 1H), 7.69 (ddd, J = 8.5, 6.9, 1.4 Hz, 1H), 7.64 – 7.57 (m, 1H), 6.38 (d, J = 53.9 Hz, 1H), 6.32 (t, J = 53.9 Hz, 1H), 3.15 (s, 6H).

¹³C NMR (131 MHz, CDCl₃) δ: 189.4 (t, J = 25.2 Hz), 187.6 (t, J = 24.1 Hz), 158.2, 134.9, 132.6 (tt, J = 5.0, 3.0 Hz), 131.1, 130.6, 130.5, 126.7, 126.6, 126.4, 121.9 (d, J = 20.6 Hz), 111.5 (t, J = 256.9 Hz), 110.2 (t, J = 256.9 Hz), 45.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ : -119.1 (d, J = 53.9 Hz, 2F), -122.2 (d, J = 54.0 Hz, 2F).

HRMS (ESI+) calc: $[M+Na^+]$ (C₁₆H₁₃NaNO₂F₄) 350.0775; measured: 350.0771 = -1 ppm difference.

IR (neat) vmax/ cm⁻¹: 2988, 2901, 1688, 1401, 1088.

tert-Butyl 3-(2,2-difluoroacetyl)-1H-indole-1-carboxylate, 3w

3w was synthesised from **1w** following **General Procedure D** and purified by using silica gel chromatography (19% Et₂O in Hexane to 32% Et₂O in Hexane) to yield a colourless solid (60.1 mg, 41%).

 $\mathbf{R}_{f} = 0.2$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.51 (t, *J* = 1.7 Hz, 1H), 8.42 – 8.33 (m, 1H), 8.16 (dd, *J* = 7.4, 1.8 Hz, 1H), 7.41 (dd, *J* = 7.2, 1.4 Hz, 2H), 6.15 (t, *J* = 53.9 Hz, 1H), 1.72 (s, 9H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 184.2 (t, *J* = 26.0 Hz), 148.7, 135.2, 134.9 (t, *J* = 7.2 Hz), 127.4, 126.5, 125.2, 122.4, 115.2, 114.1, 111.5 (t, *J* = 253.9 Hz), 86.2, 28.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -121.2 (d, *J* = 53.8 Hz, 2F).

HRMS (ESI+) calc: [M+Na⁺] (C₁₅H₁₅F₂NNaO₃) 318.0912, measured 318.0906, 1.8 ppm difference.

IR (neat) vmax/ cm⁻¹: 2925, 1655, 1526, 1396, 841, 749.

2,2-Difluoro-1-(1-(perfluoropyridin-4-yl)-1H-indol-3-yl)ethan-1-one, 3x

3x was synthesised from **1x** following **General Procedure D** and purified by trituration with Et₂O to yield a yellow solid (151 mg, 92%).

 $\mathbf{R}_{f} = 0.2$ (30% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.52 – 8.45 (m, 1H), 8.25-8.14 (m, 1H), 7.54 – 7.42 (m, 2H), 7.28 – 7.22 (m, 1H), 6.15 (t, *J* = 53.9 Hz, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 183.7 (t, *J* = 26.3 Hz), 144.3 (dtd, *J* = 247.9, 14.6, 3.3 Hz), 140.0 – 136.1 (m), 136.0 – 135.6 (m), 128.7 – 128.3 (m), 126.3, 126.0, 125.4, 125.1, 123.1, 114.8 (t, *J* = 2.5 Hz), 111.8 (t, *J* = 253.0 Hz), 110.9 (t, *J* = 2.6 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -85.5 – -85.9 (m, 2F), -120.7 (d, *J* = 53.9 Hz, 2F), -144.8 – -145.2 (m, 2F).

HRMS (ESI+) calc: $[M+Na^+]$ (C₁₅H₆ONaN₂F₆) 367.0277; measured: 367.0262 = 4 ppm difference.

IR (neat) vmax/ cm⁻¹: 2897, 1663, 1536, 1209, 746.

1-(1-benzyl-1H-indol-3-yl)-2,2-difluoroethan-1-one, 3y

3y was synthesised from **1y** following **General Procedure D** and purified by using silica gel chromatography (24% Et_2O in Hexane to 50% Et_2O in Hexane) to yield a colourless solid (50.1 mg, 35%).

 $R_{f} = 0.2$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.43 (d, *J* = 7.6 Hz, 1H), 8.08 (s, 1H), 7.38 – 7.30 (m, 6H), 7.18 (d, *J* = 7.0 Hz, 2H), 6.11 (t, *J* = 54.3 Hz, 1H), 5.40 (s, 2H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 182.9 (t, *J* = 25.3 Hz), 137.3 (t, *J* = 7.2 Hz), 136.7, 135.1, 129.2, 128.5, 126.9, 124.4, 123.7, 122.7, 112.1 (t, *J* = 253.9 Hz), 110.6, 51.2, 29.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ : -120.2 (d, J = 54.2 Hz).

HRMS (ESI+) calc: [M+Na⁺] (C₁₇H₁₃F₂NONa) 308.0857 measured 309.0858, 0.1 ppm difference.

IR (neat) vmax/ cm⁻¹: 2981, 1739, 1655, 1467, 746, 571.

2,2-difluoro-1-(1H-indol-3-yl)ethan-1-one, 3z

3z was synthesised from 2,2,2-trifluoro-1-(1H-indol-3-yl)ethan-1-one following **General Procedure D** and purified by purified using silica gel chromatography (9% EtOAc in Hexane to 18% EtOAc in Hexane) to yield a white solid (44.0 mg, 45%).

 $\mathbf{R}_{f} = 0.1$ (20% EtOAc in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 11.31 (s, 1H), 8.22 (m, 1H), 8.11 (s, 1H), 7.42 (m, 1H), 7.21 (d, *J* = 5.1 Hz, 2H), 6.12 (t, *J* = 54.4 Hz, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 183.1 (t, *J* = 24.4 Hz), 136.6, 135.1 (t, *J* = 6.6 Hz), 126.1, 123.9, 123.1, 121.8, 112.2, 111.7 (t, *J* = 252.9 Hz), 111.1 (d, J= 1.7 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -121.1 (d, *J* = 54.4 Hz, 2F).

Spectral data in accordance with literature.¹⁹

3aa was synthesised from **1aa** following **General Procedure D** and purified using silica gel chromatography (15% Et₂O in Hexane to 42% Et₂O in Hexane) to yield an off-white solid (98.4 mg, 87%). *Note: Product 3aa appears to be sensitive to light and precautions to exclude light were taken during purification and characterisation.*

 $\mathbf{R}_{f} = 0.3 (30\% \text{ Et}_{2}\text{O in Hexane})$

¹**H NMR** (400 MHz, CDCl₃) δ: 8.24 (dd, J = 8.7, 0.5 Hz, 1H), 7.87 (t, J = 1.7 Hz, 1H), 6.98 (dd, J = 8.8, 2.3 Hz, 1H), 6.79 – 6.76 (m, 1H), 6.09 (t, J = 54.3 Hz, 1H), 3.88 (s, 3H), 3.80 (s, 3H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 182.7 (t, *J* = 25.1 Hz), 157.9, 138.2, 137.3, 123.3, 120.8, 112.7, 112.1 (t, *J* = 253.8 Hz), 110.6, 93.8, 55.8, 33.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -120.1 (d, *J* = 54.5 Hz, 2F).

HRMS (ESI+) calc: [M+Na⁺] (C₁₂H₁₁NaNO₂F₂) 262.0650; measured: 262.0647 = -1 ppm difference.

IR (neat) vmax/ cm⁻¹: 3103, 2904, 1651, 1254, 1077.

3ab was synthesised from **1ab** following **General Procedure D** and purified using silica gel chromatography (82% Et_2O in Hexane to 100% Et_2O in Hexane) to yield a white solid (49.2 mg, 42%).

 $\mathbf{R}_{f} = 0.1$ (30% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.77 (dd, J = 1.6, 0.7 Hz, 1H), 8.13 (d, J = 1.8 Hz, 1H), 7.62 (dd, J = 8.6, 1.6 Hz, 1H), 7.48 (d, J = 8.6 Hz, 1H), 6.09 (t, J = 54.1 Hz, 1H), 3.95 (s, 3H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 182.9 (t, *J* = 26.2 Hz), 139.4 (t, *J* = 7.3 Hz), 138.7, 127.9, 127.3, 126.8, 119.6, 112.1 (t, *J* = 253.9 Hz), 111.0, 110.6, 107.1, 34.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -120.3 (d, *J* = 54.4 Hz, 2F).

HRMS (ESI+) calc: $[M+Na^+]$ (C₁₂H₈NaN₂OF₂) 257.0497; measured: 257.0492 = 2 ppm difference.

IR (neat) vmax/ cm⁻¹: 2972, 2248, 1656, 1451, 1028.

3ac was synthesised from **1ac** following **General Procedure D** and purified by using silica gel chromatography (0% Et_2O in Hexane to 20% Et_2O in Hexane) to yield a colourless solid (95.1 mg, 84%).

 $\mathbf{R}_{f} = 0.3$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.03 (d, J = 1.6 Hz, 1H), 7.32 (td, J = 8.1, 4.6 Hz, 1H), 7.18 (d, J = 8.2 Hz, 1H), 7.03 (dd, J = 10.9, 7.9 Hz, 1H), 6.22 (t, J = 54.3 Hz, 1H), 3.90 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 181.3 (t, *J* = 25.2 Hz), 156.6 (d, *J* = 253.8 Hz), 140.1 (d, *J* = 10.7 Hz), 138.5 (t, *J* = 6.7 Hz), 125.1 (d, *J* = 7.9 Hz), 114.5, 114.4, 112.3 (t, *J* = 251.3), 109.4 (d, *J* = 21.7 Hz), 106.2 (d, *J* = 4.1 Hz), 34.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -108.3 – -108.8 (m, 1F), -119.7 (d, *J* = 54.3 Hz, 2F).

HRMS (ESI+) calc: $[M+Na^+]$ (C₁₁H₈F₃NNaO) 250.0450, measured 250.0449, 0.5 ppm difference.

IR (neat) vmax/ cm⁻¹: 2937, 1663, 1532, 1379, 770.

1-(4-chloro-1-methyl-1H-indol-3-yl)-2,2-difluoroethan-1-one, 3ad

3ad was synthesised from **1ad** following **General Procedure D** and purified by using silica gel chromatography (18% Et_2O in Hexane to 40% Et_2O in Hexane) to yield a yellow solid (77.9 mg, 64%).

 $\mathbf{R}_{f} = 0.2 (30\% \text{ Et}_{2}\text{O in Hexane})$

¹**H NMR** (400 MHz, CDCl₃) δ: 7.99 (s, 1H), 7.32 (dd, *J* = 5.3, 3.4 Hz, 2H), 7.25 (d, *J* = 2.1 Hz, 1H), 6.14 (t, *J* = 54.3 Hz, 1H), 3.87 (s, 3H)

¹³C NMR (151 MHz, CDCl₃) δ: 181.3 (t, J = 24.9 Hz), 139.2 (t, J = 7.5 Hz), 139.0, 127.7, 125.1, 124.8, 124.3, 112.8 (t, J = 255.9), 110.1, 108.8, 34.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -118.6 (d, *J* = 54.3, 2F).

HRMS (EI+) calc: [M⁺] (C₁₁H₈F₂NO³⁵Cl) 243.0257, measured 243.0257, 0 ppm difference.

IR (neat) vmax/ cm⁻¹: 2912, 2134, 2032, 1601, 910.

1-(4-Bromo-1-methyl-1H-indol-3-yl)-2,2-difluoroethan-1-one, 3ae

3ae was synthesised from **1ae** following **General Procedure D** and purified by using silica gel chromatography (0% Et₂O in Hexane to 20% Et₂O in Hexane) to yield a brown solid (72.3 mg, 51%).

 $\mathbf{R}_{f} = 0.3$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 7.96 (t, J = 1.7 Hz, 1H), 7.51 (d, J = 7.7 Hz, 1H), 7.29 (d, J = 8.1 Hz, 1H), 7.17 (t, J = 7.9 Hz, 1H), 6.14 (t, J = 54.5 Hz, 1H), 3.85 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 181.7 (d, *J* = 24.7 Hz), 139.4 (d, *J* = 6.1 Hz), 139.3, 129.1, 126.5, 125.3, 115.3, 113.0 (t, *J* = 254.3 Hz), 111.1, 109.7, 34.6

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -118.7 (d, *J* = 54.5 Hz).

HRMS (EI+) calc: [M⁺] (C₁₁H₈NO⁷⁹BrF₂) 286.9752, measured 286.9752, 0 ppm difference.

IR (neat) vmax/ cm⁻¹: 3109, 2901, 1678, 1099, 880.

1-(5-Bromo-1-methyl-1H-indol-3-yl)-2,2-difluoroethan-1-one, 3af

3af was synthesised from **1af** following **General Procedure D** and purified by using silica gel chromatography (0% Et₂O in Hexane to 20% Et₂O in Hexane) to yield a brown solid (99.0 mg, 69%).

 $\mathbf{R}_{f} = 0.3$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.53 (d, J = 2.0 Hz, 1H), 7.97 (t, J = 1.8 Hz, 1H), 7.44 (dd, J = 8.7, 2.0 Hz, 1H), 7.31 – 7.23 (m, 1H), 6.07 (t, J = 54.2 Hz, 1H), 3.87 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ: 181.2 (d, J = 24.7 Hz), 139.0 (d, J = 6.1 Hz), 138.9, 128.8, 126.1, 124.9, 115.0, 112.7 (t, J = 254.3 Hz), 110.6, 109.2, 34.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -120.1 (d, *J* = 54.2 Hz, 2F).

HRMS (EI+) calc: [M⁺] (C₁₁H₈NO⁷⁹BrF₂) 286.9752, measured 286.9750, 0.7 ppm difference.

IR (neat) vmax/ cm⁻¹: 2920, 1663, 1041, 874, 738.

3ag was synthesised from **1ag** following **General Procedure D** and purified by using silica gel chromatography (0% Et₂O in Hexane to 30% Et₂O in Hexane) to yield a brown solid (75.0 mg, 45%).

 $\mathbf{R}_{f} = 0.2$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.76 (d, J = 1.8 Hz, 1H), 7.94 (d, J = 1.8 Hz, 1H), 7.64 (dd, J = 8.6, 1.7 Hz, 1H), 7.15 (d, J = 8.6 Hz, 1H), 6.07 (t, J = 54.2 Hz, 1H), 3.88 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ: 182.7 (t, J = 25.6 Hz), 138.1 (t, J = 7.2 Hz), 136.4, 132.9, 131.4, 129.0, 112.2 (t, J = 254.2 Hz), 111.8, 109.6, 88.0, 34.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -120.0 (d, *J* = 54.2 Hz, 2F).

HRMS (ESI+) calc: $[M+Na^+]$ (C₁₁H₈F₂INNaO) 357.9511 measured 357.9512, 0.4 ppm difference.

IR (neat) vmax/ cm⁻¹: 2966, 1649, 1467, 1076, 750.

3ah was synthesised from **1ah** following **General Procedure D** and purified by using silica gel chromatography (0% Et_2O in Hexane to 29% Et_2O in Hexane) to yield a white solid (100.1 mg, 69%).

 $R_{f} = 0.2$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.49 – 8.39 (m, 1H), 7.68 (dd, J = 5.1, 1.3 Hz, 1H), 7.45 – 7.35 (m, 3H), 7.30 (dd, J = 3.6, 1.2 Hz, 1H), 7.25 – 7.21 (m, 1H), 5.66 (t, J = 53.8 Hz, 1H), 3.61 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 182.8 (t, *J* = 23.8 Hz), 139.4, 137.3, 132.4, 130.2, 129.2, 127.9, 126.7, 124.8, 123.9, 122.7, 114.3, 110.0, 107.1 (t, *J* = 246.8 Hz), 31.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -124.6 (d, *J* = 53.9 Hz, 2F).

HRMS (ESI+) calc: [M+Na⁺] (C₁₅H₁₁F₂NNaOS) 314.0422, measured 314.0411, 3.4 ppm difference.

IR (neat) vmax/ cm⁻¹: 2923, 1651, 1466, 1052, 752.

3ai was synthesised from **1ai** following **General Procedure D** and purified by using silica gel chromatography (16% Et₂O in Hexane to 24% Et₂O in Hexane) to yield a colourless solid (93.0 mg, 65%).

 $\mathbf{R}_{f} = 0.2$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.55 – 8.40 (m, 1H), 7.66 – 7.51 (m, 3H), 7.48 – 7.36 (m, 5H), 5.54 (t, J = 53.9 Hz, 1H), 3.54 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 182.6 (t, *J* = 23.9 Hz), 147.9, 137.0, 130.5, 130.4, 130.3, 128.9, 126.8, 124.4, 123.9, 122.7, 112.3, 109.9, 107.1 (t, *J* = 246.8 Hz), 31.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -125.2 (d, *J* = 53.7 Hz, 2F).

HRMS (ESI+) calc: [M+Na⁺] (C₁₇H₁₃F₂NNaO) 308.0857, measured 308.0853, 1.5 ppm difference.

IR (neat) vmax/ cm⁻¹: 2966, 1649, 1467, 1076, 750.

3aj was synthesised from **1aj** following **General Procedure D** and purified using silica gel chromatography (35% Et₂O in Hexane) to yield an off-white solid that turned orange on storage (98.7 mg, 94%).

 $\mathbf{R}_{f} = 0.2$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.43 (q, J = 1.2 Hz, 1H), 7.96 (ddd, J = 8.7, 1.7, 0.8 Hz, 1H), 7.39 (dt, J = 8.7, 0.8 Hz, 1H), 7.15 (d, J = 3.2 Hz, 1H), 6.65 (dd, J = 3.2, 0.9 Hz, 1H), 6.41 (t, J = 53.8 Hz, 1H), 3.83 (s, 3H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 187.4 (t, *J* = 24.2 Hz), 140.0, 131.1, 128.2, 125.1 (t, *J* = 3.0 Hz), 123.6, 122.9, 111.5 (t, *J* = 253.3 Hz), 109.9, 103.7, 33.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -120.9 (d, *J* = 54.0 Hz, 2F).

HRMS (ESI+) calc: [M+Na⁺] (C₁₁H₁₀NaNOF₂) 232.0559; measured: 262.0561 = -2.3 ppm difference.

IR (neat) vmax/ cm⁻¹: 2987, 2900, 1693, 1604, 991.

2,2-difluoro-1-(9-methyl-9H-carbazol-3-yl)ethan-1-one, 3ak

3ak was synthesised from **1ak** following **General Procedure D** and purified using silica gel chromatography (30% Et₂O in Pentane) to yield a pale yellow oil (119 mg, 92%).

 $\mathbf{R}_{f} = 0.3 (30\% \text{ Et}_{2}\text{O in Pentane})$

¹**H NMR** (400 MHz, CDCl₃) δ: 8.76 (dt, *J* = 1.7, 0.9 Hz, 1H), 8.16 (ddt, *J* = 8.8, 1.8, 0.9 Hz, 1H), 8.10 (dt, *J* = 7.8, 1.0 Hz, 1H), 7.54 (ddd, *J* = 8.3, 7.2, 1.2 Hz, 1H), 7.40 (dt, *J* = 8.2, 0.9 Hz, 1H), 7.38 – 7.30 (m, 2H), 3.80 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ: 186.8 (t, *J* = 24.5 Hz), 144.5, 141.8, 127.5, 127.0, 123.4 (t, *J* = 2.6 Hz), 122.9, 122.9, 122.8, 120.8, 120.7, 111.7 (t, *J* = 253.4 Hz), 109.3, 108.7, 29.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -120.6 (d, *J* = 53.7 Hz, 2F).

HRMS (ESI+) calc: [M+H⁺] (C₁₅H₁₁ONF₂) 260.0881; measured: 260.0887 = 2 ppm difference.

IR (neat) vmax/ cm⁻¹: 3056, 2938, 1683, 1589, 1117, 747.

2,2-difluoro-1-(1H-pyrrol-2-yl)ethan-1-one, 3al

3al was synthesised from 2-trifluoroacetyl-1H-pyrrole following **General Procedure D** and purified using silica gel chromatography (19% Et_2O in Hexane to 29% Et_2O in Hexane) to yield a white solid (39.4 mg, 62%).

 $\mathbf{R}_{f} = 0.2$ (30% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 9.81 (brs, 1H), 7.23 (t, *J* = 2.1 Hz, 2H), 6.43 (t, *J* = 3.2 Hz, 1H), 6.22 (t, *J* = 53.9 Hz, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 177.6 (t, *J* = 25.7 Hz), 128.0, 127.3, 120.6, 112.3, 110.5 (t, *J* = 251.6 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ : -122.8 (d, J = 53.8 Hz).

Spectral data in accordance with literature.¹⁷

1-(4-(Dimethylamino)pyridin-3-yl)-2,2-difluoroethan-1-one, 3am

3am was synthesised from 1-(4-(Dimethylamino)pyridin-3-yl)-2,2,2-trifluoroethan-1-one following **General Procedure D** and purified using silica gel chromatography (20% Et₂O in Hexane to 80% Et₂O in Hexane) to yield a yellow solid (91.8 mg, 92%).

 $R_{f} = 0.15$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.71 (s, 1H), 8.30 (d, *J* = 6.3 Hz, 1H), 6.76 (d, *J* = 6.2 Hz, 1H), 6.34 (t, *J* = 53.9 Hz, 1H), 2.93 (s, 6H).

¹³**C NMR** (131 MHz, CDCl₃) δ: 187.3 (t, *J* = 25.0 Hz), 155.7, 152.1 (t, *J* = 4.1 Hz), 151.7, 116.2, 109.8 (t, *J* = 252.8 Hz), 109.7, 42.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ : -122.0 (d, *J* = 54.1 Hz, 2F).

HRMS (ESI+) calc: $[M+H^+]$ (C₉H₁₁ON₂F₂) 201.0834; measured: 201.0841 = -3 ppm difference.

IR (neat) vmax/ cm⁻¹: 2978, 1686, 1593, 1393, 976.

2,2-difluoro-1-(1-methyl-1H-pyrazol-4-yl)ethan-1-one, 3an

3an was synthesised from **1an** following **General Procedure D** and purified using silica gel chromatography (5% Et_2O in Hexane to 60% Et_2O in Hexane) to yield a colourless oil (73.6 mg, 92%).

 $\mathbf{R}_{f} = 0.2$ (30% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ : 8.12 (d, J = 4.7 Hz, 2H), 6.02 (t, J = 54.0 Hz, 1H), 4.05 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 182.4 (t, *J* = 26.8 Hz), 141.7 (t, *J* = 2.3 Hz), 134.4 (t, *J* = 3.8 Hz), 117.6 (t, *J* = 2.5 Hz), 111.2 (t, *J* = 253.2 Hz), 39.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ : -123.3 (d, *J* = 54.0 Hz).

Spectral data in accordance with literature.²¹

2,2-difluoro-1-(1-methyl-1H-pyrazol-4-yl)ethan-1-one, 3ao

3ao was synthesised from **1ao** following **General Procedure D** and purified using silica gel chromatography (5% Et_2O in Hexane to 30% Et_2O in Hexane) to yield a colourless oil (103.6 mg, 96%).

 $\mathbf{R}_{f} = 0.2$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.24 – 7.73 (m, 2H), 6.04 (t, *J* = 53.9 Hz, 1H), 3.93 (tt, *J* = 9.4, 5.0 Hz, 1H), 2.42 – 1.78 (m, 4H), 0.82 (t, *J* = 7.4 Hz, 6H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 182.7 (t, *J* = 26.6 Hz), 141.6 (t, *J* = 2.5 Hz), 133.3 (t, *J* = 3.4 Hz), 116.8, 111.3 (t, *J* = 253.0 Hz), 67.8, 28.1, 10.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ : -123.3 (d, J = 54.0 Hz).

Spectral data in accordance with literature.²¹

3ap was synthesised from **1ap** following **General Procedure D** and purified using silica gel chromatography (4% Et₂O in Hexane to 40% Et₂O in Hexane) to yield a colourless oil (80.1 mg, 51%). *Note:* **3ap** was isolated alongside c.a 4% TBAT that remained from the synthesis of the precursor **1ap**, the yield has been adjusted to reflect this.

 $\mathbf{R}_{f} = 0.3 (10\% \text{ Et}_{2}\text{O in Hexane})$

¹**H NMR** (400 MHz, CDCl₃) δ: 5.67 (t, J = 54.0 Hz, 1H), 5.42 – 5.38 (m, 2H), 2.70 (t, J = 7.3 Hz, 2H), 2.07 – 1.95 (m, 4H), 1.69 – 1.59 (m, 2H), 1.39 – 1.21 (m, 20H), 0.91 – 0.85 (m, 3H).

¹³C NMR (131 MHz, CDCl₃) δ: 200.0 (t, J = 26.1 Hz), 130.1, 129.7, 109.9 (t, J = 252.9 Hz),
36.0, 31.9, 29.8, 29.7, 29.5, 29.3, 29.2, 29.0, 28.9, 28.7, 27.23, 27.15, 22.7, 22.3, 14.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -126.8 (d, *J* = 54.0 Hz, 2F).

HRMS (ESI+) calc: [M+Na⁺] (C₁₉H₃₄NaOF₂) 339.2470; measured: 339.2465 = 1.5 ppm difference.

IR (neat) vmax/ cm⁻¹: 2923, 1746, 1452, 1027, 891.

2,2-difluoro-N-(4-fluorophenyl)acetamide, 3as

3as was synthesised from **1as** following **General Procedure D** and purified by using silica gel chromatography (20% EtOAc in Hexane) to yield a colourless solid (35.0 mg, 38%).

 $R_f = 0.2$ (20% EtOAc in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 7.98 (s, 1H), 7.55 (dd, *J* = 8.9, 4.7 Hz, 2H), 7.07 (t, *J* = 8.6 Hz, 2H), 6.02 (t, *J* = 54.3 Hz, 1H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -115.6 - -115.9 (m, 1F), -125.5 (d, *J* = 54.2 Hz, 2F).

¹³**C NMR** (131 MHz, CDCl₃) δ : 160.3 (t, J = 24.5 Hz), 160.2 (d, J = 245.8 Hz), 131.6 (d, J = 3.0 Hz), 122.2 (d, J = 8.1 Hz), 116.0 (d, J = 22.8 Hz), 108.5 (t, J = 254.2 Hz).

Spectral data in accordance with literature.¹⁶

Less successful and unsuccessful substrates

Reductive cleavage of Ts, PMBS, Ac and Bn groups was observed, owing to the low yield defluorination of indoles with those protecting groups. Carboxylic acid substitution saw competing proton reduction and no defluorination was observed (the corresponding anion likely also has a much lower reduction potential) Nitro-substitution and N-octyl protection led to decreased solubility in MeCN, though ultimately only nitro group reduction was observed when the reaction conducted in DMF (in which the substrate is soluble). Extensive decomposition was observed with thioketone containing substrates (likely polymerisation pathways) and ester cleavage observed when trifluoro acetyl esters used.

Electrochemical Set Up

Electrodes

Figure S2. a) Platinum coil electrodes used in General Procedure D. b) Ni foil and Graphite rod electrodes used for scale-up experiment in General procedure C.

Platinum electrodes were made by wrapping platinum wire around PTFE tubing to create a surface area approximately ~1 cm². The platinum wire was then fed through PTFE tubing by creating a small hole on the side of the tubing. The wire was then spot- welded to a copper wire. Using a large gauge needle as a guide, the wire was fed through a new suba seal.

Cell set-up

Figure S3. a) H-Cell used for General Procedure D, anolyte and catholyte capacity ~ 3 mL per side. b) H-Cell used for scale-up (General procedure C), anolyte and catholyte capacity ~ 30 mL per side. c) Undivided cell used in entry 2, table S1.

Electrasyn experiment

Figure S4. Electrasyn 2.0 with IKA ProDivide cell.

Using electrodes supplied with the Electrasyn 2.0 alongside the IKA ProDivide cell. A canula was inserted through the septa of both chambers with a nitrogen inlet inserted into the cathodic chamber.

Product Diversification Experiments

Hydride Reduction

1-(4-bromo-1-methyl-1H-indol-3-yl)-2,2-difluoroethan-1-ol, 6

In a 7 mL vial, under air, NaBH₄ (37.8 mg, 1.05 mmol, 1.05 equiv.) was added in one portion to a MeOH (2.5 mL) solution of **3ae** (288 mg, 1.0 mmol, 1 equiv.) at 0°C. The vial was capped and allowed to warm to RT with stirring. When complete (*c.a* 1 hour) as determined by TLC (5% IPA in CHCl₃), the crude mixture was concentrated directly onto silica and purified by silica gel chromatography (1% IPA in CHCl₃ to 10% IPA in CHCl₃) to yield the alcohol product as a pink oil (281 mg, 94%).

 $\mathbf{R}_{f} = 0.3 (5\% \text{ IPA in CHCl}_{3})$

¹**H NMR** (400 MHz, CDCl₃) δ: 7.31 – 7.20 (m, 3H), 7.04 (t, *J* = 7.9 Hz, 1H), 6.09 (td, *J* = 55.7, 3.1 Hz, 1H), 5.95 – 5.85 (m, 1H), 3.71 (s, 3H), 2.64 (s, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 138.2, 125.1, 124.5, 122.9, 115.8 (t, *J* = 245.3 Hz), 113.4, 111.7 – 110.3 (m), 109.2, 66.6 – 65.9 (m), 33.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -125.5 (ddd, *J* = 278.1, 55.3, 9.2 Hz, 1F), -131.1 (ddd, *J* = 278.1, 55.7, 14.6 Hz, 1F).

HRMS (ESI+) calc: $[M+Na^+]$ (C₁₁H₁₀NaNO⁷⁹BrF₂) 311.9806; measured: 311.9809 = -0.8 ppm difference.

IR (neat) vmax/ cm⁻¹: 3969, 3058, 2966, 1065, 729.

¹**H NMR** (400 MHz, CDCl₃):

93

¹⁹**F NMR** (376 MHz, CDCl₃):

Suzuki-Miyaura Coupling

1-(4-(benzo[d][1,3]dioxol-5-yl)-1-methyl-1H-indol-3-yl)-2,2-difluoroethan-1-one, 11

In a flame-dried Schlenk flask, under N₂, was added **3ae** (864 mg, 3 mmol, 1 equiv.), benzo[d][1,3]dioxol-5-ylboronic acid (597 mg, 3.6 mmol, 1.2 equiv.), CsF (1.37 g, 9 mmol, 3 equiv.) and PdCl₂(PPh₃)₂ (211 mg, 0.3 mmol, 10 mol%). A 10:1 dioxane:H₂O mixture (20 mL) was added and the flask placed into a pre-heated oil bath at 110°C with stirring. The solution was stirred for 2 h, allowed to cool and filtered through Celite, eluting with DCM. The resulting solution was concentrated and purified by chromatography on silica gel (30% Et₂O in Hexane to 70% Et₂O in Hexane) to yield the title material as a brown oil that solidified on standing (823 mg, 83%).

 $\mathbf{R}_{f} = 0.3 (40\% Et_2O in Hexane)$

¹**H NMR** (400 MHz, CDCl₃) δ: 8.05 (d, *J* = 1.5 Hz, 1H), 7.46 – 7.36 (m, 2H), 7.29 (dd, *J* = 7.3, 1.1 Hz, 1H), 6.94 – 6.81 (m, 3H), 6.03 (s, 2H), 5.94 (t, *J* = 54.5 Hz, 1H), 3.89 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ: 181.0 (t, J = 24.6 Hz), 147.1, 146.6, 138.9 (t, J = 6.5 Hz), 138.4, 136.9, 136.7, 125.5, 124.1, 123.8, 122.1, 112.1 (d, J = 254.7 Hz), 111.4, 109.4, 108.9, 107.6, 101.0, 34.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -118.6 (d, *J* = 54.3 Hz, 2F).

HRMS (ESI+) calc: $[M+Na^+]$ (C₁₈H₁₃NaNO₃F₂) 352.0756; measured: 352.0761 = 1.4 ppm difference.

IR (neat) vmax/ cm⁻¹: 3675, 2957, 2901, 1279, 1075.

¹³**C NMR** (131 MHz, CDCl₃):

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹**F NMR** (376 MHz, CDCl₃):

Trifluoromethylation

2-(4-bromo-1-methyl-1H-indol-3-yl)-1,1,1,3,3-pentafluoropropan-2-ol, 10

In a 7 mL vial, under air, was added **3ae** (288 mg, 1.0 mmol, 1.0 equiv.) and TMSCF₃ (0.44 mL, 3.0 mmol, 3.0 equiv.). TBAT (54 mg, 0.1 mmol, 10 mol%) was added and the vial capped quickly (caution: exotherm). The solution was stirred for 30 minutes at which time TLC analysis (50% Et_2O in Hexane) showed complete consumption of the starting material. To a portion (188 mg, 0.44 mmol) of the crude residue was added THF (3 mL) and TBAF (1 M in THF, 0.48 mL, 0.48 mmol, 1.1 equiv.). The solution was stirred for 1 hour and the crude residue concentrated onto silica and purified by chromatography on silica gel (12% Et_2O in Hexane to 100% Et_2O in Hexane) to yield the title material as a white solid (149 mg, 54% over two steps).

 $R_{f} = 0.2$ (40% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 7.58 – 7.44 (m, 2H), 7.36 (dd, J = 8.3, 1.0 Hz, 1H), 7.14 (dd, J = 8.3, 7.6 Hz, 1H), 6.55 (t, J = 54.4 Hz, 1H), 4.58 (s, 1H), 3.81 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 139.0, 131.3, 126.6, 125.5, 124.1 (q, *J* = 288.5 Hz), 123.2, 114.3 (t, *J* = 252.5 Hz), 112.1, 109.8, 104.0, 76.4 – 75.1 (m), 33.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -74.1 (t, *J* = 10.2 Hz, 3F), -127.1 (dd, *J* = 285.8, 54.8 Hz, 1F), -130.7 (ddq, *J* = 284.9, 54.1, 9.1 Hz, 1F).

HRMS (ESI+) calc: $[M+Na^+]$ (C₁₂H₉⁷⁹BrNNaOF₅) 379.9680; measured: 379.9689 = 2.3 ppm difference.

IR (neat) vmax/ cm⁻¹: 3460, 2940, 1470, 1168, 922.

99

¹⁹**F NMR** (376 MHz, CDCl₃):

Reductive methoxylation

4-bromo-3-(2,2-difluoro-1-methoxyethyl)-1-methyl-1H-indole, 5

In a 7 mL vial, under air, NaBH₄ (41.6 mg, 1.1 mmol, 1.1 equiv.) was added in one portion to a MeOH (2.5 mL) solution of **3ae** (288 mg, 1.0 mmol, 1 equiv.) at 0°C. The vial was capped and allowed to warm to RT with stirring over 1 hour. BF₃·Et₂O (0.25 mL, 2 mmol, 2 equiv.) was added and the solution turned purple, a second portion of NaBH₄ (41.6 mg, 1.1 mmol, 1.1 equiv.) was added and the solution stirred for 30 minutes. The crude material was concentrated directly onto silica and purified by chromatography on silica gel (2% Et₂O in Hexane to 18% Et₂O in Hexane) to yield the title material as a colourless solid (159 mg, 65%).

 $R_{f} = 0.3$ (20% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 7.37 – 7.27 (m, 3H), 7.09 (dd, *J* = 8.2, 7.6 Hz, 1H), 6.05 (td, *J* = 55.5, 3.2 Hz, 1H), 5.77 – 5.69 (m, 1H), 3.79 (s, 3H), 3.52 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 138.2, 130.3, 125.9, 124.7, 122.7, 115.6 (t, *J* = 246.0 Hz), 113.5, 109.2, 108.7 (t, *J* = 3.8 Hz), 74.6 (t, *J* = 23.1 Hz), 57.8, 33.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -125.7 (ddd, *J* = 279.5, 55.6, 9.7 Hz, 1F), -129.2 (ddd, *J* = 279.3, 55.4, 13.0 Hz, 1F).

HRMS (ESI+) calc: $[M+Na^+]$ (C₁₂H₁₂NaNO⁷⁹BrF₂) 325.9963; measured: 325.9953 = 2.9 ppm difference.

IR (neat) vmax/ cm⁻¹: 2967, 2936, 1542, 1055, 737.

¹⁹**F NMR** (376 MHz, CDCl₃):

Hydrodefluorination

2-fluoro-1-(1-methyl-1H-indol-3-yl)ethan-1-one, 4

Subjecting **3a** to **General Procedure D** yielded **4** after purification through chromatography on silica gel (57% Et_2O in Hexane to 100% Et_2O in Hexane) as a yellow solid that turned red on standing (89.9 mg, 94%).

 $\mathbf{R}_{f} = 0.2$ (40% Et₂O in Hexane)

¹**H NMR** (400 MHz, CDCl₃) δ: 8.41 (ddt, J = 6.0, 3.7, 1.9 Hz, 1H), 7.99 (d, J = 2.1 Hz, 1H), 7.39 – 7.31 (m, 3H), 5.22 (d, J = 47.7 Hz, 2H), 3.86 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ: 189.8 (d, *J* = 17.9 Hz), 137.1, 136.9, 126.8, 123.9, 123.2, 122.6, 113.0, 109.8, 85.4 (d, *J* = 184.9 Hz), 33.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -222.4 (t, *J* = 47.7 Hz, 1F).

Spectral data in accordance with literature.²²

Olefination

4-bromo-3-(1-(4-bromophenyl)-3,3-difluoroprop-1-en-2-yl)-1-methyl-1H-indole, 9

To a 25 mL round-bottomed flask was added **3ae** (72.0 mg, 0.25 mmol, 1.0 equiv.), diethyl (4bromobenzyl)phosphonate (92.1 mg, 0.3 mmol, 1.2 equiv.) and THF (3 mL). The reaction mixture was allowed to stir and NaH (10.1 mg, 0.3 mmol, 1.2 equiv., 60% dispersion in mineral oil) was added in one portion. The reaction mixture was refluxed until complete by TLC (20% EtOAc in Hexane). After allowing the reaction mixture to cool to RT, the solvent was removed *in vacuo* (40 °C, 100 mBar) and the resulting crude mixture purified by flash column chromatography (25% EtOAC in Hexane) to afford the title compound as a colourless solid (62.4 mg, 57%)

 $\mathbf{R}_{f} = 0.2$ (25% EtOAc in Hexane)

¹**H NMR** (500 MHz, CDCl₃) δ: 7.37 – 7.21 (m, 4H), 7.12 (t, J = 7.9 Hz, 1H), 7.08 (s, 1H), 7.01 (d, J = 8.3 Hz, 2H), 6.97 (s, 1H), 6.45 (t, J = 56.7 Hz, 1H), 3.81 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ: 138.0, 134.3, 133.7 (d, *J* = 9.2 Hz), 131.4, 130.9, 129.5, 128.5 (d, *J* = 17.6 Hz), 125.3 (t, *J* = 223.6 Hz), 123.0, 117.8, 115.9 (d, *J* = 3.6 Hz), 114.3, 114.0, 109.0, 107.1 (t, *J* = 2.2 Hz), 33.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -112.7 (dd, *J* = 284.8, 56.7 Hz, 1F), -116.5 (dd, *J* = 284.9, 56.8 Hz, 1F).

HRMS (APCI+) calc: [M+Na⁺] (C₁₈H₁₃N⁷⁹Br₂F₂) 439.9456; measured: 439.9452, 0.9 ppm difference.

IR (neat) vmax/ cm⁻¹: 2922, 2852, 2033, 1982, 1963, 1462, 1066, 588

¹H NMR (500 MHz, CDCl₃):

Dithiolation

3-(2-(difluoromethyl)-1,3-dithiolan-2-yl)-1-methyl-1H-indole, 7

To a 20 mL vial, under air, was added **3a** (428 mg, 2 mmol, 1 equiv.) and CH_2Cl_2 (5 mL). 1,2ethandithiol (0.22 mL, 2.4 mmol, 1.2 equiv.) and iodine (53 mg, 0.2 mmol, 0.1 equiv.) sequentially and the purple solution was allowed to stir overnight. The solution was concentrated directly onto silica and purified by chromatography on silica gel (7% Et₂O in pentane to 60% Et₂O in pentane) to yield the title material as a colourless solid (429 mg, 82%).

 $R_{f} = 0.3$ (30% Et₂O in pentane)

¹**H NMR** (400 MHz, CDCl₃) δ: 7.92 (dq, *J* = 8.0, 0.9 Hz, 1H), 7.35 – 7.25 (m, 3H), 7.19 (ddd, *J* = 8.1, 6.7, 1.5 Hz, 1H), 6.22 (t, *J* = 57.4 Hz, 1H), 3.75 (s, 3H), 3.50 (t, *J* = 1.2 Hz, 4H).

¹³**C NMR** (101 MHz, CDCl₃) δ: 137.9, 128.8, 126.2, 122.3, 121.2, 119.7, 116.6 (t, *J* = 250.9 Hz), 110.4, 109.9, 68.4 (t, *J* = 21.8 Hz), 40.1, 33.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -114.2 (d, *J* = 57.4 Hz, 2F).

HRMS (ESI+) calc: $[M+Na^+]$ (C₁₃H₁₃NaNF₂S₂) 308.0350; measured: 308.0360 = -3.4 ppm difference.

IR (neat) vmax/ cm⁻¹: 2928, 1529, 1066, 890, 738, 629.

¹³**C NMR** (131 MHz, CDCl₃):

¹⁹**F NMR** (376 MHz, CDCl₃):

Methenylation

3-(2-(difluoromethyl)oxiran-2-yl)-1-methyl-1H-indole, 8

Under N₂, DMSO (3 mL) was added to K^tBuO (57 mg, 0.75 mmol, 1.5 equiv.). Trimethylsulfoxonium iodide (137 mg, 0.5 mmol, 1.0 equiv.) was added and the resulting solution was stirred for 30 minutes. **3a** (105 mg, 0.5 mmol, 1.0 equiv.) was added as a solution in DMSO (1 mL) and the resulting solutions stirred overnight. Et₂O was added along with H₂O and the layers separated. The aqueous layer was extracted once more with Et₂O and the organic extracts dried with MgSO₄ and concentrated *in vacuo* (100 mBar, 40°C). The crude material was subjected to Chromatography on silica gel (100% Et₂O) quickly to yield the title material as a yellow oil (76 mg, 68%). Note: **8** was observed to be unstable when stored at RT both neat and as a solution in CDCl₃. As such, ¹³C NMR data was not obtainable.

 $R_f = 0.1 (100\% Et_2O)$

¹**H NMR** (400 MHz, CDCl₃) δ: 7.82 (ddt, *J* = 8.1, 1.1, 0.7 Hz, 1H), 7.36 – 7.20 (m, 2H), 7.16 – 7.07 (m, 2H), 6.06 (t, *J* = 56.1 Hz, 1H), 4.18 – 4.03 (m, 2H), 3.76 (s, 3H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -128.6 (dd, *J* = 281.1, 56.1 Hz), -132.8 (ddd, *J* = 281.2, 56.0, 2.3 Hz).

HRMS (APCI+) calc: $[M+H^+]$ (C₁₂H₁₁NOF₂) 224.0881; measured: 224.0880 = 0.5 ppm difference.

IR (neat) vmax/ cm⁻¹: 2543, 1343, 1210, 934, 875, 764.

Determination of H-bonding strength (A value)

The solute hydrogen-bond (HB) acidity (*A*) of has been previously calculated by Sessler²³ using the spectroscopic technique outlined by Abraham.²⁴ By comparison of the ¹H NMR chemical shifts of the proton in question in both chloroform and dimethylsulfoxide (DMSO), *A* can be calculated using $A = 0.0065 + 0.133\Delta\delta$ where $\Delta\delta = \delta$ (DMSO) – δ (CDCl₃).

Solutions of the compound of interest (10 mg/mL) were prepared in both CDCl₃ and DMSOd₆ ensuring complete dissolution via sonication and vortex mixing at room temperature. ¹H NMR spectra were taken at the same temperature one after each other. Peaks were referenced to residual solvent signals for CDCl₃ and DMSO-d₆ respectively and δ CF₂<u>H</u> measured from the centre of the triplet (see worked example for entry 5 from Table S2).

• Worked example of entry 5:

Figure S4. ¹H NMR spectra of difluoromethylphenyl sulfoxide in $CDCI_3$ (top) and $DMSO-d_6$ (bottom.)

Calculation:

δ CF₂<u>H</u> in CDCl₃ = 6.0363 ppm and δ CF₂H in DMSO-d₆ = 6.8980 Δδ = δ CF₂<u>H</u> in DMSO-d₆ - δ CF₂<u>H</u> in CDCl₃ = 6.8980 - 6.9363 = 0.8617 $A = 0.0065 + 0.133Δδ = 0.0065 + (0.133 \times 0.8617) = 0.121$

Compound	δ C	⊱2 <u>H</u>	Δ	$A_{\rm NMR}$
	CDCl ₃	DMSO-d ₆		
CH ₂ CF ₂ H	5.9253	6.2236	0.2983	0.0462
CF2H	6.6508	7.0309	0.3801	0.0571
SCF ₂ H	6.8339	7.4791	0.6452	0.0923
OCF ₂ H	6.5145	7.1615	0.6470	0.0926
CF ₂ H	6.0363	6.8980	0.8617	0.121
CF ₂ H	6.300	7.1700	0.8700	0.122
U CF ₂ H	6.1919	7.3103	1.1184	0.155

Table S2. A values for a series of CF_2H -containing compounds.

Compound	δ C	CF2 <u>H</u>	Δ	A _{NMR}
	CDCI ₃	DMSO-d ₆		
CF ₂ H	6.3437	7.0642	0.7205	0.102
Me N [*] Me O CF ₂ H	6.3530	7.1243	0.7713	0.109
Me CF ₂ H	6.3996	7.2187	0.8191	0.115
Me ₂ N	6.2568	7.0028	0.7460	0.106
Me	2.6126	2.5731	-0.0395	0.00125
Me CF ₂ H	6.1094	6.7714	0.662	0.0945
CF ₂ H	6.6508	7.0309	0.3801	0.0571

 Table S3. A values for selected difluoromethyl ketones and other substrates.

Computational Studies

All DFT calculations were run using Gaussian 09W and Gaussview 5 software to the B3LYP/6-31G+p(d) level of theory. Conformational analysis was conducted using the scan functionality (dihedral angle as defined, increments of 20°) starting on the energy minimised structure of the desired molecule.

Conformational analysis

The energy of 4 acylated indoles containing an increasing number of fluorine atoms was calculated with progressive rotation around the OC-CH dihedral angle.

Figure S5. Graph of calculated ground state energies vs dihedral angle for 1-(1-methyl-1H-indol-3-yl)ethan-1-one.

Figure S6. Graph of calculated ground state energies vs dihedral angle for 1a.

For CH_3 and CF_3 , conformations with eclipsing interactions between X and R lead to the highest energy conformers. This is due to unfavourable steric interactions between X and H-C(indole). The conformers with eclipsing interactions between X and O, led to the lowest energyy conformers, confirming this interaction is not destabilising.

Figure S7. Graph of calculated ground state energies vs dihedral angle for 4.

From the O-H eclipsed conformer (dihedral angle = 0) a decrease in energy occurs upon rotation toward the minimum at 60° ; the conformer bearing the fluorine atom. Unlike the CF₃ and CH₃ compounds, the minimum energy conformer has an eclipsing interaction with the indole(H). However, in this case energy is gained by oppositely aligned dipoles between the oxygen and fluorine atoms. Further rotation leads to an increase in energy as the dipoles begin to align and repel each other. The two highest energy conformers include this alignment of dipoles but also an eclipsed interaction between the H and indole(H).

Analysis of the angle between the dipoles of oxygen and fluorine reveals the lowest energy conformer is indeed when they are pointing in opposite directions, *i.e.*, at 180°.

Figure S6. Graph of calculated ground state energies vs dipole angle for 4.

Figure S6. Graph of calculated ground state energies vs dihedral angle for 3a.

From the O-H eclipsed conformer (dihedral angle = 0) an increase in energy occurs upon rotation. The highest energy conformer includes an eclipsing H-indole(H) interaction and the total alignment of the dipoles between the oxygen and two fluorine atoms. The levelling off between $80-100^{\circ}$ and $260-300^{\circ}$ is due to conformers without any indole(H) eclipsing interactions and with a perpendicular angle between the dipoles.

Figure S7. Graph of calculated ground state energies vs dipole angle for 3a.

Overlaid plot

Figure S8. Overlaid graphs of calculated ground state energies vs dihedral angle for the series of fluorinated methyl ketones.

Mechanistic studies

Figure S9. Calculated energy profile for reaction coordinate with and without TMSCI.

All DFT calculations were run using Gaussian 09W and Gaussview 5 software to the B3LYP/6-31G+p(d) level of theory. Structures were energy minimised and then frequency calculations carried out to compute Gibbs energies of formation in the gas phase. The total energy was calculated by the addition of the Gibbs energies for each species present (noted below the structure in question). Due to the additional complexities of modelling an electron transfer from a surface, we have not accounted for the energy of the second electron, and therefore the values shown should only be interpreted in a relative sense.

Key points to note:

- a) In the absence of TMSCI, the reduced trifluoromethylketone I is unlikely to undergo a second one-electron reduction to yield dianion VI given the large energy barrier and very negative calculated reduction potential. It should be noted that during the course of reactions involving substrate 1a applied potentials of *c.a.* -3.75 V were never observed (maximum applied potential was observed to be around -2.3 V).
- Fluoride expulsion from I (not shown) was also examined and was found to have an energy barrier of >100 kcal/mol.
- c) The loss of fluoride from III to IV is likely to be exergonic due to the formation of a strong Si-F bond in TMSF, which has been observed in crude reaction mixtures. TMSF is a gas at room temperature and pressure but appears to be soluble in MeCN.

Coordinates and energies for all species:

Ī

Zero-point correction=	0.166580 (Hartree/Particle)
Thermal correction to Energy=	0.180555
Thermal correction to Enthalpy=	0.181499
Thermal correction to Gibbs Free En	ergy= 0.123851
Sum of electronic and zero-point Ene	ergies= -853.587122
Sum of electronic and thermal Energ	ies= -853.573148
Sum of electronic and thermal Entha	lpies= -853.572204
Sum of electronic and thermal Free E	Energies= -853.629852

SCF Done: E(UB3LYP) = -853.753702558

Symbolic Z-matrix:

Charge = -1	Multiplicity	= 2	
С	-1.06514	-0.56132	-0.02653
С	-2.04716	0.46941	-0.05799
С	-3.41802	0.18702	-0.01366
С	-3.80653	-1.15243	0.02628
С	-2.85322	-2.18118	0.03147
С	-1.48477	-1.89466	0.00786
С	0.25386	0.06972	-0.03498
С	-0.00834	1.45249	-0.05624
Н	-4.16219	0.97858	-0.01094
Н	-4.86542	-1.39801	0.05799
Н	-3.18405	-3.21603	0.06329
Н	-0.73367	-2.6738	0.02351
Н	0.6625	2.29167	-0.12137
С	-2.00938	2.95892	0.10463
Н	-2.95498	3.03326	-0.43962
Н	-2.20887	3.14698	1.17184
Н	-1.34842	3.74768	-0.26211
Ν	-1.39591	1.67915	-0.12382
С	1.46663	-0.69317	-0.03118
С	2.80689	-0.00654	0.00495
0	1.51876	-1.96851	-0.00721
F	3.67098	-0.4623	-0.95548
F	3.48687	-0.20423	1.19001
F	2.77631	1.35476	-0.15517

<u>II</u>

Zero-point correction Thermal correction to Thermal correction to Thermal correction to Sum of electronic an Sum of electronic an Sum of electronic an	= 0.282551 (Hartree/Particle) o Energy= 0.304538 o Enthalpy= 0.305482 o Gibbs Free Energy= 0.228826 d zero-point Energies= -1262.772327 d thermal Energies= -1262.750340 d thermal Enthalpies= -1262.749396 d thermal Free Energies= -1262.826052
SCF Done: E(UB3L)	(P) = -1263.05487799
Symbolic Z-matrix: Charge = 0 Multiplic	ity = 2
C -2.831	86 -0.81851 0.01071
C -1.491	98 -1.21787 0.2461
C -0.422	93 -0.32068 0.20774
C -0.708	96 1.00832 -0.08147
C -2.026	27 1.42483 -0.33264
C -3.086	38 0.52529 -0.2911
C -3.662	21 -2.01684 0.11977
C -2.767	48 -3.05856 0.40632
H 0.596	44 -0.6434 0.39151
H 0.099	07 1.73166 -0.11956
Н -2.219	16 2.46638 -0.56817
H -4.093	57 0.85458 -0.50222
H -2.960	01 -4.10433 0.57084
C -0.301	99 -3.37422 0.75761
	44 -3.33200 -0.08003 74 -2.02127 -1.65079
	74 -3.02137 1.03970
N -1.097	27 -4.41147 0.91000
C -5.068	4 -2.00000 0.40400 4 -2.0711 -0.01610
C -5.863	9 -3 32344 -0 14075
0 -5 766	84 -0.03415 -0.25748
F -6.440	74 -3 45906 -1 36824
F -6.912	36 -3 35774 0 74391
F -5.148	1 -4 44657 0.07834
Si -7.115	71 -0.15466 0.44257
C -8.697	77 -0.81113 -0.32146
Н -8.875	79 -1.85908 -0.07244
Н -9.561	07 -0.23591 0.03076
Н -8.673	87 -0.72889 -1.41218
C -7.075	52 -0.38474 2.30522
Н -7.873	79 0.19508 2.78089
Н -7.214	01 -1.42949 2.59293
Н -6.126	93 -0.04282 2.72975
C -6.878	83 1.64659 -0.02729
Н -7.754	65 2.238 0.25967
H -6.010	65 2.09199 0.46612
Н -6.748	09 1.76474 -1.10702

Zero-point correction= 0.280859 (Hartree/Particle) Thermal correction to Energy= 0.303257 Thermal correction to Enthalpy= 0.304201 Thermal correction to Gibbs Free Energy= 0.229029 Sum of electronic and zero-point Energies= -1262.839929 Sum of electronic and thermal Energies= -1262.817531 Sum of electronic and thermal Enthalpies= -1262.816587 Sum of electronic and thermal Free Energies= -1262.891759

SCF Done: E(RB3LYP) = -1263.12078802

Symbolic Z-matrix:

Charge = -1	Multiplicity = 1
C	-0.30269 1.63677 0.
Č	0.37731 0.38464 -0.12144
C	1.76934 0.28444 -0.09694
C	2.50634 1.45402 0.06346
C	1.85981 2.69519 0.20161
Ċ	0.47239 2.79491 0.17179
С	-1.71593 1.3345 -0.04733
С	-1.82217 -0.03827 -0.17521
Н	2.26228 -0.67828 -0.19377
Н	3.59145 1.40631 0.0864
Н	2.45594 3.59422 0.33275
Н	-0.00146 3.76349 0.27625
Н	-2.6731 -0.73008 -0.25045
С	-0.37004 -2.03647 -0.37425
Н	0.21787 -2.25033 -1.27328
Н	0.16007 -2.43909 0.49601
Н	-1.36333 -2.49472 -0.45686
Ν	-0.57731 -0.60364 -0.23069
С	-2.90174 2.18476 0.05744
С	-2.98197 3.45445 -0.35531
0	-4.00515 1.63187 0.64483
F	-4.06097 4.24041 -0.20604
F	-3.4589 -2.27974 -0.5161
F	-2.0101 4.14312 -0.97422
Si	-5.38553 0.85926 0.00782
С	-5.10013 0.35901 -1.77745
Н	-4.48998 -0.55144 -1.79203
Н	-6.0544 0.13314 -2.26821
Н	-4.60462 1.13927 -2.36439
С	-5.68036 -0.63478 1.08855
Н	-6.68981 -1.03813 0.94259
Н	-4.95709 -1.41146 0.79999
Н	-5.56349 -0.39922 2.15161
С	-6.79861 2.11015 0.14688
н	-7.74996 1.66587 -0.16865
Н	-6.92117 2.4534 1.17944
Н	-6.62154 2.99444 -0.47267

<u>IV</u>

Zero-point corre Thermal corre Thermal corre Sum of electro Sum of electro Sum of electro Sum of electro	ection= ction to Energy= ction to Enthalpy= ction to Gibbs Free E onic and zero-point Er onic and thermal Ener onic and thermal Enth onic and thermal Free	0.280127 0.301 0.302 nergy= nergies= gies= alpies= Energies=	(Hartree/Particle) 196 2140 0.228478 -1162.894868 -1162.873799 -1162.872854 -1162.946517
SCF Done: E(RB3LYP) = -1163.17	499452	
Symbolic Z-ma Charge = 0 M C C C C C C C C C C C C C C C C C C C	trix: ultiplicity = 1 -1.07692 -0.64835 0.21238 -1.00321 1.30336 -0.13199 1.09219 1.11568 - -0.17503 1.48478 - -1.25699 0.61912 - -1.93466 -1.78959 -1.14484 -2.75085 2.28284 -0.41546 1.91813 1.81588 - -0.3051 2.46564 -1 -2.22833 0.9103 -0 -1.40522 -3.74529 1.24527 -3.02895 2.05119 -3.16865 1.6467 -2.50819 2 0.89103 -4.00977 0.1432 -2.29102 0 -3.3528 -1.89321 -0 -3.95681 -3.04359 - -4.06404 -0.72654 - -5.25317 -3.16103 - -3.36137 -4.23789 - -5.29219 -0.12337 - -5.29219 -0.12337 - -5.29219 -0.12337 - -5.29219 -0.12337 - -5.29219 -0.12337 - -5.29219 -0.12337 - -5.37327 -1.1576 - -6.12115 -0.74944 - -5.6549 -2.19442 - -4.41584 -1.17013 - -3.84501 1.71096 - -4.73027 -2.22040 -	0. 0.47936 0.40808 0.16295 0.65261 0.57771 0.23071 0.82236 0.77936 0.235 1.09859 0.95694 1.15055 1.55865 0.8324 2.4326 1.87382 0.976 0.11463 0.42596 0.17349 0.72176 0.42596 0.17349 0.72176 0.46925 0.83691 0.11155 0.35535 0.46619 1.05289 2.40371 3.09172 2.19975 2.93269 1.20235 1.83748 1.71377 0.28268	
	1.10021 2.20040	0.20200	

<u>v</u>

Zero-point correction=	0.180069 (Hartree/Particle))
Thermal correction to Energy=	0.192994	
Thermal correction to Enthalpy=	0.193938	
Thermal correction to Gibbs Free E	Energy= 0.139200	
Sum of electronic and zero-point El	nergies= -754.271069	
Sum of electronic and thermal Ener	rgies= -754.258144	
Sum of electronic and thermal Enth	nalpies= -754.257200	
Sum of electronic and thermal Free	e Energies= -754.311937	

SCF Done: E(RB3LYP) = -754.451137898

Symbolic Z-matrix:

Ćharge =	0 Multiplicity	= 1	
С	-0.86809	-0.60811	-0.00003
С	-1.66226	0.56255	0.00005
С	-3.05657	0.52442	0.00006
С	-3.65711	-0.72947	0.00002
С	-2.88588	-1.9048	-0.00003
С	-1.49698	-1.86004	-0.00006
С	0.51244	-0.17036	-0.00002
С	0.48077	1.21777	-0.00002
Н	-3.65482	1.42932	0.00009
Н	-4.73974	-0.80071	0.00003
Н	-3.38828	-2.86653	-0.00005
Н	-0.90367	-2.76543	-0.00009
Н	1.29912	1.92113	-0.00002
С	1.68388	-1.01635	-0.00003
Ν	-0.8034	1.66161	0.00011
С	-1.22579	3.05077	-0.00007
Н	-1.82043	3.27209	-0.88975
Н	-1.82178	3.27185	0.88876
Н	-0.34567	3.69205	0.0007
0	1.65695	-2.23836	-0.00001
С	3.08032	-0.35892	-0.00002
F	3.24742	0.44427	-1.10277
F	3.24744	0.44413	1.10284
Н	3.86133	-1.11853	-0.00008

<u>VI</u>

Zero-point correction=	0.164511 (Hartree/Particle)
Thermal correction to Energy=	0.178485
Thermal correction to Enthalpy=	0.179429
Thermal correction to Gibbs Free En	ergy= 0.122894
Sum of electronic and zero-point Ene	ergies= -853.458423
Sum of electronic and thermal Energy	ies= -853.44449
Sum of electronic and thermal Entha	lpies= -853.443504
Sum of electronic and thermal Free I	Energies= -853.500040
	-
SCF Done: E(RB3LYP) = -853.6229	933915
Symbolic Z-matrix:	
Charge = -2 Multiplicity = 1	
-3.45055 - 0.49451 - 0	
-00000 00-0-01 0	•

С	-3.45055	0.49451	0.
С	-4.43829	1.51695	-0.10496
С	-5.80969	1.22741	-0.04302
С	-6.18739	-0.11688	0.00393
С	-5.23221	-1.14141	0.03174
С	-3.86038	-0.84206	0.0565
С	-2.13514	1.13825	0.03333
С	-2.41925	2.54099	0.03035
Н	-6.56179	2.01229	-0.05831
Н	-7.2484	-0.36549	0.02888
Н	-5.56037	-2.17947	0.0686
Н	-3.101 ·	-1.61092	0.12904
Н	-1.75686	3.34659	-0.24051
С	-4.46661	3.97233	0.18959
Н	-5.42172	4.08643	-0.33048
Н	-4.66274	4.01435	1.27827
Н	-3.83447	4.8239	-0.06168
Ν	-3.80341	2.73664	-0.19823
С	-0.93444	0.37797	0.03591
С	0.39388	1.05944	0.00499
0	-0.8618	-0.91236	0.07614
F	1.22004	0.64008	-1.0382
F	1.18779	0.80572	1.12705
F	0.38158	2.42314	-0.0966

<u>VII</u>

Zero-point correction= Thermal correction to Energy Thermal correction to Enthat Thermal correction to Gibbs Sum of electronic and zero- Sum of electronic and therm Sum of electronic and therm Sum of electronic and therm	0.164121 (Hartree/Particle) y= 0.177362 lpy= 0.178306 Free Energy= 0.122858 point Energies= -753.689346 hal Energies= -753.676105 hal Enthalpies= -753.675161 hal Free Energies= -753.730608
SCF Done: E(RB3LYP) = -	753.853466789
Symbolic Z-matrix:Charge = -1 Multiplicity = 1C -2.15385 1.4 C -3.11864 2.5 C -4.49529 2.2 C -4.49529 2.2 C -4.91098 0.9 C -3.97365 -0.7 C -2.6054 0.11 C -1.06973 3.41 H -5.21906 3.02 H -5.27377 0.7 H -4.32977 -1.7 H -1.86674 -0.61 H -0.36261 4.22 C -3.02931 5.01 H -3.76619 5.11 H -3.52916 5.11 H -2.24824 5.71 N -2.43478 3.72 C 0.44416 1.22 C 1.62559 2.020 O 0.37924 0.020 F 2.83591 1.420 F 2.83591 1.420	61540. 00894 0.0152 6175 0.05449 03395 0.06917 1723 0.04921 3242 0.01569 7199 -0.03062 2904 -0.02936 7228 0.07369 0737 0.0989 4409 0.06326 5874 0.00738 4181 -0.05913 149 0.05236 5616 -0.74654 8973 1.0139 76632 -0.06874 0257 -0.18591 2236 0.04379 3681 0.11885 5742 0.13885

<u>TEAPF₆</u>

Zero-point correction= 0.298435 (Hartree/Particle	e)
Thermal correction to Energy= 0.318097	
Thermal correction to Enthalpy= 0.319041	
Thermal correction to Gibbs Free Energy= 0.250884	
Sum of electronic and zero-point Energies= -1312.207637	
Sum of electronic and thermal Energies= -1312.187975	
Sum of electronic and thermal Enthalpies= -1312.187031	
Sum of electronic and thermal Free Energies= -1312.25518	8
SCF Done: E(RB3LYP) = -1312.50607223	
Symbolic Z-matrix:	
Charge = 0 Multiplicity = 1	
N -2.01359 0.29791 -0.23644	
C -1.53285 -0.83926 -1.15369	
C -2.37394 -2.10494 -1.23988	
H -0.5152 -1.05558 -0.83742	
Н -1.47067 -0.39004 -2.1455	
H -1.84897 -2.77664 -1.92418	
Н -2.47785 -2.63287 -0.29426	
H -3.36558 -1.93486 -1.66382	
C -1.30915 1.5588 -0.79392	
C -1.33815 2.80022 0.08409	
H -1.79452 1.74922 -1.75329	
H -0.27983 1.26247 -0.98337	
H -0.88525 3.60718 -0.49729	
H -2.342 3.13134 0.3619	
H -0.73379 2.68648 0.98233	
C -3.51181 0.54241 -0.35703	
H -3.74611 0.41509 -1.4154	
$\square -3.00929 1.09009 - 0.12375$	
$\square -5.47407 0.04095 0.27055$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$C = \frac{15/316}{100} 0.11/4 = 1.21387$	
H = -2.62101 - 1.70142 - 1.87315	
H = -0.94351 - 1.97206 - 1.33302	
H -1 25841 -1 17813 -2 8534	
H = -0.50194 - 0.42683 + 21608	
H = -2.11581 + 0.83558 + 1.798	
P 2 43147 -0.08846 0.00335	
F 1.56687 0.23394 -1.38605	
F 1.48254 1.05176 0.77692	
F 3.50092 1.06242 -0.38641	
F 3.18925 -0.40351 1.40027	
F 3.27662 -1.22611 -0.77985	

TMSCI

Zero-point correction= 0.112781 (Hartree/Particle) Thermal correction to Energy= 0.121319 Thermal correction to Enthalpy= 0.122263 Thermal correction to Gibbs Free Energy= 0.081335 Sum of electronic and zero-point Energies= -869.491095 Sum of electronic and thermal Energies= -869.482556 Sum of electronic and thermal Enthalpies= -869.481612 Sum of electronic and thermal Free Energies= -869.522541 SCF Done: E(RB3LYP) = -869.603875230

Symbolic Z-matrix:

Charge =	0 Multiplicity = 1
Si	0. 00.33622
С	0. 1.78896 -0.89954
Н	0. 1.83586 -1.99415
Н	-0.88395 2.3227 -0.53953
Н	0.88395 2.3227 -0.53953
С	1.54928 -0.89448 -0.89954
Н	2.45349 -0.39583 -0.53953
Н	1.56954 -1.92687 -0.53953
Н	1.5899 -0.91793 -1.99415
С	-1.54928 -0.89448 -0.89954
Н	-1.56954 -1.92687 -0.53953
Н	-2.45349 -0.39583 -0.53953
Н	-1.5899 -0.91793 -1.99415
CI	0. 0. 1.77168

<u>CI</u>-

Zero-point correction= 0.000000 (Hartree/Particle) Thermal correction to Energy= 0.001416 Thermal correction to Enthalpy= 0.002360 Thermal correction to Gibbs Free Energy= -0.015023 Sum of electronic and zero-point Energies= -460.303727 Sum of electronic and thermal Energies= -460.302311 Sum of electronic and thermal Enthalpies= -460.301367 Sum of electronic and thermal Free Energies= -460.318750

SCF Done: E(RB3LYP) = -460.303727178

<u>TMSF</u>

Zero-point correction=	0.113496 (⊦	lartree/Particle)
Thermal correction to Energy=	0.1218	75
Thermal correction to Enthalpy=	0.1228	19
Thermal correction to Gibbs Free	Energy= 0.0	082650
Sum of electronic and zero-point E	Energies=	-509.150346
Sum of electronic and thermal Ene	ergies= -	509.141967
Sum of electronic and thermal Ent	halpies=	-509.141023
Sum of electronic and thermal Fre	e Energies=	-509.181192
SCF Done: E(RB3LYP) = -509.26	3841886	
Symbolic Z-matrix:		

Charge =	0 Multiplicity = 1
С	0. 1.79428 -0.52325
Н	-0.88215 2.32289 -0.15029
Н	0.88215 2.32289 -0.15029
Н	0. 1.88522 -1.61447
С	1.55389 -0.89714 -0.52325
С	-1.55389 -0.89714 -0.52325
Н	1.57061 -1.92541 -0.15029
Н	1.63265 -0.94261 -1.61447
Н	2.45276 -0.39748 -0.15029
Н	-1.63265 -0.94261 -1.61447
Н	-1.57061 -1.92541 -0.15029
Н	-2.45276 -0.39748 -0.15029
Si	0. 0. 0.01465
F	0. 0. 1.66206

<u>F</u>-

Zero-point correction= 0.000000 (Hartree/Particle) Thermal correction to Energy= 0.001416 Thermal correction to Enthalpy= 0.002360 Thermal correction to Gibbs Free Energy= -0.014159 Sum of electronic and zero-point Energies= -99.888693 Sum of electronic and thermal Energies= -99.887277 Sum of electronic and thermal Enthalpies= -99.886333 Sum of electronic and thermal Free Energies= -99.902852

SCF Done: E(RB3LYP) = -99.8886932053

<u>Et₃N</u>

Zero-point correction=	0.205370 (Hartree/Particle)
Thermal correction to Energy=	0.214875	,
Thermal correction to Enthalpy=	0.215819	
Thermal correction to Gibbs Free E	Energy= 0.171297	
Sum of electronic and zero-point Er	nergies= -292.277032	
Sum of electronic and thermal Ener	rgies= -292.267528	
Sum of electronic and thermal Enth	nalpies= -292.266584	
Sum of electronic and thermal Free	Energies= -292.311106	

SCF Done: E(RB3LYP) = -292.482402760

Symbolic Z-matrix:

Charge =	0 Multiplicity	= 1	
Ν	0.00082	0.00021	0.01306
С	1.3101	0.50917	0.43761
С	2.46641	0.01641	-0.43098
Н	1.50125	0.26424	1.49978
Н	1.28214	1.5997	0.38267
Н	3.41087	0.44875	-0.08622
Н	2.57842	-1.07042	-0.40209
Н	2.31404	0.30845	-1.47287
С	-0.21256	-1.38841	0.43691
С	-1.22097	-2.14099	-0.42978
Н	-0.51721	-1.43269	1.49993
Н	0.74519	-1.91023	0.3781
Н	-1.31843	-3.17576	-0.08697
Н	-2.21776	-1.69377	-0.3967
Н	-0.89545	-2.1529	-1.47283
С	-1.09353	0.87941	0.44077
С	-1.24986	2.12415	-0.43146
Н	-0.97171	1.17118	1.50129
Н	-2.024	0.30939	0.39258
Н	-2.09488	2.72739	-0.08521
Н	-0.36443	2.76477	-0.40983
Н	-1.43137	1.84201	-1.47143

<u>C₂H₄</u>

Zero-point correction= 0.051116 (Hartree/Particle) Thermal correction to Energy= 0.054139 Thermal correction to Enthalpy= 0.055083 Thermal correction to Gibbs Free Energy= 0.029594 Sum of electronic and zero-point Energies= -78.542112 Sum of electronic and thermal Energies= -78.539089 Sum of electronic and thermal Enthalpies= -78.538145 Sum of electronic and thermal Free Energies= -78.563633

SCF Done: E(RB3LYP) = -78.5932276828

Symbolic Z-matrix:

Charge =	0 Multiplicity = 1
С	00.66648 0.00006
Н	0.91942 -1.23984 0.00001
Н	-0.91939 -1.23988 -0.00037
С	0. 0.66648 0.00006
Н	-0.91942 1.23984 0.00001
Н	0.91939 1.23988 -0.00037

<u> PF6</u>=

0.018175 (Hartree/Particle) Zero-point correction= Thermal correction to Energy= 0.024487 Thermal correction to Enthalpy= 0.025431 Thermal correction to Gibbs Free Energy= -0.009144 Sum of electronic and zero-point Energies= -940.878439 Sum of electronic and thermal Energies= -940.872128 Sum of electronic and thermal Enthalpies= -940.871183 Sum of electronic and thermal Free Energies= -940.905758

SCF Done: E(RB3LYP) = -940.896614019

Symbolic Z-matrix:

Charge = -1	Multip	licity =	- 1	
Ρ	0.	0.	0.	
F	0.	0.	1.	64576
F	0.	1.6	4576	0.
F	1.64	1576	0.	0.
F	0.	0.	-1.	64576
F	0.	-1.6	4576	0.
F	-1.64	4576	0.	0.

Total energies of intermediate species:

			1	II	III	IV	V
with TMSCI		Total E of all species	-	-3904.92	-3904.99	-3905.02	-3905.11
			3904.93024				
		dE / Ha/particle		0.007649	-0.06571	-0.0321	-0.09458
		dE / kcal/mol		4.819181	-41.3954	-20.2227	-59.5857
			1	VI	VII	V	
without TM	SCI	Total E of all species	-	-2165.76	-2165.89	-2166	
			2165.88504				
		dE / Ha/particle		0.129812	-0.13342	-0.10664	
		dE / kcal/mol		81.78133	-84.0553	-67.1822	

CIF of 3ae

X-ray diffraction experiments on **3ae** were carried out at 100(2) K on a Bruker APEX II diffractometer using Mo-K_a radiation ($\lambda = 0.71073$ Å). Data collections were performed using a CCD area detector. Intensities were integrated in SAINT²⁵ and absorption corrections based on equivalent reflections were applied using SADABS.²⁶ The structure was solved using SheIXT²⁷ and refined by full matrix least squares against *F*² in SheIXL^{27,28} using Olex2.²⁹ All of the non-hydrogen atoms were refined anisotropically. While all of the hydrogen atoms were located geometrically and refined using a riding model. The structure was refined as a two component non-merohedral twin. The crystal structure and refinement data are given in Table S4. Crystallographic data has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC 2061359. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax(+44) 1223 336033, e-mail: deposit@ccdc.cam.ac.uk].

CCDC number	2061359
Empirical formula	$C_{11}H_8BrF_2NO$
Formula weight	288.09
Temperature/K	100(2)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	7.3373(5)
b/Å	14.2535(9)
c/Å	9.9567(6)
α/°	90
β/°	90.050(4)
γ/°	90
Volume/Å ³	1041.29(12)
Z	4
$ ho_{calc}g/cm^3$	1.838
µ/mm ⁻¹	3.951
F(000)	568.0
Crystal size/mm ³	0.42 × 0.18 × 0.1
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	4.99 to 56.106
Index ranges	-9 ≤ h ≤ 9, -18 ≤ k ≤ 18, 0 ≤ l ≤ 13
Reflections collected	2506
Independent reflections	2506 [R _{int} = ?, R _{sigma} = 0.0201]
Data/restraints/parameters	2506/0/148
Goodness-of-fit on F ²	1.184
Final R indexes [I>=2σ (I)]	$R_1 = 0.0282, wR_2 = 0.0640$
Final R indexes [all data]	$R_1 = 0.0307, wR_2 = 0.0647$
Largest diff. peak/hole / e Å ^{.3}	0.88/-0.53

 Table S4. Crystal data and structure refinement for 3ae.

NMR Spectra of Novel Substrates

2,2,2-trifluoro-1-(4-pentylphenyl)ethan-1-one, 1j

¹⁹**F NMR** (376 MHz, CDCl₃):

1-(4-(benzyloxy)-2-methylphenyl)-2,2,2-trifluoroethan-1-one, 1k

¹H NMR (400 MHz, CDCl₃):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

żο f1 (ppm)

30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

 $2,2,2-trifluoro-1-(4-(2-methoxy pyrimidin-5-yl) phenyl) ethan-1-one, {\bf 1p}$

1-(3-(2,6-diphenylpyrimidin-4-yl)phenyl)-2,2,2-trifluoroethan-1-one, 1q

(*E*)-2,2,2-trifluoro-1-(4-styrylphenyl)ethan-1-one, **1s ¹H NMR** (400 MHz, CDCl₃):

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

1-(4-bromo-1-methyl-1H-indol-3-yl)-2,2,2-trifluoroethan-1-one, 1ae

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

f1 (ppm)

(E)-2,2,2-trifluoro-N-phenethyl-1-phenylethan-1-imine, 1au

(E)-2,2,2-trifluoro-N-(4-methoxybenzyl)-1-phenylethan-1-imine, 1av

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

58.7

NMR Spectra of Novel Products

2,2-difluoro-1-(4-pentylphenyl)ethan-1-one, 3j

¹⁷⁴

¹³**C NMR** (131 MHz, CDCl₃):

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹**H NMR** (400 MHz, CDCl₃):

1-(3'-amino-[1,1'-biphenyl]-4-yl)-2,2-difluoroethan-1-one 30

f1 (ppm)

184

(E)-1-(4-(dibutylamino)styryl)phenyl)-2,2-difluoroethan-1-one, 3r

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

1-(Anthracen-9-yl)-2,2-difluoroethan-1-one, 3t

¹⁹**F NMR** (376 MHz, CDCl₃):

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

f1 (ppm)

208

2,2-difluoro-1-(1-methyl-1H-indol-5-yl)ethan-1-one, 3aj

f1 (ppm)

¹³**C NMR** (131 MHz, CDCl₃):

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

(Z)-1,1-difluorononadec-10-en-2-one, **3ap**

^{230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

References

(1) Mitchell, L.; Williamson, P.; Ehrlichová, B.; Anderson, A. E.; Seymour, V. R.; Ashbrook, S. E.; Acerbi, N.; Daniels, L. M.; Walton, R. I.; Clarke, M. L.; Wright, P. A. Mixed-Metal MIL-100(Sc,M) (M=AI, Cr, Fe) for Lewis Acid Catalysis and Tandem C□C Bond Formation and Alcohol Oxidation. Chem. - A Eur. J. 2014, 20 (51), 17185–17197. https://doi.org/10.1002/chem.201404377.

(2) Xu, X.; Min, Q. Q.; Li, N.; Liu, F. Visible Light-Promoted Umpolung Coupling of Aryl Tri-/Difluoroethanones with 2-Alkenylpyridines. Chem. Commun. 2018, 54 (78), 11017–11020. https://doi.org/10.1039/c8cc06748a.

(3) Mohr, G. J.; Lehmann, F.; Grummt, U. W.; Spichiger-Keller, U. E. Fluorescent Ligands for Optical Sensing of Alcohols: Synthesis and Characterisation of p-N,N-Dialkylamino-Trifluoroacetylstilbenes. Anal. Chim. Acta 1997, 344 (3), 215–225. https://doi.org/10.1016/S0003-2670(97)00113-X.

(4) Wu, W.; Tian, Q.; Chen, T.; Weng, Z. Copper-Mediated Trifluoroacetylation of Arenediazonium Salts with Ethyl Trifluoropyruvate. Chem. - A Eur. J. 2016, 22 (46), 16455–16458. https://doi.org/10.1002/chem.201604300.

(5) Van Der Mei, F. W.; Qin, C.; Morrison, R. J.; Hoveyda, A. H. Practical, Broadly Applicable, α-Selective, Z-Selective, Diastereoselective, and Enantioselective Addition of Allylboron Compounds to Mono-, Di-, Tri-, and Polyfluoroalkyl Ketones. J. Am. Chem. Soc. 2017, 139 (26), 9053–9065. https://doi.org/10.1021/jacs.7b05011.

(6) Yan, G.; Cao, X.; Zheng, W.; Ke, Q.; Zhang, J.; Huang, D. Copper-Mediated Trifluoroacetylation of Indoles with Ethyl Trifluoropyruvate. Org. Biomol. Chem. 2017, 15 (28), 5904–5907. https://doi.org/10.1039/c7ob01335c.

(7) US Pat., 2003/0004157, 2003.

Brüning, F.; Nagae, H.; Käch, D.; Mashima, K.; Togni, A. Asymmetric Hydrogenation of Aryl Perfluoroalkyl Ketones Catalyzed by Rhodium(III) Monohydride Complexes Bearing Josiphos Ligands. Chem. – A Eur. J. 2019, 25 (46), 10818–10822. https://doi.org/10.1002/chem.201902585.

(9) Heinz, B.; Djukanovic, D.; Ganiek, M. A.; Martin, B.; Schenkel, B.; Knochel, P. Selective Acylation of Aryl-and Heteroarylmagnesium Reagents with Esters in Continuous Flow. Org. Lett. 2020, 22 (2), 493–496. https://doi.org/10.1021/acs.orglett.9b04254.

(10) Funabiki, K.; Hayakawa, A.; Inuzuka, T. Convenient, Functional Group-Tolerant, Transition Metal-Free Synthesis of Aryl and Heteroaryl Trifluoromethyl Ketones with the Use of Methyl Trifluoroacetate. Org. Biomol. Chem. 2018, 16 (6), 913–918. https://doi.org/10.1039/c7ob02862h.

(11) Yarmoliuk, D. V.; Arkhipov, V. V.; Stambirskyi, M. V.; Dmytriv, Y. V.; Shishkin, O. V.; Tolmachev, A. A.; Mykhailiuk, P. K. Direct Noncatalytic Electrophilic Trifluoroacetylation of Electron-Rich Pyrazoles. Synth. 2014, 46 (9), 1254–1260. https://doi.org/10.1055/s-0033-1340840.

(12) Camerino, E.; Wong, D. M.; Tong, F.; Körber, F.; Gross, A. D.; Islam, R.; Viayna, E.; Mutunga, J. M.; Li, J.; Totrov, M. M.; Bloomquist, J. R.; Carlier, P. R. Difluoromethyl Ketones: Potent Inhibitors of Wild Type and Carbamate-Insensitive G119S Mutant Anopheles Gambiae Acetylcholinesterase. Bioorganic Med. Chem. Lett. 2015, 25 (20), 4405–4411. https://doi.org/10.1016/j.bmcl.2015.09.019.

(13) U.S., 6096784, 01 Aug 2000.

(14) Tian, T.; Zhong, W. H.; Meng, S.; Meng, X. B.; Li, Z. J. Hypervalent lodine Mediated Para -Selective Fluorination of Anilides. J. Org. Chem. 2013, 78 (2), 728–732. https://doi.org/10.1021/jo302099d.

(15) Leng, D. J.; Black, C. M.; Pattison, G. One-Pot Synthesis of Difluoromethyl Ketones by a Difluorination/Fragmentation Process. Org. Biomol. Chem. 2016, 14 (5), 1531–1535. https://doi.org/10.1039/c5ob02468d.

(16) Miele, M.; D'Orsi, R.; Sridharan, V.; Holzer, W.; Pace, V. Highly Chemoselective Difluoromethylative Homologation of Iso(Thio)Cyanates: Expeditious Access to Unprecedented α, α -Difluoro(Thio)Amides. Chem. Commun. 2019, 55 (86), 12960–12963. https://doi.org/10.1039/c9cc06929a.

(17) Schmitt, E.; Rugeri, B.; Panossian, A.; Vors, J. P.; Pazenok, S.; Leroux, F. R. In Situ Generated Fluorinated Iminium Salts for Difluoromethylation and Difluoroacetylation. Org. Lett. 2015, 17 (18), 4510–4513. https://doi.org/10.1021/acs.orglett.5b02184.

(18) de Azambuja, F.; Yang, M. H.; Feoktistova, T.; Selvaraju, M.; Brueckner, A. C.; Grove,
M. A.; Koley, S.; Cheong, P. H. Y.; Altman, R. A. Connecting Remote C–H Bond
Functionalization and Decarboxylative Coupling Using Simple Amines. Nat. Chem. 2020, 12
(5), 489–496. https://doi.org/10.1038/s41557-020-0428-1.

(19) Zhang, Y.; Yan, W.; Wang, Y.; Weng, Z. Copper-Catalyzed Synthesis of Indol-3-YI α -(Difluoromethyl)- α -(Trifluoromethyl)Carbinols: Construction of Difluoromethylated Sp3 Carbon Centers. Org. Lett. 2017, 19 (19), 5478–5481. https://doi.org/10.1021/acs.orglett.7b02828.

(20) Yi, X.; Cao, Y. F.; Wang, X.; Xu, H.; Ban, S. R.; Dai, H. X. Palladium-Catalyzed Fluoroacylation of (Hetero)Arylboronic Acid with Fluorothioacetates at Ambient Temperature. Tetrahedron Lett. 2020, 61 (16), 151780. https://doi.org/10.1016/j.tetlet.2020.151780.

(21) Prieto, A.; Melot, R.; Bouyssi, D.; Monteiro, N. Palladium-Catalyzed C(Sp 2)–H Alkylation of Aldehyde-Derived Hydrazones with Functionalized Difluoromethyl Bromides. Angew. Chemie Int. Ed. 2016, 55 (5), 1885–1889. https://doi.org/10.1002/anie.201510334.

(22) Mizoi, K.; Mashima, Y.; Kawashima, Y.; Takahashi, M.; Mimori, S.; Hosokawa, M.; Murakami, Y.; Hamana, H. A New Methodology for Functionalization at the 3-Position of Indoles by a Combination of Boron Lewis Acid with Nitriles. Chem. Pharm. Bull. (Tokyo). 2015, 63 (7), 538–545. https://doi.org/10.1248/cpb.c15-00157.

(23) Sessler, C. D.; Rahm, M.; Becker, S.; Goldberg, J. M.; Wang, F.; Lippard, S. J. CF2H,
a Hydrogen Bond Donor. J. Am. Chem. Soc. 2017, 139 (27), 9325–9332.
https://doi.org/10.1021/jacs.7b04457.

(24) Abraham, M. H.; Abraham, R. J.; Acree, W. E.; Aliev, A. E.; Leo, A. J.; Whaley, W. L. An NMR Method for the Quantitative Assessment of Intramolecular Hydrogen Bonding; Application to Physicochemical, Environmental, and Biochemical Properties. J. Org. Chem. 2014, 79 (22), 11075–11083. https://doi.org/10.1021/jo502080p.

(25) Bruker, SAINT+ v8.38A Integration Engine, Data Reduction Software, Bruker Analytical X-ray Instruments Inc., Madison, WI, USA, 2015.

(26) Bruker, SADABS 2014/5, Bruker AXS area detector scaling and absorption correction, Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA, 2014/5.

(27) Sheldrick, G. M. SHELXT - Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71 (1), 3–8. https://doi.org/10.1107/S2053273314026370.

230

(28) Sheldrick, G. M. A Short History of SHELX. Acta Crystallographica Section A: Foundations of Crystallography. International Union of Crystallography January 1, 2008, pp 112–122. https://doi.org/10.1107/S0108767307043930.

(29) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H.
OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl.
Crystallogr. 2009, 42 (2), 339–341. https://doi.org/10.1107/S0021889808042726.