Supplemental Information-I

Table of Contents

Abbreviations S2
Figure S1. Micrographs of the dinoflagellate strain S3
Figure S2. Phylogenetic tree of selected dinoflagellatesS3
Figure S3. Rotamers and coupling constants for selected segments in 1A and 1B······S4
Figure S4. The relative configuration of the ring C in 1b and model compounds for DFT-NMR
calculations S4
Figure S5. The summary of fit report for PCA·····S5
Figure S6. Partial enlarged view of PCA score plot·····S5
Table S1. The criteria of ${}^{3}J_{H,H}$ and ${}^{2,3}J_{C,H}$ values (Hz) for anti and gauche orientations in acyclic
systems·····S6
Table S2. Cartesian coordinates and energies of the low-energy conformers calculated at the B3LYP/6-
31+G(d,p) level
Table S3. Comparison of the ¹³ C NMR experimental data of 1b with the mPW1PW91/6-311+G(2d,p)
//B3LYP/6-31+G(d,p) ^{13}C NMR calculation data of the (34S,35S,37R,38S,39R,40R,41S)-1b' and
(34 <i>S</i> ,35 <i>S</i> ,37 <i>R</i> ,38 <i>S</i> ,39 <i>R</i> ,40 <i>S</i> ,41 <i>S</i>)- 1b' stereoisomers······S14
Table S4. The structural characteristics of 188 SCCCs for PCA analysis S15-S22
Experimental Procedures S23-S32
References S33-S38

Abbreviations

AM	Amphidinol
BLAST	The basic local alignment search tool
CIP	Cahn–ingold–prelog
2D JRES	2D J-resolved spectroscopy
DEPT	Distortionless enhancement by polarization transfer
DFT-NMR	Density functional theory-nuclear magnetic resonance
DTX	Dinophysistoxin
ECD	Electronic circular dichroism
H2BC	Heteronuclear two-bond correlation
HETLOC	Sensitivity- and gradient-enhanced hetero (ω 1) half-filtered TOCSY
¹ H– ¹ H COSY	Proton-proton correlation spectroscopy
HMBC	Heteronuclear multiple bond correlation
HPLC	High performance liquid chromatography
HR-ESIMS	High resolution-electrospray ionization-mass spectrometry
HSQC	Heteronuclear single quantum coherence
HSQC-TOCSY	Heteronuclear single quantum coherence-total correlation spectroscopy
INADEQUATE	Incredible natural abundance double quantum transfer experiment
JBCA	J-based configuration analysis
KmTx	Karlotoxin
LFPs	Ladder-frame polyethers
LR-ESIMS	Low resolution-electrospray ionization-mass spectrometry
Ме	Methyl
MTPA	α-Methoxy-α-trifluoromethylphenylacetic acid
NCBI	National center for biotechnology information
NMR	Nuclear magnetic resonance
NOE	Nuclear Overhauser effect
PCA	Principal component analysis
PCR	Polymerase chain reaction
PPCs	Polyol-polyene compounds
SCCCs	Super-carbon-chain compounds
18S rDNA	18S ribosomal DNA
TOCSY	Total correlation spectroscopy
UPLC-MS	Ultra performance liquid chromatography-mass spectrometry

Supplemental Figures

Figure S1. Micrographs of the dinoflagellate strain (MDRC-02)

Figure S2. Phylogenetic tree of selected dinoflagellates inferred from the 18S rDNA sequence alignment using the BLAST algorithm.

Figure S3. Rotamers and coupling constants for selected segments in **1A** and **1B**. (A) The C32–C35 segment in **1A**. (B) The C46–C49 segment in **1B**. (C) The C52–C54 segment in **1B**. (D) The C66–C68 segment in **1B**.

Figure S4. The relative configuration of the ring C in 1b and model compounds for DFT-NMR calculations

- (A) The relative configuration of the ring C in **1b** assigned by diagnostic NOE interactions (The C27 to C44 moiety in **1b**, including Me-74, is omitted for clarity).
- (B) The absolute configurations of model compounds, viz., (34S,35S,37R,38S,39R,40R,41S)-1b' and (34S,35S,37R,38S,39R,40S,41S)-1b', representing the C34–C41 region of 1b for the DFT-NMR ¹³C chemical-shift calculations.

Figure S5. The summary of fit report for PCA

Figure S6. Partial enlarged view of PCA score plot.

The number **1** (the red dot) is benthol A, whereas **131–134** are DTX-4, DTX-5a, DTX-5b, and DTX-5c, respectively.

Supplemental Tables

	³ J _t	1,H [*]	² Jc	;,H *	³ Ј	с,н*
-	anti	gauche	gauche ^a	anti ^b	anti	gauche
oxygenation	large	small	large	small	large	small
none	9 to 12	2 to 4			6 to 8	1 to 3
mono	8 to 11	1 to 4	– 5 to – 7	0 to – 2	6 to 8	1 to 3
di	7 to 10	0 to 3	– 4 to – 6	2 to 0	5 to 7	1 to 3

Table S1. The criteria of ${}^{3}J_{H,H}$ and ${}^{2,3}J_{C,H}$ values (Hz) for anti and gauche orientations in acyclic systems.

*Our manuscript refers to the criteria proposed in the reference as follows.

Matsumori, N., Kaneno, D., Murata, M., Nakamura, H., Tachibana, K. (1999). Stereochemical determination of acyclic structures based on carbon-proton spin-coupling constants. A method of configuration analysis for natural products. J. Org. Chem. *64*, 866–876.

Table S2. Cartesian coordinates and energies of the low-energy conformers calculated at the B3LYP/6-31+G(d,p) level.

(34S,35S,37R,38S,39R,40R,41S)-**1b'**, Conf A

С	-4.350076	-1.222276	-0.722706
С	5.093765	-0.787205	-0.899366
С	3.846664	-1.220818	-0.122989
С	-2.832064	-1.275051	-0.595157
0	-2.462794	-2.653280	-0.507524
С	-2.302400	-0.534833	0.649765
С	-2.530325	0.979738	0.691597
С	-1.586054	1.722708	-0.246251
С	-0.133296	1.347715	0.047504
С	0.047422	-0.180663	-0.038573
0	-0.896421	-0.843152	0.831907
С	1.398572	-0.761367	0.427542
0	-1.789853	3.119318	-0.071475
0	0.654935	2.041189	-0.912110
С	2.655135	-0.273413	-0.316157
0	1.621994	-0.492298	1.812551
0	2.989815	1.064521	0.099247
Н	-2.775171	-1.002181	1.520773
Н	-0.109091	-0.489394	-1.083543
Н	-4.702094	-0.211935	-0.950072
Н	-4.664612	-1.883681	-1.534702
Н	-4.829182	-1.567771	0.199888
Н	5.421870	0.210099	-0.593433
Н	5.919255	-1.485621	-0.728345
Н	4.898918	-0.758881	-1.978103
Н	4.068763	-1.294070	0.949023
Н	3.538816	-2.223987	-0.446745
Н	-2.385942	-0.840198	-1.503617
Н	-1.581211	-2.688470	-0.106902
Н	-3.568289	1.222268	0.445613
Н	-2.352928	1.339065	1.711816
Н	-1.793207	1.452217	-1.294445
Н	0.108748	1.684495	1.066080
Н	1.321087	-1.848469	0.274270
Н	-1.082399	3.566164	-0.560804
Н	1.588190	1.987474	-0.624779

Н	2.427190	-0.193280	-1.385178
Н	0.799152	-0.697944	2.280927
Н	2.966669	1.066509	1.070272
B3LYF	P Energy = -88	3.820678514	a.u.

(34S,35S,37R,38S,39R,40R,41S)-1b', Conf B

С	-4.147052	-1.551302	-0.581083
С	4.077497	-2.074343	-0.778038
С	4.048168	-0.677573	-0.144189
С	-2.629016	-1.457776	-0.480449
0	-2.132713	-2.789723	-0.327089
С	-2.150439	-0.606558	0.712839
С	-2.525998	0.878254	0.689635
С	-1.681927	1.661834	-0.308013
С	-0.192839	1.447258	-0.035421
С	0.139696	-0.057826	-0.049546
0	-0.717093	-0.767040	0.873439
С	1.550263	-0.475393	0.417150
0	-2.020088	3.038658	-0.196251
0	0.499740	2.163707	-1.050220
С	2.741038	0.097163	-0.371845
0	1.766234	-0.113534	1.782717
0	2.931123	1.485272	-0.038128
Н	-2.556469	-1.073974	1.616864
Н	-0.001781	-0.434022	-1.074231
Н	-4.580135	-1.880170	0.369905
Н	-4.592810	-0.593354	-0.863295
Н	-4.410335	-2.288130	-1.344934
Н	3.878645	-2.028194	-1.855453
Н	5.062228	-2.533057	-0.644474
Н	3.342807	-2.752045	-0.330219
Н	4.849528	-0.065598	-0.572742
Н	4.239714	-0.746227	0.933678
Н	-2.237926	-1.034736	-1.419168
Н	-1.242458	-2.721714	0.049404
Н	-3.588580	1.005965	0.462683
Н	-2.361216	1.303505	1.686385
Н	-1.883277	1.318687	-1.335907

Н	0.037997	1.858481	0.958061	С
Н	1.575032	-1.570493	0.322199	С
Н	-1.370523	3.527359	-0.724310	С
Н	1.439440	2.218269	-0.784404	С
Н	2.498947	0.086824	-1.440487	0
Н	0.976998	-0.380288	2.277229	С
Н	2.930201	1.541754	0.931236	0
B3LY	P Energy = -88	3.819920345	a.u.	0
				С
(34S	,35S,37R,38S,3	39R,40R,41S)	- 1b′ , Conf C	0
				0
С	-4.311329	-1.337375	-0.516103	Н
С	4.628475	-1.295671	0.420755	Н
С	3.864372	-0.959687	-0.865770	Н
С	-2.787131	-1.324623	-0.524460	Н
0	-2.353480	-2.686663	-0.547208	Н
С	-2.179602	-0.626465	0.709072	Н
С	-2.468289	0.870508	0.857491	Н
С	-1.644816	1.709287	-0.112787	Н
С	-0.157593	1.386805	0.030154	Н
С	0.077701	-0.124555	-0.166626	Н
Ō	-0.749926	-0.876585	0.747568	Н
Ċ	1,494199	-0.655674	0.137016	Н
Õ	-1.890750	3.082128	0.164998	H
õ	0.514735	2.175206	-0.944562	H
Č	2.629026	-0.055697	-0.718753	H
õ	1 832167	-0 433359	1 506868	H
õ	2 988021	1 246069	-0 221141	H
н	-2 549845	-1 161803	1 590367	н
н	-0 164252	-0.383828	-1 208681	н
н	-4 690344	-1 755280	0 422913	Н
н	-4 725256	-0 334136	-0.652400	н
н	-4 668876	-1 967745	-1 334948	н
н	4.000070	-1.8//28/	1 13501/	B3LV
н	5 50/722	-1.044204	0 185208	DOLI
н	1 080307	-0.380157	0.100200	(315
н	3 5/0310	-0.303137	-1 350516	(0+0,
н	1 530/50	-0.455500	-1.567713	C
Ц	2 442326	0.400000	1 112123	C
н	-2.442020	-2 700854	-0.2205/6	C
н	-3 5336/0	1 075322	0 716565	C
Ц	2 217625	1 183344	1 877653	0
Ц	1 03/70/	1.105544	1 153370	C
Ц	0 150/65	1.403027	1 044054	C
Ц	1 157113	1 737886	0.060820	C
и Ц	1.457415	2 590572	-0.000820	C
и Ц	-1.247790	2 159772	0.726615	C
	2 222400	2.100720	1 704000	C
	2.232499	0.123121	-1.724023	0
и Ц	2 052440	-0.000047	2.033074	
עוכם	3.032449	1.170137	0.744055	0
DJLI	F Ellergyod	5.017990007	a.u.	0
(34S	,35S,37R,38S,3	39 <i>R</i> ,40 <i>R</i> ,41S)	- 1b' , Conf D	0
				0
С	2.558197	3.092299	-0.493741	Н
С	-4.835842	0.727338	0.600951	Н
С	-3.845151	-0.420218	0.378072	Н
С	1.437046	2.055566	-0.478048	Н
0	0.215810	2.777132	-0.525521	Н
С	1.490591	1.164818	0.789473	Н

С	2.680193	0.186470	0.881609
С	2.501093	-1.038738	-0.026302
С	1.128324	-1.669820	0.189338
С	0.046591	-0.599304	0.001194
0	0.265208	0.431986	0.959561
С	-1.394717	-1.111271	0.171147
0	3.456403	-2.073701	0.251494
0	0.896618	-2.730577	-0.742669
С	-2.392351	0.053833	0.264178
0	-1.763787	-1.898821	-0.961470
0	-2.207694	0.951186	-0.847279
Н	1.508189	1.840054	1.651261
Н	0.118909	-0.206784	-1.022074
Н	3.547490	2.627741	-0.547910
Н	2.436664	3.741447	-1.364960
Н	2.511023	3.718959	0.403617
Н	-4.788543	1.452615	-0.216678
Н	-5.862038	0.350040	0.662838
Н	-4.619901	1.263295	1.532935
Н	-4.107811	-0.985326	-0.524084
Н	-3.904940	-1.132220	1.212428
Н	1.534510	1.429440	-1.380410
Н	-0.540146	2.162584	-0.562413
Н	3.622042	0.695940	0.646894
Н	2.756770	-0.170677	1.914845
Н	2.575197	-0.754784	-1.086301
Н	1.074001	-2.056936	1.217841
Н	-1.469340	-1.705846	1.095724
Н	4.334840	-1.790043	-0.032802
Н	1.646710	-3.340471	-0.688981
Н	-2.129959	0.649316	1.142419
Н	-1.047075	-2.531059	-1.134936
Н	-2.340893	0.439233	-1.659420
33LY	P Energy = -88	3.817582424	a.u.
34S,	35S,37R,38S,3	39R,40R,41S)	- 1b′ , Conf E
C	2 765166	2 880500	0 210120
č	5 00/710	-2.000090	-0.210130 0.801750
č	3 764007	-0.709711	-0.091409
0	5.704007	-1.170079	-0.120712

	3.764007	-1.170679	-0.120712
	-3.023642	-1.391374	-0.367544
)	-2.571335	-0.905596	-1.639651
	-2.368402	-0.557943	0.749334
	-2.647411	0.953324	0.690887
	-1.695518	1.705064	-0.233041
	-0.242450	1.355304	0.087624
	-0.042167	-0.170151	0.002987
)	-0.965328	-0.831179	0.899368
	1.317253	-0.736954	0.457902
)	-1.923919	3.101806	-0.049517
)	0.550685	2.065858	-0.857885
	2.565167	-0.226766	-0.284921
)	1.545170	-0.479813	1.846899
)	2.896693	1.102830	0.159609
	-2.802679	-0.945573	1.678717
	-0.224216	-0.490174	-1.030597
	-3.129404	-3.258380	0.742880
	-3.263877	-3.450856	-1.010039
	-1.683267	-3.094741	-0.274144
	5.836454	-1.405999	-0.742320

(345,3	5S,37R,38S,3	39R,40R,41S)	- 1b ⁻ , Conf G
(34 ССССОССССОСООСООННИНИНИНИНИИ) Энэ соссоссососоосоониининининининининининин	2.546451 -4.837446 -3.845627 1.425676 0.203097 1.489737 2.687480 2.505719 1.132328 0.046577 0.268965 -1.394239 3.541962 0.905617 -2.393088 -1.761958 -2.207961 1.510114 0.118778 2.507919 3.534933 2.415300 -4.623028 -4.789851 -5.863357 -4.106889 -3.905841 1.516666 -0.552078 3.627072	3.093115 0.720088 -0.426378 2.056197 2.775978 1.164140 0.193759 -1.032148 -1.669907 -0.602328 0.424715 -1.115151 -2.009857 -2.733945 0.048926 -1.901400 0.948149 1.839004 -0.206746 3.717343 2.628925 3.744614 1.254804 1.446576 0.341795 -0.990307 -1.139710 1.431529 2.161160 0.697828	-1b', Conf G -0.501625 0.601543 0.378075 -0.478529 -0.513587 0.787740 0.867197 -0.035870 0.186676 0.003583 0.966214 0.129721 -0.739815 0.266413 -0.961585 -0.843333 1.649594 -1.018325 0.397889 -0.568232 -1.369617 1.534571 -0.214966 0.661629 -0.525222 1.211260 -1.382271 -0.559693 0.621212
Õ	-2.207961	0.948149	-0.843333
0	0.905617	-2.733945	-0.739815
0	-1.761958	-1.901400	-0.961585
U U	-2.207901	0.948149	-0.843333
н	0 118778	-0 206746	-1 018325
н	2 507919	3 717343	0.397889
н	3 534933	2 628925	-0.568232
н	2.415300	3.744614	-1.369617
Н	-4.623028	1.254804	1.534571
Н	-4.789851	1.446576	-0.214966
Н	-5.863357	0.341795	0.661629
Н	-4.106889	-0.990307	-0.525222
Н	-3.905841	-1.139710	1.211260
Н	1.516666	1.431529	-1.382271
Н	-0.552078	2.161160	-0.559693
Н	3.627072	0.697828	0.621212
Н	2.769166	-0.149552	1.908181
Н	2.576058	-0.747759	-1.091909
Н	1.072891	-2.055448	1.218343
н	-1.469233	-1.711173	1.096098
н	3.691350	-2.152721	1.075541
н	1.708903	-3.2/4/39	-0.776229
н	-2.131890	0.643274	1.145861
П	-1.042888	-2.528400	-1.143069
	-2.343213	0.430/03	-1.000727
DJETF LINEIGY003.017 134041 A.U.			

(34*S*,35*S*,37*R*,38*S*,39*R*,40*R*,41*S*)-**1b'**, Conf H

С	-3.188661	-2.603541	-0.273570
С	4.466116	0.192112	1.263973
С	3.874598	-0.584821	0.080519
С	-1.866891	-1.843874	-0.361557
0	-0.839410	-2.820948	-0.423226
С	-1.653028	-0.910113	0.857018
С	-2.594304	0.309334	0.949120
С	-2.203971	1.422935	-0.031945
С	-0.717548	1.746908	0.089921
С	0.096006	0.459374	-0.088306
0	-0.289814	-0.458944	0.930848
С	1.620384	0.652480	-0.000647
0	-2.895375	2.653938	0.229478
0	-0.312762	2.692264	-0.905041

Н	4.804113	-0.655049	-1.968246
Н	5.326441	0.282170	-0.561938
Н	3.991865	-1.268884	0.948164
Н	3.461027	-2.167625	-0.467928
Н	-4.107667	-1.209670	-0.277535
Н	-2.992074	-1.420171	-2.340560
Н	-3.682957	1.133500	0.382440
Н	-2.533588	1.371933	1.697866
Н	-1.884904	1.430505	-1.278103
Н	-0.020848	1.695930	1.110264
Н	1.251212	-1.823484	0.297473
Н	-1.223682	3.558948	-0.539058
Н	1.480331	2.020460	-0.559972
Н	2.328884	-0.124691	-1.350263
Н	0.711357	-0.664699	2.305119
Н	2.843396	1.086161	1.129673
B3LYP	Energy = -88	3.817271483	a.u.

(34S,35S,37R,38S,39R,40R,41S)-**1b'**, Conf F

С	2.506896	3.144354	-0.452441
Č	-4.825222	0.772136	0.574286
Č	-3.834226	-0.388713	0.441292
Ĉ	1.467118	2.024271	-0.477595
Õ	0.146222	2.560457	-0.673604
Č	1.522057	1.147388	0.804023
C	2.712874	0.173664	0.874180
Č	2.515764	-1.040112	-0.036893
C	1.140170	-1.678577	0.173923
C	0.058981	-0.594599	0.033356
Ō	0.299307	0.430615	0.999663
C	-1.382044	-1.087159	0.243107
0	3.564850	-1.964286	0.232178
Ō	1.022940	-2.719386	-0.792159
С	-2.392482	0.076562	0.233067
0	-1.689459	-2.046236	-0.782484
0	-2.314986	0.755334	-1.029846
Н	1.565498	1.827283	1.664864
Н	0.113342	-0.185774	-0.986380
Н	3.525452	2.746995	-0.404138
Н	2.419656	3.753066	-1.356320
Н	2.358944	3.796011	0.418128
Н	-4.812513	1.399021	-0.321752
Н	-5.845261	0.399969	0.716355
Н	-4.579862	1.406682	1.434809
Н	-4.124758	-1.036496	-0.393577
Н	-3.864589	-1.012761	1.344044
Н	1.630951	1.410318	-1.367946
Н	-0.083559	3.114179	0.086541
Н	3.654965	0.671754	0.623041
Н	2.806272	-0.185244	1.904925
Н	2.565626	-0.735403	-1.094965
Н	1.093838	-2.094939	1.193269
Н	-1.455359	-1.625926	1.194988
Н	3.374154	-2.768084	-0.273741
Н	0.075792	-2.899756	-0.926553
Н	-2.113634	0.761969	1.042615
Н	-1.918450	-1.536597	-1.577462
Н	-1.556809	1.366446	-1.012537
B3LYP	Energy = -88	3.817211876	a.u.

(34*S*,35*S*,37*R*,38*S*,39*R*,40*R*,41*S*)-**1b'**, Conf G

С	2.345469	-0.699057	0.103474
0	2.097338	1.304010	-1.178376
0	1.887778	-1.586552	-0.934670
Н	-1.768523	-1.527040	1.754267
Н	-0.110979	0.050644	-1.086435
Н	-4.052090	-1.932013	-0.305429
Н	-3.262626	-3.296729	-1.115693
Н	-3.230790	-3.189571	0.651024
Н	4.133950	-0.223305	2.223087
Н	5.559674	0.143567	1.245058
Н	4.186281	1.250240	1.238321
Н	4.266400	-1.608562	0.077122
Н	4.183848	-0.115710	-0.860888
Н	-1.871890	-1.250449	-1.290811
Н	0.030225	-2.391138	-0.522684
Н	-3.635868	0.009462	0.785355
Н	-2.533305	0.719584	1.963465
Н	-2.395802	1.115684	-1.070388
Н	-0.526396	2.155196	1.093705
Н	1.858887	1.249136	0.893118
Н	-3.829241	2.556744	0.002812
Н	-0.910341	3.452137	-0.850268
Н	2.026125	-1.176681	1.033009
Н	1.524461	2.069171	-1.351125
Н	2.106952	-1.180927	-1.786735

B3LYP Energy = -883.816990901 a.u.

(34S,35S,37R,38S,39R,40S,41S)-1b', Conf A

С	-4.223351	-1.310376	-0.803822
С	5.161877	-0.582279	-0.676426
С	3.926360	-0.940391	0.160792
С	-2.709258	-1.275850	-0.629590
0	-2.266927	-2.634811	-0.610956
С	-2.271987	-0.572642	0.673114
С	-2.601819	0.919705	0.778391
С	-1.695155	1.751519	-0.118840
С	-0.219621	1.464482	0.170063
С	0.073381	-0.047213	0.083224
0	-0.858598	-0.778663	0.907740
С	1.449536	-0.515708	0.627835
0	-1.986423	3.127401	0.098533
0	0.506687	2.221188	-0.790368
С	2.679580	-0.135090	-0.218461
0	1.441459	-1.939096	0.708462
0	2.899708	1.278618	0.000495
Н	-2.742555	-1.116160	1.499501
Н	-0.016378	-0.366940	-0.966560
Н	-4.632585	-0.311843	-0.980338
Н	-4.705825	-1.740901	0.080490
Н	-4.471118	-1.938339	-1.663955
Н	6.001950	-1.232514	-0.413986
Н	4.969893	-0.707968	-1.748823
Н	5.507253	0.446730	-0.510853
Н	4.133283	-0.787170	1.227366
Н	3.690803	-1.999516	0.032365
Н	-2.265823	-0.764654	-1.497834
Н	-1.334798	-2.640374	-0.350722

-3.649654	1.108630	0.527532
-2.456739	1.243008	1.815426
-1.874279	1.505545	-1.177759
0.004091	1.813059	1.190714
1.586265	-0.082669	1.631567
-1.311124	3.633130	-0.378379
1.456299	2.142505	-0.574295
2.451775	-0.298341	-1.282832
0.623949	-2.171548	1.174080
3.730807	1.532275	-0.421631
' Energy = -88	3.815052527	a.u.
	-3.649654 -2.456739 -1.874279 0.004091 1.586265 -1.311124 1.456299 2.451775 0.623949 3.730807 Penergy = -88	-3.649654 1.108630 -2.456739 1.243008 -1.874279 1.505545 0.004091 1.813059 1.586265 -0.082669 -1.311124 3.633130 1.456299 2.142505 2.451775 -0.298341 0.623949 -2.171548 3.730807 1.532275 Penergy = -883.815052527

(34S,35S,37R,38S,39R,40S,41S)-**1b'**, Conf B

С	4.232896	-1.279443	0.799220
С	-5.139940	-0.587319	0.740104
С	-3.936054	-0.933954	-0.143534
С	2.718674	-1.266447	0.623235
0	2.297394	-2.632008	0.597704
С	2.272631	-0.564105	-0.676774
С	2.588431	0.931411	-0.778976
С	1.679366	1.751375	0.126398
С	0.203882	1.455096	-0.155885
С	-0.077491	-0.060087	-0.083386
0	0.860362	-0.781371	-0.910024
С	-1.448353	-0.534608	-0.632569
0	1.957807	3.130582	-0.085379
0	-0.519301	2.198894	0.815991
С	-2.682671	-0.125610	0.201345
0	-1.441821	-1.957484	-0.703340
0	-2.933368	1.289647	0.043823
Н	2.746612	-1.101424	-1.505222
Н	0.010178	-0.386109	0.964536
Н	4.627197	-0.275952	0.981469
Н	4.722795	-1.698259	-0.086627
Н	4.488673	-1.908097	1.656445
Н	-6.012163	-1.181852	0.450303
Н	-4.926427	-0.802207	1.793514
Н	-5.411213	0.470146	0.667341
Н	-4.180256	-0.769122	-1.204584
Н	-3.692105	-1.995323	-0.053866
Н	2.266539	-0.766013	1.493200
Н	1.362712	-2.650962	0.348082
Н	3.635719	1.129129	-0.532920
Н	2.435272	1.256689	-1.814305
Н	1.865229	1.501317	1.183074
Н	-0.024945	1.812189	-1.173100
Н	-1.566341	-0.114862	-1.647698
Н	1.289338	3.627962	0.409691
Н	-1.470024	2.143062	0.599425
Н	-2.456957	-0.242443	1.267294
Н	-0.618441	-2.197121	-1.155326
Н	-3.328194	1.445316	-0.825991
B3LYF	PEnergy = -88	3.815009485	a.u.

(34S,35S,37R,38S,39R,40S,41S)-**1b'**, Conf C

С	-4.233332	-1.336298	-0.539672
С	4.601164	-0.802488	0.874271
С	3.968180	-0.841124	-0.521315

С	-2.710076	-1.276543	-0.534057	Н	3.261124	2.739133	-0.546048
0	-2.245647	-2.624509	-0.631298	Н	2.436922	3.616404	0.767540
С	-2.141630	-0.625878	0.745225	Н	-4.353158	1.589787	0.161551
С	-2.480940	0.852588	0.959088	Н	-4.410927	1.859229	-1.590512
С	-1.693553	1.745038	0.008893	Н	-5.079822	0.373744	-0.896899
С	-0.190979	1.474941	0.116678	Н	-2.106401	1.174130	-0.950924
С	0.114605	-0.024576	-0.073926	Н	-2.838227	-0.072504	-1.944555
0	-0.707437	-0.813152	0.812375	Н	1.140534	1.749530	-1.291440
С	1.550888	-0.483751	0.292022	Н	-0.761426	2.377881	0.053898
Ō	-1.979189	3.102342	0.327956	Н	3.380882	0.868734	0.715746
0	0.412566	2.289470	-0.880682	н	2.540874	-0.274257	1.754040
Č	2.665835	-0.043627	-0.675584	H	2,466820	-0.305510	-1.305616
õ	1 581366	-1 909362	0.305888	H	1 175248	-2 115105	0 778722
Õ	2 900658	1 362635	-0 419464	H	-1 497314	-2 050303	-1 027224
н	-2 508677	-1 216990	1 591181	H	3 498913	-2 353423	-0 791410
н	-0.084883	-0 299155	-1 121547	н	0.663782	-3 339428	-0.963668
н	-4 676933	-0 339455	-0 613339	н	-3 483437	-1 339058	0.000000
н	-4.604520	-0.000400	0.368132	н	-1 604457	-2 026730	1 75/653
Ц	4.004520	1 023276	1 300874	н Н	1 805777	-2.020739	1.734033
	5 569712	1 21/507	0.865006	B31 V	-1.000777	0.403730	1.344010
	1 769002	-1.314397	1 215907	DJLI	F Ellergy00	5.015052020	a.u.
	4.700002	0.224132	1.210007	(240	250 270 200 2		1h' Conf E
	3.900170	-1.300024	1.000710	(343	,353,378,363,3	9R,403,413)	- 10 , Coni E
	3.703908	-1.8/5420	-0.812712	0	0.005005	2 4 2 4 4 4 0	0 505620
н	4.677293	-0.445294	-1.264349	C	2.285085	3.134118	-0.595630
н	-2.374950	-0.715736	-1.420124	C	-4.320152	0.384198	-1.429219
н	-1.290768	-2.620789	-0.473939	C	-2.988/3/	-0.311143	-1.148304
н	-3.553071	1.031810	0.836040	С	1.192601	2.088693	-0.390484
н	-2.226289	1.130277	1.988235	0	0.010752	2.790900	-0.032646
Н	-1.988078	1.547858	-1.034306	С	1.556090	1.070629	0.716170
Н	0.139048	1.781567	1.121829	С	2.715843	0.103986	0.414822
Н	1.788087	-0.091390	1.292638	С	2.305056	-1.021240	-0.543802
Н	-1.372244	3.645659	-0.197004	С	1.025477	-1.710100	-0.068203
Н	1.381527	2.222201	-0.774777	С	-0.066125	-0.652845	0.135222
Н	2.305532	-0.159594	-1.707770	0	0.392192	0.311634	1.091875
Н	0.821309	-2.184242	0.840657	С	-1.398790	-1.197273	0.681585
Н	3.667836	1.646533	-0.934434	0	3.300194	-2.051734	-0.627509
B3LYF	• Energy = -88	3.814365135	a.u.	0	0.556812	-2.643283	-1.034341
				С	-2.613707	-0.310950	0.333876
(34S,3	5S,37R,38S,3	39 <i>R</i> ,40 <i>S</i> ,41 <i>S</i>)	- 1b′ , Conf D	0	-1.319743	-1.378086	2.098074
		· · · · ·		0	-2.407877	1.058771	0.727869
С	2.320779	3.206586	-0.241737	Н	1.787293	1.650057	1.616445
С	-4.265089	1.102213	-0.813492	Н	-0.258031	-0.177003	-0.834738
С	-2.901499	0.418563	-0.963546	Н	2.502107	3.651903	0.344980
С	1.157364	2.222770	-0.297122	Н	1.940081	3.878118	-1.318584
0	-0.035953	2.992232	-0.124485	Н	3.209615	2.689828	-0.976777
C	1.225822	1.138188	0.797191	н	-4.557658	0.364165	-2.499217
Č	2.479256	0.255496	0.796715	H	-5.147553	-0.113379	-0.900260
Ĉ	2 454177	-0 789385	-0.315092	H	-4 299088	1 427988	-1 104712
Ĉ	1 172886	-1 604542	-0 190105	H	-2 195574	0 179522	-1 726177
č	-0.059542	-0.686118	-0 261464	H	-3 029076	-1 352351	-1 492012
õ	0.019952	0.323823	0 769211	н	1 035319	1 559960	-1 345480
č	-1 371724	-1 483605	-0.097000	н	-0 700101	2 159753	0 186062
õ	3 605421	-1 612736	-0 176224	н	3 577462	0.649235	0.012179
õ	1 163724	-2 564863	-1 252802	н	3 030113	-0 357023	1 355059
c	-2 641806	-0 635300	0 1100/7	Ц	2 11163/	-0.624256	-1 551/12
õ	-1 272610	-2 450780	0.016572	Ц	1 226500	-2 213885	0 880171
õ	-2 635060	-200109	1 1/6212		-1 5700/6	-2.213003	0.009171
Ц	-2.000000	-0.032033 1 660724	1 757000		1.070940	-2.100700 _1 700047	0.242212 _1 100771
Ц	0.080769	0.205202	1.757290		7.003432 1 20110 <i>1</i>	-1.122241	1 227259
	-0.000700	-0.200280	- 1.200002		1.291104	-3.240331	-1.20/000
п	2.110309	4.03/012	-0.922200	п	-3.430401	-u. <i>i</i> 204ŏ4	0.910032

Н	-0.649953	-0.758010	2.427558	С	1.703172	-1.060102	-0.139894
	-2.303740	1.000100	1.009233	0	-3.100734	-2.202121	0.303032
DJLII	Lifergyoc	55.015101957	a.u.	C C	2 738104	0 046691	-0 432646
(34.5.3	35.S 37R 38.S 3	39 <i>R</i> 40.5 41.5)	-1h' Conf F	0	1 738319	-2 020028	-1 194534
(0+0,0	000,011,000,0	557,400,410)		0	2 506932	0 574955	-1 745903
C	2 280693	3 131853	-0.601003	н	-1 575183	1 475041	-1 732521
Ċ	-4 329710	0.379726	-1 424110	н	0 259816	-0.093479	1 129970
Ċ	-2 991999	-0.315233	-1 143847	н	-2 805049	3 574397	1 064959
Č	1 187936	2 088091	-0.389865	н	-3 676158	2 064766	0 749434
õ	0.008897	2,790198	-0.022770	Н	-3.162519	3.103354	-0.604059
č	1.556929	1.069072	0.714113	Н	4.337427	0.141434	1.877491
Č	2.719339	0.108105	0.402259	H	3.531541	1.503240	2.665573
C	2.305962	-1.016098	-0.553702	н	2.680398	-0.030145	2.475159
С	1.025608	-1.708997	-0.073726	Н	3.542327	1.900653	0.220304
C	-0.066946	-0.653704	0.135989	Н	1.892479	1.653653	0.765883
0	0.396728	0.306230	1.094936	Н	-1.343999	1.541398	1.308246
С	-1.399063	-1.198733	0.683243	Н	0.273179	2.575559	-0.160709
0	3.349366	-1.976841	-0.761810	Н	-3.492410	0.213520	-0.546189
0	0.560054	-2.644756	-1.036859	Н	-2.508746	-0.715069	-1.669199
С	-2.614494	-0.312140	0.337802	Н	-2.194150	-0.746083	1.375374
0	-1.315667	-1.384193	2.098948	Н	-0.706821	-2.228910	-0.832254
0	-2.406581	1.058468	0.728057	Н	2.014716	-1.595016	0.763903
Н	1.791056	1.648154	1.613714	Н	-2.801009	-2.964255	0.897237
Н	-0.258959	-0.175386	-0.832563	Н	0.184394	-3.315950	0.846040
Н	2.505955	3.647620	0.338839	Н	3.710114	-0.455713	-0.510878
Н	1.930621	3.877735	-1.319502	Н	1.899857	-1.527663	-2.015838
Н	3.200707	2.686615	-0.991265	Н	1.587088	0.888832	-1.769132
Н	-4.562404	0.357838	-2.493771	B3L)	P Energy = -88	3.812812136	a.u.
Н	-5.150543	-0.116923	-0.893397				
Н	-4.302159	1.424120	-1.101623	(34S	,35S,37R,38S,3	39 <i>R</i> ,40 <i>S</i> ,41S)	- 1b′ , Conf H
Н	-2.199614	0.174010	-1.723959				
Н	-3.033025	-1.357070	-1.485455	С	2.494106	-2.918161	0.327606
Н	1.024550	1.560453	-1.344203	С	-5.049465	-0.469108	0.720091
Н	-0.704086	2.159553	0.190039	С	-3.850398	-0.866682	-0.148291
Н	3.578754	0.646340	-0.009083	С	2.894110	-1.444950	0.409268
Н	3.045730	-0.341298	1.350652	0	2.467303	-0.859872	1.647257
Н	2.113033	-0.616713	-1.556020	С	2.345269	-0.610086	-0.763133
Н	1.220708	-2.212576	0.888329	С	2.723709	0.879063	-0.746420
Н	-1.572533	-2.186477	0.242831	С	1.799806	1.714915	0.130514
н	3.692636	-2.259172	0.098404	С	0.328228	1.456279	-0.202548
н	1.324791	-3.158027	-1.336959	C	0.01/480	-0.050685	-0.123015
н	-3.456164	-0.719865	0.917351	0	0.934784	-0.776856	-0.976722
н	-0.660246	-0.749815	2.430145	C	-1.360368	-0.513101	-0.657019
H	-2.316695	1.086377	1.690552	0	2.119583	3.089448	-0.086046
B3LY	$^{\circ}$ Energy = -88	33.812865704	a.u.	0	-0.407685	2.229784	0.738214
1040			Abl Cart C	C	-2.588906	-0.055103	0.158652
(345,	35S,37R,38S,3	39R,40S,41S)	- 1b ⁻ , Conf G	0	-1.376449	-1.938613	-0.681024
~	2 002000	0 700400	0.004007	0	-2.829664	1.353750	-0.063121
C	-2.002000	2.122403	0.304237		2.700020	-1.002249	-1.000090
C	3.377341	0.009107	1.980388		0.133001	-0.380321	0.915235
C	2.000000	1.149170	0.027717		2.972902	-3.409043	1.131200
Ö	-1.550525	2.000220	0.329379		2.010294	-3.330342	-0.024419
Č	-0.551027	0.042856	0.000001		5 020222	-3.030300	0.424229
č	-7.488087	-0 180678	-0.702100		-0.929002	-0.630070	1 781887
č	-2.400901 _2 152057	-0.109070	-0.101103		-4.03/03/	-0.039970 0 507470	0 601105
č	-2.100907	-1.210407	0.370324		-3.307400 _1 005251	-0.307470	-1 215122
Č	0.740043	-1.729200	0.141001	н Н	-7.035251	-1 0252/2	-0.012207
õ	-0 108771	-0.000900 0 <u>4</u> 051 <i>1</i> 0	-0.865542	Ц	3 001825	-1.367/11	0.334/73
		いっていりょうけ	シンシンシントレート		0.001020		· · · · · · · · · · · · · · · · · · ·

Н	2.808464	-1.388771	2.380098	С	-2.995697	0.566410	-1.172610
Н	3.760377	1.004658	-0.415508	С	1.712099	1.747096	-0.607932
Н	2.660444	1.268000	-1.769502	0	0.785541	2.794376	-0.359666
Н	1.947825	1.459458	1.186247	С	1.792071	0.809236	0.619981
Н	0.138150	1.808117	-1.229946	С	2.624123	-0.476797	0.456230
Н	-1.471214	-0.126580	-1.686828	С	1.894331	-1.543891	-0.369520
Н	1.456266	3.603218	0.398433	С	0.480516	-1.778983	0.162207
н	-1.351918	2.191769	0.494226	С	-0.261189	-0.438554	0.220810
н	-2.362627	-0.124110	1.228478	0	0.467726	0.461425	1.065023
H	-0.509345	-2.201490	-1.027657	Ċ	-1.686170	-0.515170	0.799242
Н	-3.183285	1.474703	-0.955916	Ō	2,553342	-2.817431	-0.314687
B3I Y	P Energy = -88	3 812130630	au	Õ	-0 251607	-2 646933	-0 695689
2021	Energy ee		d.d.	Č	-2 604954	0 623076	0 306703
(34.5)	35.S 37R 38.S 3	39R 40.S 41.S)	-1h' Conf I	Ő	-1 645970	-0.517388	2 229907
(010,	000,011,000,0	, 100, 110)		Õ	-2 005417	1 915142	0.523916
C	2 121249	3 275392	-0 216704	й	2 194866	1 402727	1 447590
Ĉ	-4 226040	1 004188	-0.863915	н	-0 323556	-0.045110	-0.801556
Č	2 826620	0 383154	0.0003913	н Ц	3 121161	2 056618	0.001000
č	1 010023	2 223/77	-0.347131	н	2 022236	3 1202/0	-1 736830
õ	0.272557	2 823/70	0.052006	н Ц	3 808220	1 674756	1 2206/3
ĉ	1 155222	2.023479	-0.032330		1 700225	0.767340	-1.220043
Č	2 469007	0.240441	0.021731		-4.709300	-0.707349	-0.929199
Č	2.400097	0.049441	0.792100		-4.103270	-0.301120	-2.099402
Č	2.401039	-0.090710	-0.321223		-3.243700	-1.595507	-1.400127
Č	1.242000	-1.577005	-0.201701		-3.570704	1.470000	-1.373004
	-0.020901	-0.709042	-0.235959		-2.097700	0.031093	-1.799000
0	0.032270	0.247917	0.835389	н	1.394192	1.173081	-1.494251
	-1.313000	-1.539203	-0.095572	н	-0.079901	2.423341	-0.104604
0	3.070485	-1.460059	-0.197596	н	3.598457	-0.250808	0.007472
0	1.279178	-2.511701	-1.288572	н	2.818304	-0.895191	1.450387
C	-2.601943	-0.707246	0.106443	н	1.804138	-1.229484	-1.419993
0	-1.209909	-2.504058	0.948630	н	0.546142	-2.203268	1.175306
0	-2.632517	-0.194860	1.444798	н	-2.128195	-1.467967	0.494366
н	1.074037	1.676142	1.//8511	н	3.379401	-2.778116	-0.813673
н	-0.072329	-0.189122	-1.204524	н	0.279495	-3.44/221	-0.815351
н	3.093919	2.857536	-0.491468	н	-3.520394	0.552666	0.912459
н	2.193815	3.711276	0.785744	Н	-0.821196	-0.078553	2.492356
н	1.907644	4.085997	-0.923304	H	-1.860589	2.018718	1.474976
Н	-4.348391	1.797232	-1.609393	B3L	YP Energy = -8	83.811958378	a.u.
Н	-5.005304	0.253907	-1.043524				
Н	-4.400377	1.436861	0.125571	(34)	S,35S,37R,38S,	39 <i>R</i> ,40S,41S)	- 1b′ , Conf K
Н	-2.067296	1.163851	-0.821367	_			
Н	-2.677470	-0.058240	-1.943201	С	2.463574	-2.930060	0.341831
Н	1.020543	1.752030	-1.268819	С	-5.071049	-0.465004	0.662930
Н	-0.371840	3.575394	-0.651416	С	-3.843594	-0.866616	-0.166211
Н	3.335706	1.008188	0.697037	С	2.882262	-1.461714	0.416362
Н	2.573029	-0.176289	1.747585	0	2.465113	-0.866078	1.652905
Н	2.462602	-0.209613	-1.310588	С	2.342490	-0.625347	-0.759216
Н	1.276437	-2.110609	0.754758	С	2.736986	0.859846	-0.747112
Н	-1.420800	-2.105885	-1.028897	С	1.818245	1.709395	0.122252
Н	3.596725	-2.207190	-0.809084	С	0.346862	1.462724	-0.217842
Н	0.785919	-3.301620	-1.031541	С	0.020393	-0.039590	-0.123812
Н	-3.436385	-1.418764	0.068857	0	0.930954	-0.779178	-0.973458
Н	-1.542562	-2.071169	1.752492	С	-1.363357	-0.491078	-0.655833
Н	-1.864435	0.396470	1.529577	0	2.153639	3.079617	-0.099311
B3LY	P Energy = -88	3.812080125	a.u.	0	-0.390691	2.251310	0.710079
				С	-2.587013	-0.058976	0.174436
(34S,	35S,37R,38S,3	39 <i>R</i> ,40 <i>S</i> ,41 <i>S</i>)	- 1b′ , Conf J	0	-1.381525	-1.917616	-0.690860
. ,		. ,		0	-2.794801	1.345932	-0.107985
С	3.052754	2.406581	-0.919017	Н	2.781545	-1.085114	-1.652756
С	-3.820706	-0.666796	-1.563297	Н	0.135070	-0.369462	0.916444

Н	2.773905	-3.378733	-0.608257	
Н	1.379171	-3.028233	0.438781	
Н	2.935534	-3.504063	1.147979	
Н	-5.919806	-1.115279	0.429346	
Н	-4.874359	-0.552598	1.738369	
Н	-5.406002	0.561067	0.461404	
Н	-4.055281	-0.752342	-1.236760	
Н	-3.616600	-1.922138	0.001384	
Н	3.980761	-1.398230	0.339827	
Н	2.801951	-1.396326	2.386758	
Н	3.773710	0.975517	-0.412704	
Н	2.681432	1.245328	-1.771865	
Н	1.959425	1.457779	1.179997	
Н	0.163041	1.805554	-1.248696	
Н	-1.490865	-0.089001	-1.673966	
Н	1.484646	3.603064	0.366559	
Н	-1.333948	2.193125	0.464834	
Н	-2.358137	-0.176124	1.244523	
Н	-0.516694	-2.176138	-1.045852	
Н	-3.614799	1.628968	0.316967	
B3LYP Energy = -883.811924888 a.u.				
(34 <i>S</i> ,35 <i>S</i> ,37 <i>R</i> ,38 <i>S</i> ,39 <i>R</i> ,40 <i>S</i> ,41 <i>S</i>)- 1b' , Conf L				

С	2.116313	3.296249	-0.207953
С	-4.232970	1.014404	-0.839882
С	-2.834919	0.392496	-0.938078
С	1.025837	2.224412	-0.289568
0	-0.274456	2.820614	-0.250174
С	1.162393	1.151036	0.817803
С	2.473392	0.346730	0.795717
С	2.483338	-0.700744	-0.316733
С	1.239437	-1.575025	-0.197997
С	-0.026287	-0.702035	-0.236359
0	0.035820	0.254699	0.838675
С	-1.317429	-1.532181	-0.104437
0	3.673441	-1.469975	-0.188674
0	1.273603	-2.511980	-1.281456
С	-2.603246	-0.703840	0.107392
0	-1.210854	-2.512051	0.926553
0	-2.624756	-0.201591	1.452076
Н	1.090029	1.675762	1.779943
Н	-0.069417	-0.177347	-1.201811
Н	3.108765	2.894086	-0.430331
Н	2.151591	3.749435	0.791597
Н	1.899009	4.085313	-0.932948
Н	-4.357486	1.813217	-1.578320
Н	-5.015120	0.266892	-1.018980
Н	-4.400421	1.440383	0.153914
Н	-2.073980	1.172975	-0.823461
Н	-2.697502	-0.046603	-1.936777
Н	1.067310	1.754215	-1.277194
Н	-0.375033	3.309881	0.578829
Н	3.342129	1.003592	0.698318
Н	2.576980	-0.178229	1.751780
Н	2.469224	-0.214975	-1.306656
Н	1.268855	-2.105346	0.760177
Н	-1.421693	-2.086172	-1.045252
Н	3.593018	-2.215890	-0.801594
Н	0.775518	-3.298559	-1.023218

Н	-3.437429	-1.415619	0.070840		
Н	-1.554404	-2.096289	1.734602		
Н	-1.837486	0.362536	1.541098		
B3LYP Energy = -883.811915482 a.u.					

Table S3. Comparison of the ¹³ C NMR experimental data of 1b with the mPW1PW91/6-311+G(2d,p)
//B3LYP/6-31+G(d,p) ^{13}C NMR calculation data of the (34S,35S,37R,38S,39R,40R,41S)-1b' and
$(34S, 35S, 37R, 38S, 39R, 40S, 41S)$ - 1b' stereoisomers. For better comparison, the $\Delta \delta$ values over 3 ppm
were underlined.

No.	Exp.	Calc.40R	Calc.40S	Δδ 40 <i>R</i>	Δδ 40S
C-34	67.10	65.42	65.34	1.68	1.76
C-35	77.80	82.44	82.16	<u>4.64</u>	4.36
C-36	34.10	31.58	31.73	2.52	2.37
C-37	71.10	68.96	69.25	2.14	1.85
C-38	72.70	71.46	74.61	1.24	1.91
C-39	73.07	76.81	78.03	<u>3.74</u>	4.96
C-40	73.03	75.20	77.19	2.17	<u>4.16</u>
C-41	73.13	73.14	76.89	0.01	<u>3.76</u>
C-42	31.20	30.05	28.26	1.15	2.94
Average	N/A	N/A	N/A	2.14	3.12

No.	Compound	Group	Molecular	Carbon	Ring	Hydroxy	Carbon–	Chiral	Spiroketal	The Ratio	The First	References
	Name		Weight	Numbers	Numbers	Numbers	Carbon	Carbon	Carbon	of	Reported	
				of the	of the	of the	Double	Numbers	Numbers	Backbone	Year	
				Backbone	Backbone	Backbone	Bond	of the	of the	Carbons		
				Chain	Chain	Chain	Numbers	Backbone	Backbone	to Ether		
							of the	Chain	Chain	Rings		
							Backbone					
							Chain					
1	Benthol A	1	1506	72	8	22	4	35	1	9.0		
2	Amdigenol A	Amphidinium	2169	98	3	36	11	44	0	32.7	2012	[1]
3	Amdigenol D	Amphidinium	2223	101	4	36	12	46	0	25.3	2020	[2]
4	Amdigenol E	Amphidinium	1811	78	2	29	8	38	0	39.0	2014	[3]
5	Amdigenol G	Amphidinium	1277	57	2	19	7	24	0	28.5	2014	[3]
6	Amphezonol A	Amphidinium	1243	60	3	21	2	28	0	20.0	2006	[4]
7	Amphidinol 1	Amphidinium	1489	69	2	20	8	27	0	34.5	1991	[5]
8	Amphidinol 2	Amphidinium	1375	65	3	22	7	30	0	21.7	1995	[6]
9	Amphidinol 3	Amphidinium	1327	67	2	21	9	25	0	33.5	1999	[7]
10	Amphidinol 4	Amphidinium	1301	65	2	21	8	25	0	32.5	2001	[8]
11	Amphidinol 5	Amphidinium	1371	69	2	22	9	26	0	34.5	1997	[9]
12	Amphidinol 6	Amphidinium	1345	67	2	22	8	26	0	33.5	1997	[9]
13	Amphidinol 7	Amphidinium	1231	55	2	17	7	23	0	27.5	2005	[10]
14	desulfo-Amphidinol 7	Amphidinium	1129	55	2	18	7	23	0	27.5	2006	[11]
15	Amphidinol 9	Amphidinium	1327	67	2	21	9	25	0	33.5	2005	[12]
16	Amphidinol 10	Amphidinium	1273	63	2	21	8	25	0	31.5	2005	[12]
17	Amphidinol 11	Amphidinium	1477	65	3	21	7	30	0	21.7	2005	[12]
18	Amphidinol 12	Amphidinium	1403	65	2	20	8	25	0	32.5	2005	[12]
19	Amphidinol 13	Amphidinium	1429	67	2	20	9	25	0	33.5	2005	[12]

Table S4. The structural characteristics of 188 SCCCs for principal component analysis (PCA).

20	Amphidinol 14	Amphidinium	1265	55	2	19	6	24	0	27.5	2006	[11]
21	Amphidinol 15	Amphidinium	1163	55	2	20	6	24	0	27.5	2006	[11]
22	Amphidinol 17	Amphidinium	1283	59	2	18	6	24	0	29.5	2010	[13]
23	Amphidinol 18	Amphidinium	1359	67	2	21	7	26	0	33.5	2014	[14]
24	Amphidinol 19	Amphidinium	1461	67	2	20	7	26	0	33.5	2014	[14]
25	Amphidinol 20	Amphidinium	1629	80	2	25	9	32	0	40.0	2017	[15]
26	Amphidinol 21	Amphidinium	1775	86	2	28	9	36	0	43.0	2017	[15]
27	Amphidinol 22	Amphidinium	1645	78	4	26	8	38	0	19.5	2019	[16]
28	Amphidinol A	Amphidinium	1339	65	2	21	3	26	0	32.5	2017	[17]
29	Amphidinol B	Amphidinium	1441	65	2	20	3	26	0	32.5	2017	[17]
30	Carteraol E	Amphidinium	1399	69	3	19	7	27	0	23.0	2009	[18]
31	Colopsinol A	Amphidinium	1427	56	1	6	4	15	0	56.0	1999	[19]
32	Colopsinol B	Amphidinium	1385	53	2	7	4	15	0	26.5	1999	[20]
33	Colopsinol C	Amphidinium	1223	53	2	7	4	15	0	26.5	1999	[20]
34	Colopsinol D	Amphidinium	1409	56	2	4	4	15	0	28.0	2000	[21]
35	Colopsinol E	Amphidinium	1265	56	1	6	4	15	0	56.0	2000	[21]
36	Gibbosol A	Amphidinium	1555	69	2	30	3	37	0	34.5	2020	[22]
37	Gibbosol B	Amphidinium	1595	71	2	30	4	37	0	35.5	2020	[22]
38	Gibbosol C	Amphidinium	1567	70	2	30	4	36	0	35.0	2020	[23]
39	Karatungiol A	Amphidinium	1457	69	2	25	4	30	0	34.5	2006	[24]
40	Karatungiol B	Amphidinium	1439	69	2	24	5	29	0	34.5	2006	[24]
41	Lingshuiol	Amphidinium	1351	65	2	22	5	27	0	32.5	2004	[25]
42	Lingshuiol A	Amphidinium	1273	63	2	21	8	25	0	31.5	2004	[26]
43	Lingshuiol B	Amphidinium	1243	57	2	17	8	22	0	28.5	2004	[26]
44	Luteophanol A	Amphidinium	1255	57	2	19	7	24	0	28.5	1997	[27]
45	Luteophanol B	Amphidinium	1321	64	2	23	7	27	0	32.0	1998	[28]
46	Luteophanol C	Amphidinium	1321	64	2	23	7	27	0	32.0	1998	[28]
47	Luteophanol D	Amphidinium	1307	63	2	23	7	27	0	31.5	2005	[29]

48	Symbiopolyol	Amphidinium	1243	57	2	17	8	22	0	28.5	2010	[30]
49	CTX4B	Gambierdiscus	1061	55	13	3	6	31	1	4.2	1990	[31]
50	CTX4A	Gambierdiscus	1061	55	13	3	6	31	1	4.2	1997	[32]
51	M-seco-CTX4B	Gambierdiscus	1079	55	12	5	6	31	0	4.6	2000	[33,34]
52	M-seco-CTX4A	Gambierdiscus	1079	55	12	5	6	31	0	4.6	2000	[33,34]
53	CTX1B	Gambierdiscus	1111	55	13	6	5	33	1	4.2	1990	[31]
54	52-epi-CTX1B	Gambierdiscus	1111	55	13	6	5	33	1	4.2	2000	[33,34]
55	54-epi-CTX1B	Gambierdiscus	1111	55	13	6	5	33	1	4.2	2000	[33,34]
56	54-epi-52-epi-CTX1B	Gambierdiscus	1111	55	13	6	5	33	1	4.2	2000	[33,34]
57	7-oxo-CTX1B	Gambierdiscus	1127	55	13	6	4	33	1	4.2	2000	[33,34]
58	7-hydroxy-CTX1B	Gambierdiscus	1129	55	13	7	4	34	1	4.2	2000	[33,34]
59	4-hydroxy-7-oxo-CTX1B	Gambierdiscus	1145	55	13	7	3	34	1	4.2	2000	[33,34]
60	54-deoxy-50-hydroxy CTX1B	Gambierdiscus	1111	55	13	6	5	32	1	4.2	2000	[33,34]
61	52-epi-54-deoxy-CTX1B	Gambierdiscus	1095	55	13	5	5	32	1	4.2	1991	[35]
62	54-deoxy-CTX1B	Gambierdiscus	1095	55	13	5	5	32	1	4.2	1991	[35]
63	CTX3C	Gambierdiscus	1023	52	13	3	4	30	1	4.0	1993	[36]
64	CTX3B	Gambierdiscus	1023	52	13	3	4	30	1	4.0	2000	[33,34]
65	M-seco-CTX3C	Gambierdiscus	1041	52	12	5	4	30	0	4.3	2000	[33,34]
66	M-seco-CTX3C methyl acetal	Gambierdiscus	1055	52	12	4	4	30	0	4.3	2000	[33,34]
67	51-hydroxy-CTX3C	Gambierdiscus	1039	52	13	4	4	31	1	4.0	1998	[37]
68	51-hydroxy-3-oxo- CTX3C	Gambierdiscus	1055	52	13	4	3	31	1	4.0	2000	[33,34]
69	A-seco-51-hydroxy- CTX3C	Gambierdiscus	1057	52	12	6	4	31	1	4.3	2000	[33,34]
70	2,3-dihydroxy-CTX3C	Gambierdiscus	1055	52	13	5	4	32	1	4.0	1998	[37]
71	2,3-dihydro-2-hydroxy-	Gambierdiscus	1041	52	13	4	3	31	1	4.0	2000	[33,34]

	CTX3C											
72	2,3-dihydro-51-hydroxy- 2-oxo-CTX3C	Gambierdiscus	1055	52	13	4	3	31	1	4.0	2000	[33,34]
73	2,3-dihydro-2,3-dihyroxy- CTX3C	Gambierdiscus	1057	52	13	5	3	32	1	4.0	2000	[33,34]
74	2,3-dihydro-2,3,51- trihydroxy-CTX3C	Gambierdiscus	1073	52	13	6	3	33	1	4.0	2000	[33,34]
75	A-seco-2,3-dihydro-51- hydroxy-CTX3C	Gambierdiscus	1059	52	12	6	3	31	1	4.3	2000	[33,34]
76	2,3,51-trihydroxy-CTX3C	Gambierdiscus	1071	52	13	6	4	33	1	4.0	2000	[33,34]
77	2-hydroxy-CTX3C	Gambierdiscus	1039	52	13	4	4	31	1	4.0	2000	[33,34]
78	C-CTX-1	Gambierdiscus	1141	57	14	5	3	31	0	4.1	1998	[38]
79	C-CTX-2	Gambierdiscus	1141	57	14	5	3	31	0	4.1	1998	[38]
80	C-CTX-3	Gambierdiscus	1143	57	13	6	3	31	0	4.4	2020	[39]
81	C-CTX-4	Gambierdiscus	1143	57	13	6	3	31	0	4.4	2020	[39]
82	MTX-1	Gambierdiscus	3424	142	32	27	3	97	0	4.4	1993	[40]
83	MTX-3	Gambierdiscus	1038	46	9	5	3	23	0	5.1	2019	[41]
84	Gambieric acid A	Gambierdiscus	1057	49	10	4	2	27	0	4.9	1992	[42,43]
85	Gambieric acid B	Gambierdiscus	1071	49	10	4	2	27	0	4.9	1992	[42,43]
86	Gambieric acid C	Gambierdiscus	1185	49	10	3	2	27	0	4.9	1992	[42,43]
87	Gambieric acid D	Gambierdiscus	1199	49	10	3	2	27	0	4.9	1992	[42,43]
88	Gambieroxide	Gambierdiscus	1195	52	12	5	1	32	0	4.3	2013	[44]
89	Gambierone	Gambierdiscus	1024	46	9	5	3	23	0	5.1	2015	[45]
90	Brevisulcenal-F (KBT-F)	Karenia	2052	95	24	13	3	61	0	4.0	2012	[46,47]
91	KBT-H	Karenia	2068	95	24	13	3	61	0	4.0	2018	[46,48]
92	KBT-G	Karenia	2082	95	24	14	3	63	0	4.0	2018	[46,48]
93	KBT-I	Karenia	2098	95	24	14	3	63	0	4.0	2018	[46,48]
94	KBT-A1	Karenia	2154	95	24	12	3	61	0	4.0	2021	[46]

95	KBT-A2	Karenia	2184	95	24	13	3	63	0	4.0	2021	[46]
96	BTX-B1	Karenia	1017	42	11	1	2	23	0	3.8	1995	[49,50]
97	BTX-B2	Karenia	1017	42	11	1	2	24	0	3.8	1998	[49,51]
98	Gymnocin-B	Karenia	1148	56	15	4	1	33	0	3.7	2005	[52,53]
99	Gymnocin-A	Karenia	1028	52	14	3	1	31	0	3.7	2002	[52,54]
100	Karmitoxin	Karlodinium	1386	70	2	20	7	26	0	35.0	2017	[55]
101	Karlotoxin-2 (KmTx2)	Karlodinium	1345	63	2	22	4	28	0	31.5	2010	[56]
102	4,5-dihydro-KmTx-2	Karlodinium	1347	63	2	22	3	28	0	31.5	2016	[57]
103	4,5-dihydro- dechloro-KmTx-2	Karlodinium	1313	63	2	22	3	28	0	31.5	2016	[57]
104	KmTx-3	Karlodinium	1325	64	2	22	4	28	0	32.0	2010	[58]
105	44-hydroxy-KmTx-2	Karlodinium	1361	63	2	23	4	29	0	31.5	2012	[59]
106	KmTx-4	Karlodinium	1209	59	2	20	4	25	0	29.5	2012	[59]
107	59-E-chloro-KmTx-4	Karlodinium	1243	59	2	20	4	25	0	29.5	2012	[59]
108	KmTx-5	Karlodinium	1303	61	2	21	3	27	0	30.5	2012	[59]
109	6-oxo-KmTx-2	Karlodinium	1345	63	2	21	3	27	0	31.5	2012	[59]
110	KcTx-1	Karlodinium	1317	61	2	21	3	27	0	30.5	2012	[59]
111	KmTx-1	Karlodinium	1339	65	2	22	4	28	0	32.5	2008	[60]
112	KmTx-6	Karlodinium	1373	65	2	22	4	28	0	32.5	2013	[61]
113	KmTx-7	Karlodinium	1419	65	2	21	4	28	0	32.5	2013	[61]
114	KmTx-8	Karlodinium	1335	63	2	21	3	27	0	31.5	2015	[62]
115	KmTx-9	Karlodinium	1317	61	2	21	3	27	0	30.5	2015	[62]
116	65-E-chloro-KmTx-1	Karlodinium	1373	65	2	22	4	28	0	32.5	2010	[63]
117	10-O-sulfo-KmTx-1	Karlodinium	1418	65	2	21	4	28	0	32.5	2010	[63]
118	64-E-chloro-KmTx-3	Karlodinium	1359	64	2	22	4	28	0	32.0	2010	[63]
119	10-O-sulfo-KmTx-3	Karlodinium	1404	64	2	21	4	28	0	32.0	2010	[63]
120	Ostreocin D	Ostreopsis	2634	115	10	40	6	61	0	11.5	1995	[64,65]
121	Ovatoxin-a	Ostreopsis	2645	115	10	39	6	62	0	11.5	2008	[66,67]

122	Ostreol-A	Ostreopsis	1312	41	2	13	5	18	0	20.5	2013	[68]
123	Ostreol-B	Ostreopsis	1144	56	1	21	3	24	0	56.0	2018	[69]
124	Ovatoxin-a-IK2	Ostreopsis	2645	115	10	39	6	62	0	11.5	2013	[70]
125	Ovatoxin-d-IK2	Ostreopsis	2661	115	10	40	6	63	0	11.5	2013	[70]
126	Ovatoxin-e-IK2	Ostreopsis	2661	115	10	40	6	63	0	11.5	2013	[70]
127	Ostreocin-B	Ostreopsis	2649	115	10	41	6	62	0	11.5	2013	[71,72]
128	Ostreocin-A	Ostreopsis	2649	115	10	39	6	62	0	11.5	2019	[73]
129	Ostreocin-E1	Ostreopsis	2615	115	10	39	7	60	0	11.5	2019	[73]
130	Palytoxin	Ostreopsis	2677	115	10	41	6	64	0	11.5	2003	[73,74]
131	DTX-4	Prorocentrum	1472	38	7	4	2	14	3	5.4	1995	[75]
132	DTX-5a	Prorocentrum	1391	38	7	4	2	14	3	5.4	1995	[76]
133	DTX-5b	Prorocentrum	1405	38	7	4	2	14	3	5.4	1995	[76]
134	DTX-5c	Prorocentrum	1431	38	7	4	2	14	3	5.4	2006	[77,78]
135	Belizeanolide	Prorocentrum	1424	66	3	13	4	28	0	22.0	2009	[79]
136	Prorocentrol	Prorocentrum	1474	65	3	30	7	36	0	21.7	2011	[80]
137	Prorocentroic acid	Prorocentrum	1400	60	5	23	5	35	0	12.0	2021	[81]
138	Prorocentrolide B	Prorocentrum	1075	49	4	7	5	21	0	12.3	1996	[82]
139	YTX	Protoceratium	1142	47	11	2	2	26	0	4.3	1997	[83]
140	45-hydroxy-YTX	Protoceratium	1158	47	11	3	2	27	0	4.3	1997	[83]
141	45,46,47-trinorYTX	Protoceratium	1102	45	11	2	2	26	0	4.1	1997	[83]
142	HomoYTX	Protoceratium	1156	48	11	2	2	26	0	4.4	1997	[83]
143	45-hydroxy-homoYTX	Protoceratium	1172	48	11	3	2	27	0	4.4	1997	[83]
144	1-desulfoYTX	Protoceratium	1062	47	11	2	2	26	0	4.3	1999	[84]
145	CarboxyYTX	Protoceratium	1174	47	11	2	2	26	0	4.3	2003	[85]
146	CarboxyhomoYTX	Protoceratium	1188	48	11	2	2	26	0	4.4	2003	[85]
147	noroxoYTX	Protoceratium	1048	42	11	1	0	24	0	3.8	2003	[85]
148	noroxohomoYTX	Protoceratium	1062	43	11	1	0	24	0	3.9	2003	[85]
149	Adriatoxin	Protoceratium	1050	37	10	2	0	24	0	3.7	2003	[85]

150	KetohomoYTX	Protoceratium	1062	43	11	1	0	25	0	3.9	2004	[86]
151	KetoYTX	Protoceratium	1048	42	11	1	0	25	0	3.8	2004	[86]
152	40-epi-ketoYTX	Protoceratium	1048	42	11	1	0	25	0	3.8	2004	[86]
153	YTX-enone	Protoceratium	1048	42	11	1	1	24	0	3.8	2004	[86]
154	9-Methyl-41a-homoYTX	Protoceratium	1170	47	11	2	2	26	0	4.3	2004	[86]
155	Heptanor-41-oxoYTX	Protoceratium	1048	42	11	1	0	25	0	3.8	2004	[87]
156	40-epi-heptanor-41- oxoYTX	Protoceratium	1048	42	11	1	0	25	0	3.8	2004	[87]
157	45-hydroxy-carboxy YTX	Protoceratium	1190	47	11	3	2	28	0	4.3	2005	[88]
158	Protoceratins I	Protoceratium	1200	48	11	1	2	26	0	4.4	2004	[89]
159	Protoceratins II	Protoceratium	1464	48	11	1	2	26	0	4.4	2004	[89]
160	Protoceratins III	Protoceratium	1310	48	11	1	2	26	0	4.4	2004	[89]
161	Protoceratins IV	Protoceratium	1574	48	11	1	2	26	0	4.4	2004	[89]
162	41a-homoYTX	Protoceratium	1156	48	11	2	2	26	0	4.4	2005	[90]
163	YTX 32-O-[β-L-arabino furanoside]	Protoceratium	1274	47	11	1	2	26	0	4.3	2006	[91]
164	YTX 32-O-[β-L-arabino furanosyl-(5'→1'')-β-L- arabinofuranoside]	Protoceratium	1406	47	11	1	2	26	0	4.3	2006	[91]
165	1-homoYTX 32-O-[β-L- arabinofuranosyl- (5'→1'')-β-L- arabinofuranoside]	Protoceratium	1420	48	11	1	2	26	0	4.4	2006	[91]
166	GlycoYTXA (G-YTXA)	Protoceratium	1274	47	11	1	2	25	0	4.3	2006	[92]
167	45,46,47-trinor-1- homoYTX	Protoceratium	1116	47	11	2	1	26	0	4.3	2007	[93]
168	heptanor-41-oxoYTX enone	Protoceratium	1048	42	11	1	1	24	0	3.8	2007	[93]

169	furanoYTX	Protoceratium	1142	46	11	2	1	26	0	4.2	2007	[94]
170	tri-glycosilYTX	Protoceratium	1538	47	11	1	2	26	0	4.3	2008	[95]
171	nor-ring A-YTX	Protoceratium	1072	45	10	2	2	24	0	4.5	2004	[86]
470	44,55-dihydroxy-9-	Drotocorotium	1010	40	11	2	0	07	0		2005	IOE 061
172	methyl-41a-homo-YTX	Protoceratium	1210	40	11	3	Z	21	U	4.4	2005	[95,96]
470	9-methyl-41-keto-YTX-		4070	40	44	4	4	04	0	2.0	2000	105 071
173	1,3-enone	Protoceratium	1076	42	11	1	1	24	0	3.8	2006	[95,97]
474	9-methyl-41a-homo-		4240	40	44	2	4	07	0	4.5	2005	100.051
174	YTXamide	Protoceratium	1319	49	11	3	I	21	U	4.5	2005	[90,95]
475	1-desulfocarboxyhomo-		4400	40	44	0	0	20	0		2007	105 001
175	YTX	Protoceratium	1108	48	11	2	2	20	U	4.4	2007	[95,98]
470	4-desulfocarboxyhomo-		4400	40	44	0	0	00	0		0007	105 001
176	YTX	Protoceratium	1108	48	11	2	2	20	U	4.4	2007	[95,98]
477	41a-homo-44-oxotrinor-	Drotocorotium	1120	46	11	0	1	26	0	4.0	2006	IOE 071
111	YTX	Protoceratium	1132	40	11	2	I	20	0	4.2	2006	[95,97]
178	44-oxotrinor-YTX	Protoceratium	1118	45	11	2	1	26	0	4.1	2006	[95,97]
179	45-hydroxy-dinor-YTX	Protoceratium	1132	45	11	3	1	26	0	4.1	2006	[95,97]
100	44,55-dihydroxy-41a-	Drotocorotium	1100	40	11	2	0	07	0		2005	IOE 061
100	Homo-YTX	Protoceratium	1190	40	11	3	Z	21	0	4.4	2005	[95,96]
181	44,55-dihydroxy-YTX	Protoceratium	1176	47	11	3	2	27	0	4.3	2005	[95,96]
182	41-keto-YTX-1,3-enone	Protoceratium	1048	42	11	1	1	24	0	3.8	2004	[95,86]
183	41a-homo-YTX amide	Protoceratium	1291	48	11	3	1	27	0	4.4	2005	[95,90]
184	Symbiodinolide	Symbiodinium	2835	104	5	35	10	61	1	20.8	2007	[99]
185	Zooxanthellamides C1-C5	Symbiodinium	2698	78	4	26	7	52	1	26.2	2005	[100]
186	Zooxanthellatoxin A	Symbiodinium	2831	104	5	35	11	60	1	20.8	1995	[101]
187	Symbiospirols A-C	Symbiodinium	1206	67	5	8	1	18	2	13.4	2009	[102]
188	Zooxanthellamide D	Symbiodinium	1049	21	2	9	2	12	0	10.5	2007	[103]

Supplemental Experimental Procedures

1.1 General Experimental Procedures

HR-ESIMS was obtained on a Bruker maXis ESI-QTOF mass spectrometer in the positive-ion mode. LR-ESIMS was recorded on a Bruker amaZon SL mass spectrometer in both positive- and negative-ion modes or a Waters ACQUITY QDa mass detector in the positive-ion mode. UPLC-MS was measured on a Waters ACQUITY UPLC H-Class PLUS system combined with a Bruker amaZon SL mass spectrometer. 1D and 2D NMR spectra were measured on a Bruker AV-400, 600, or 700 MHz NMR spectrometer. UV spectra were recorded on a Waters 2998 photodiode array detector and optical rotations determined on an MCP200 modular circular polarimeter (Anton Paar GmbH) with a 0.5 cm cell at 25 °C. HPLC was performed on a Waters 2535 pump equipped with a 2998 photodiode array detector, coupled with a 2424 evaporative light scattering detector, and C₁₈ reversed-phase columns (YMC, Kyoto, Japan; 250 mm × 4.6 mm, length × i.d., 5 μ m, for analysis; 250 mm × 10 mm, length × i.d., 5 μ m, for preparation). For column chromatography, C₁₈ reversed-phase silica gel (ODS-A-HG 12 nm, 50 μ m, YMC, Japan) was employed.

1.2 Dinoflagellate Isolation and Culture

The dinoflagellate cells of *Amphidinium* sp. (strain: MDRC-02, Figure S1) were isolated using capillary pipettes under microscope observation from the sand sample, collected in October 2013 on the sea floor at the Lingshui Bay, Hainan Province, PR China. The unialgal strain was grown in a 500 mL flask containing sterilized seawater (34‰ salinity), enriched with K medium,¹⁰⁴ and cultured at 27.0 \pm 1 °C, with a 12 : 12 h light : dark photocycle and an irradiance of 45 µmol photons·m⁻²·s⁻¹.

Amplification of 18S rDNA from the dinoflagellate cells was performed three times. The PCR amplified 18S rDNA sequence of the title dinoflagellate (sequence ID: SRP311747) was compared with those in the NCBI databases using the BLAST algorithm. The 18S ribosomal RNA gene, partial sequence of an uncultured eukaryote clone (XM.18S_7; ENV 01-JUL-2015, Xiamen, PR China; sequence ID: KT201583.1) was found to be the closest relative (percent identity: 99.65%), whereas that of *Amphidinium operculatum* (strain: TAK-0; PLN 08-AUG-2012, Taketomi Island, Okinawa, Japan; sequence ID: AB704006.1)¹⁰⁵ was discovered to be the closest dinoflagellate strain (percent identity: 80.95%). Phylogenetic tree inferred from the 18S rDNA sequence alignment in the NCBI databases suggested that the benthic MDRC-02 strain ought to be a new taxon of dinoflagellate (Figure S2). The voucher specimen and 18S rDNA gene were deposited at Marine Drugs Research Center, School of Pharmaceutical Sciences, Southern Medical University, PR China.

Large-scale culture of the title dinoflagellate was kept in plastic buckets (20.0 L \times 40), each containing 15.0 L of culture medium. 21 days later, 500.0 L culture medium were separated from cells by filtration using filter paper. According to the same procedure, 100.0 L culture medium enriched with NaH¹³CO₃ (50 mg/L)¹⁰⁶ were also separated from cells.

1.3 Isolation of Benthol A

The filtrate (500.0 L) was loaded onto a macroporous resin column (DIAION, HP-20, 120 cm × 15 cm i.d.), eluted with freshwater to remove sea salt. Then, the loaded sample was successively eluted with 25%, 50%, 75%, and 95% aqueous ethanol. All the eluates were concentrated under vacuum to afford the resultant solid (3.8 g), which was separated by a C₁₈ reversed-phase column (45.0 × 5.0 cm i.d.), eluted with aqueous methanol (20% to 100%), to yield 63 fractions. UPLC-MS (Waters ACQUITY UPLC BEH C₁₈ 150 × 2.1 mm i.d., 1.7 µm, MeCN/H₂O, from 5:95 to 98:2) was employed for the detection of SCCCs in fractions. The resultant fractions 32 and 33 were combined (116.5 mg) and further purified by preparative HPLC (YMC-Pack 250 × 10 mm i.d., MeOH/H₂O, 50:50) to afford benthol A (**1**) (20.0 mg, $t_{\rm R} = 22.8$ min). According to the same procedure, ¹³C-enriched **1** (4.0 mg) was obtained from 100.0 L

filtrates that were enriched with NaH¹³CO₃.

Benthol A (1):

Colorless solid, $[a]_D^{25} = +60.0$ (*c* = 0.1, methanol); UV (MeCN) λ_{max} (log ε) 194.5 (4.2) nm (Figure S4); HR-ESIMS *m*/*z* [M + Na]⁺ (calcd for C₇₅H₁₂₆NaO₃₀, 1529.8226, found 1529.8234).

¹H NMR (CD₃OD, 700 MHz) data for **1**: δ 5.69 (m, 1H, H-16), 5.65 (m, 1H, H-64), 5.54 (dd, 1H, J = 15.4, 7.0 Hz, H-17), 5.50 (dd, 1H, J = 15.4, 7.0 Hz, H-65), 5.29 (br d, 1H, J = 9.1 Hz, H-45), 5.21 (br d, 1H, J = 8.4 Hz, H-61), 4.81 (br s, 1H, H-73b), 4.72 (br s, 1H, H-73a), 4.67 (td, 1H, J = 9.1, 3.5 Hz, H-46), 4.45 (m, 1H, H-50), 4.37 (m, 1H, H-62), 4.25 (m, 1H, H-66), 4.18 (m, 1H, H-22), 4.18 (m, 1H, H-30), 4.18 (m, 1H, H-34), 4.11 (m, 1H, H-52), 4.10 (m, 1H, H-48), 4.08 (m, 1H, H-32), 4.05 (m, 1H, H-18), 4.01 (m, 1H, H-56), 4.00 (m, 1H, H-70), 3.90 (m, 1H, H-2), 3.90 (m, 1H, H-14), 3.87 (m, 1H, H-12), 3.86 (m, 1H, H-58), 3.83 (ddd, 1H, J = 9.1, 9.1, 4.9 Hz, H-6), 3.76 (m, 1H, H-37), 3.75 (m, 1H, H-24), 3.69 (m, 1H, H-39), 3.69 (m, 1H, H-72b), 3.67 (m, 1H, H-4), 3.63 (m, 1H, H-41), 3.62 (m, 1H, H-40), 3.62 (m, 1H, H-35), 3.61 (m, 1H, H-72a), 3.59 (m, 1H, H-54), 3.56 (m, 1H, H-29), 3.56 (m, 1H, H-68), 3.53 (m, 1H, H-21), 3.49 (m, 1H, H-38), 3.48 (m, 1H, H-1a), 3.48 (m, 1H, H-1b), 3.42 (dd, 1H, J = 7.7, 4.2 Hz, H-49), 3.27 (dd, 1H, J = 8.4, 2.1 Hz, H-55), 3.22 (dd, 1H, J = 9.1, 2.8 Hz, H-69), 3.01 (t, 1H, J = 9.1 Hz, H-5), 2.42 (m, 1H, H-31b), 2.38 (m, 1H, H-23b), 2.36 (m, 1H, H-51b), 2.27 (m, 1H, H-43b), 2.26 (m, 1H, H-63b), 2.24 (m, 1H, H-9a), 2.24 (m, 1H, H-9b), 2.22 (m, 1H, H-11b), 2.21 (m, 1H, H-15a), 2.21 (m, 1H, H-15b), 2.20 (m, 1H, H-63a), 2.18 (m, 1H, H-59b), 2.15 (m, 1H, H-3b), 2.11 (m, 1H, H-43a), 2.10 (dd, 1H, J = 12.6, 4.9 Hz, H-7b), 2.04 (m, 1H, H-59a), 2.03 (m, 1H, H-36b), 1.99 (m, 1H, H-42b), 1.99 (m, 1H, H-53b), 1.98 (m, 1H, H-11a), 1.96 (m, 1H, H-67b), 1.88 (m, 1H, H-47b), 1.88 (m, 1H, H-53a), 1.83 (m, 1H, H-71b), 1.82 (m, 1H, H-33b), 1.82 (m, 1H, H-57b), 1.74 (m, 1H, H-71a), 1.72 (m, 1H, H-36a), 1.72 (d, 3H, J = 1.4 Hz, H₃-74), 1.71 (m, 1H, H-20b), 1.71 (m, 1H, H-25b), 1.70 (d, 3H, J = 1.4 Hz, H₃-75), 1.67 (m, 1H, H-13b), 1.64 (m, 1H, H-20a), 1.64 (m, 1H, H-28a), 1.64 (m, 1H, H-28b), 1.64 (m, 1H, H-51a), 1.63 (m, 1H, H-19a), 1.63 (m, 1H, H-19b), 1.63 (m, 1H, H-67a), 1.58 (m, 1H, H-47a), 1.56 (m, 1H, H-25a), 1.55 (m, 1H, H-31a), 1.52 (m, 1H, H-33a), 1.51 (m, 1H, H-57a), 1.50 (m, 1H, H-42a), 1.50 (m, 1H, H-7a), 1.49 (m, 1H, H-23a), 1.48 (m, 1H, H-26b), 1.48 (m, 1H, H-27b), 1.46 (m, 1H, H-3a), 1.40 (m, 1H, H-27a), 1.38 (m, 1H, H-26a).

¹³C{¹H} NMR (CD₃OD, 175 MHz) data for 1: δ 143.1 (qC, C-10), 138.1 (qC, C-44), 137.0 (CH, C-17), 136.3 (CH, C-65), 135.9 (qC, C-60), 130.9 (CH, C-61), 129.6 (CH, C-45), 129.1 (CH, C-64), 128.8 (CH, C-16), 111.2 (CH₂, C-73), 99.8 (qC, C-8), 86.1 (CH, C-49), 84.7 (CH, C-29), 84.5 (CH, C-21), 79.1 (CH, C-24), 77.8 (CH, C-35), 77.3 (CH, C-5), 76.5 (CH, C-52), 75.4 (CH, C-32), 75.0 (CH, C-68), 74.3 (CH, C-54), 73.8 (CH, C-18), 73.54 (CH, C-4), 73.49 (CH, C-50), 73.33 (CH, C-69), 73.30 (CH, C-30), 73.22 (CH, C-22), 73.22 (CH, C-39), 73.15 (CH, C-55), 73.1 (CH, C-40), 73.0 (CH, C-2), 72.8 (CH, C-38), 72.5 (CH, C-41), 71.8 (CH, C-66), 71.1 (CH, C-37), 70.96 (CH, C-58), 70.1 (CH, C-6), 69.2 (CH, C-62), 68.9 (CH, C-56), 68.7 (CH, C-12), 68.3 (CH, C-14), 68.2 (CH, C-48), 68.1 (CH, C-70), 67.1 (CH, C-34), 67.0 (CH₂, C-1), 66.2 (CH, C-46), 62.6 (CH₂, C-72), 46.6 (CH₂, C-59), 44.9 (CH₂, C-9), 44.0 (CH₂, C-7), 43.8 (CH₂, C-13), 43.3 (CH₂, C-47), 42.70 (CH₂, C-31), 42.66 (CH₂, C-15), 42.4 (CH₂, C-23), 41.9 (CH₂, C-63), 41.73 (CH₂, C-33), 41.73 (CH₂, C-51), 41.2 (CH₂, C-11), 41.0 (CH₂, C-67), 39.63 (CH₂, C-57), 39.61 (CH₂, C-53), 37.4 (CH₂, C-25), 36.8 (CH₂, C-43), 36.4 (CH₂, C-3), 35.1 (CH₂, C-19), 34.2 (CH₂, C-36), 33.8 (CH₂, C-71), 33.5 (CH₂, C-42), 30.2 (CH₂, C-28), 27.68 (CH₂, C-26), 27.64 (CH₂, C-27), 26.2 (CH₂, C-20), 17.5 (CH₃, C-75), 16.8 (CH₃, C-74).

1.4 Periodate Degradation

A solution of benthol A (**1**, 10.0 mg, 0.0066 mM) of ¹³C natural abundance in 1.0 mL water was added with NaIO₄ (7.2 mg, 0.03 mM). The reaction mixture was stirred at room temperature for 30.0 min. When the solution was cooled to 0 °C, excess amount of NaBH₄ was added and kept for 1.0 h. The reaction mixture was separated by a C₁₈ reversed-phase silica gel column (Daisogel, SP-120-50-ODS-

B, 5g, 6.5 cm × 1.0 cm i.d.), eluted with 15.0 mL of water, followed by 20.0 mL of MeOH, to yield three fractions. The second fraction was purified by HPLC (YMC-Pack 250 cm × 4.6 mm i.d., MeCN/H₂O, 15:85) to afford two products, viz., fragments **1A** (1.5 mg, t_R = 28.8 min) and **1B** (2.0 mg, t_R = 22.5 min).

1A: Colorless oil; HR-ESIMS m/z [M + Na]⁺ (calcd for C₄₀H₇₀NaO₁₆, 829.4556, found 829.4566). ¹H NMR (CD₃OD, 700 MHz) data for **1A**: δ 5.68 (m, 1H, H-16), 5.53 (dd, 1H, J = 15.4, 7.0 Hz, H-17), 4.77 (br s, 1H, H-73b), 4.69 (br s, 1H, H-73a), 4.17 (m, 1H, H-22), 4.16 (m, 1H, H-30), 4.04 (m, 1H, H-18), 4.01 (m, 1H, H-32), 3.90 (m, 1H, H-14), 3.84 (m, 1H, H-34), 3.81 (m, 1H, H-6), 3.80 (m, 1H, H-12), 3.73 (m, 1H, H-24), 3.73 (m, 1H, H-37b), 3.68 (m, 1H, H-2a), 3.68 (m, 1H, H-2b), 3.68 (m, 1H, H-37a), 3.62 (m, 1H, H-38b), 3.62 (m, 1H, H-39), 3.60 (m, 1H, H-40a), 3.60 (m, 1H, H-40b), 3.59 (m, 1H, H-37a), 3.58 (m, 1H, H-38a), 3.57 (m, 1H, H-4), 3.53 (m, 1H, H-29), 3.52 (m, 1H, H-21), 2.99 (t, 1H, J = 9.1 Hz, H-5), 2.40 (m, 1H, H-31b), 2.37 (m, 1H, H-23b), 2.22 (m, 1H, H-9a), 2.22 (m, 1H, H-9b), 2.20 (m, 1H, H-15a), 2.20 (m, 1H, H-15b), 2.18 (m, 1H, H-11b), 2.10 (m, 1H, H-3a), 2.08 (dd, 1H, J = 12.6, 4.8 Hz, H-7b), 1.97 (t, 1H, J = 11.9 Hz, H-11a), 1.88 (ddd, 1H, J = 14.0, 9.1, 2.1 Hz, H-33b), 1.84 (m, 1H, H-36b), 1.70 (m, 1H, H-20a), 1.64 (m, 1H, H-25b), 1.66 (m, 1H, H-19a), 1.62 (m, 1H, H-13b), 1.65 (m, 1H, H-36a), 1.62 (m, 1H, H-3a), 1.48 (m, 1H, H-7a), 1.47 (m, 1H, H-28a), 1.55 (m, 1H, H-26a), 1.55 (m, 1H, H-27b), 1.44 (m, 1H, H-3a), 1.40 (m, 1H, H-27a), 1.37 (m, 1H, H-26a).

¹³C{¹H} NMR (CD₃OD, 175 MHz) data for **1A**: δ 143.1 (qC, C-10), 136.9 (CH, C-17), 128.8 (CH, C-16), 110.6 (CH₂, C-73), 99.2 (qC, C-8), 84.6 (CH, C-29), 84.5 (CH, C-21), 82.3 (CH, C-39), 81.0 (CH, C-35), 79.1 (CH, C-24), 77.2 (CH, C-5), 75.8 (CH, C-32), 73.8 (CH, C-18), 73.3 (CH, C-22), 73.2 (CH, C-30), 71.9 (CH, C-34), 71.1 (CH, C-4), 70.5 (CH, C-6), 68.4 (CH, C-14), 68.3 (CH, C-12), 63.4 (CH₂, C-40), 63.2 (CH₂, C-38), 60.5 (CH₂, C-2), 59.7 (CH₂, C-37), 44.8 (CH₂, C-9), 44.2 (CH₂, C-7), 43.9 (CH₂, C-13), 42.8 (CH₂, C-31), 42.39 (CH₂, C-15), 42.39 (CH₂, C-23), 41.3 (CH₂, C-11), 40.4 (CH₂, C-33), 37.4 (CH₂, C-25), 35.7 (CH₂, C-3), 35.1 (CH₂, C-19), 34.6 (CH₂, C-36), 30.1 (CH₂, C-28), 27.7 (CH₂, C-26), 27.6 (CH₂, C-27), 26.2 (CH₂, C-20).

1B: Colorless oil; HR-ESIMS *m*/*z* [M + Na]⁺ (calcd for C₃₄H₆₂NaO₁₃, 701.4083, found 701.4088). ¹H NMR (CD₃OD, 400 MHz) data for **1B**: δ 5.66 (m, 1H, H-64), 5.51 (dd, 1H, *J* = 15.2, 7.2 Hz, H-65), 5.26 (dd, 1H, *J* = 8.4, 1.2 Hz, H-45), 5.23 (d, 1H, *J* = 8.8 Hz, H-61), 4.67 (td, 1H, *J* = 9.6, 3.2 Hz, H-46), 4.42 (m, 1H, H-50), 4.36 (m, 1H, H-62), 4.17 (m, 1H, H-66), 4.12 (ddd, 1H, *J* = 9.2, 7.6, 2.8 Hz, H-48), 3.97 (m, 1H, H-52), 3.83 (m, 1H, H-58), 3.73 (m, 1H, H-71b), 3.68 (m, 1H, H-69b), 3.65 (m, 1H, H-55b), 3.65 (m, 1H, H-56a), 3.65 (m, 1H, H-56b), 3.63 (m, 1H, H-71a), 3.61 (m, 1H, H-54), 3.60 (m, 1H, H-72b), 3.54 (m, 1H, H-55a), 3.54 (m, 1H, H-69a), 3.53 (m, 1H, H-41a), 3.53 (m, 1H, H-41b), 3.52 (m, 1H, H-72a), 3.41 (m, 1H, H-68), 3.40 (dd, 1H, *J* = 7.6, 4.0 Hz, H-49), 2.38 (m, 1H, H-51b), 2.36 (m, 1H, H-59b), 2.24 (m, 1H, H-63a), 2.24 (m, 1H, H-63b), 2.06 (m, 1H, H-43a), 2.06 (m, 1H, H-43b), 2.06 (m, 1H, H-59a), 1.91 (m, 1H, H-53a), 1.75 (m, 1H, H-67b), 1.72 (d, 3H, *J* = 1.2 Hz, H₃-75), 1.70 (d, 3H, *J* = 1.2 Hz, H₃-74), 1.65 (m, 1H, H-42a), 1.65 (m, 1H, H-42b), 1.62 (m, 1H, H-67a), 1.59 (m, 1H, H-51a), 1.54 (m, 1H, H-57a), 1.53 (m, 1H, H-47a).

¹³C{¹H} NMR (CD₃OD, 100 MHz) data for **1B**: *δ* 137.5 (qC, C-44), 136.6 (CH, C-65), 136.0 (qC, C-60), 131.7 (CH, C-61), 129.8 (CH, C-45), 129.0 (CH, C-64), 86.6 (CH, C-49), 79.2 (CH, C-68), 77.2 (CH, C-54), 76.3 (CH, C-52), 75.3 (CH, C-58), 73.2 (CH, C-50), 71.2 (CH, C-66), 69.0 (CH, C-62), 68.0 (CH, C-48), 67.6 (CH₂, C-69), 66.0 (CH, C-46), 65.2 (CH₂, C-55), 64.6 (CH₂, C-72), 62.6 (CH₂, C-41), 60.3 (CH₂, C-56), 59.8 (CH₂, C-71), 46.4 (CH₂, C-59), 43.3 (CH₂, C-47), 42.4 (CH₂, C-51), 41.7 (CH₂, C-63), 40.3 (CH₂, C-67), 40.0 (CH₂, C-53), 37.9 (CH₂, C-57), 36.9 (CH₂, C-43), 34.1 (CH₂, C-70), 31.8 (CH₂, C-42),

17.6 (CH₃, C-75), 16.6 (CH₃, C-74).

1.5 Ozonolysis

Benthol A (1) (4.0 mg, 0.0027 mM) of ¹³C-enriched abundance was dissolved in the mixture of CH₂Cl₂-MeOH (1:1, each 7.5 mL). Ozone was bubbled into the above solution at -78 °C for 5.0 min. Excess amount of NaBH₄ was then added and stirred at -78 °C for 3.0 h. The reaction mixture was purified by a C₁₈ reversed-phase silica gel column (Daisogel, SP-120-50-ODS-B, 5g, 6.5 cm × 1.0 cm i.d.), eluted with 15.0 mL of water followed by 20.0 mL of MeOH, to afford three fractions. The second fraction was purified by HPLC (YMC-Pack 250 cm × 4.6 mm i.d., MeCN/H₂O, linear-gradient elution from 5% to 100% MeCN within 35 min) to afford five products, viz., fragments **1a** (0.8 mg, *t*_R = 14.9 min), **1b** (1.4 mg, *t*_R = 17.1 min), **1c** (0.9 mg, *t*_R = 15.8 min), **1d** (0.2 mg, *t*_R = 3.0 min), and **1e** (0.4 mg, *t*_R = 6.1 min).

1a: Colorless oil; LR-ESIMS m/z 389.2 [M + Na]⁺.

¹H NMR (CD₃OD, 600 MHz) data for **1a**: δ 4.31 (ddd, 1H, *J* = 9.9, 9.8, 5.0, 2.0 Hz, H-12), 4.04 (m, 1H, *J* = 5.4, 2.5 Hz, H-10), 4.03 (m, 1H, H-14), 3.92 (m, 1H, H-2), 3.82 (ddd, 1H, *J* = 9.0, 9.0, 5.2 Hz, H-6), 3.74 (td, 1H, *J* = 9.6, 9.6, 2.0 Hz, H-4), 3.71 (m, 1H, H-16b), 3.70 (m, 1H, H-16a), 3.47 (dd, 1H, *J* = 10.8, 6.0 Hz, H-1b), 3.42 (dd, 1H, *J* = 10.8, 5.4 Hz, H-1a), 2.97 (dd, 1H, *J* = 9.3, 9.3 Hz, H-5), 2.17 (dt, 1H, *J* = 14.4, 4.8 Hz, H-3b), 1.97 (dd, 1H, *J* = 12.6, 4.8 Hz H-7b), 1.81 (dt, 1H, *J* = 14.4, 2.4 Hz, H-9b), 1.69 (m, 1H, H-15b), 1.66 (m, 1H, H-11b), 1.64 (m, 1H, H-9a), 1.64 (m, 1H, H-15a), 1.59 (m, 1H, H-13b), 1.50 (m, 1H, H-11a), 1.49 (m, 1H, H-13a), 1.48 (m, 1H, H-7a), 1.42 (m, 1H, H-3a).

¹³C{¹H} NMR (CD₃OD, 150 MHz) data for **1a**: δ 99.1 (qC, C-8), 77.3 (CH, C-5), 74.3 (CH, C-4), 73.6 (CH, C-2), 69.9 (CH, C-6), 67.5 (CH₂, C-1), 66.0 (CH, C-14), 65.3 (CH, C-10), 61.9 (CH, C-12), 60.2 (CH₂, C-16), 44.7 (CH₂, C-13), 44.5 (CH₂, C-7), 42.1 (CH₂, C-15), 40.6 (CH₂, C-9), 39.2 (CH₂, C-11), 36.3 (CH₂, C-3).

1b: Colorless oil; LR-ESIMS m/z 611.3 [M + H]⁺.

¹H NMR (CD₃OD, 600 MHz) data for **1b**: δ 4.18 (m, 1H, H-22), 4.17 (m, 1H, H-30), 4.17 (m, 1H, H-34), 4.07 (m, 1H, H-32), 3.76 (m, 1H, H-37), 3.75 (m, 1H, H-24), 3.75 (m, 1H, H-44), 3.75 (m, 1H, H-44'), 3.69 (dd, 1H, J = 9.6, 1.2 Hz, H-39), 3.62 (m, 1H, H-40), 3.62 (m, 1H, H-41), 3.61 (m, 1H, H-18), 3.60 (m, 1H, H-35), 3.55 (m, 1H, H-29), 3.54 (m, 1H, H-21), 3.49 (dd, 1H, J = 11.4, 4.2 Hz, H-17b), 3.48 (dd, 1H, J = 9.6, 9.6 Hz, H-38), 3.44 (dd, 1H, J = 11.4, 6.6 Hz, H-17a), 2.40 (m, 1H, H-31b), 2.37 (m, 1H, H-23b), 2.03 (ddd, 1H, J = 12.3, 5.0, 1.4 Hz, H-36b), 1.98 (m, 1H, H-42b'), 1.94 (m, 1H, H-42b), 1.82 (m, 1H, H-33b), 1.81 (m, 1H, H-20b), 1.70 (m, 1H, H-25b), 1.70 (m, 1H, H-36a), 1.67 (m, 1H, H-19b), 1.67 (m, 1H, H-43b')1.65 (m, 1H, H-20a), 1.64 (m, 1H, H-28a), 1.64 (m, 1H, H-28b), 1.56 (m, 1H, H-25a), 1.54 (m, 1H, H-31a), 1.52 (m, 1H, H-43a), 1.52 (m, 1H, H-43a'), 1.52 (m, 1H, H-43a'), 1.52 (m, 1H, H-42a), 1.49 (m, 1H, H-23a), 1.48 (m, 1H, H-26b), 1.48 (m, 1H, H-27b), 1.47 (m, 1H, H-42a), 1.43 (m, 1H, H-19a), 1.40 (m, 1H, H-27a), 1.38 (m, 1H, H-26a), 1.17 (d, 3H, J = 6.6 Hz, H₃-74').

¹³C{¹H} NMR (CD₃OD, 150 MHz) data for **1b**: δ 84.7 (CH, C-29), 84.6 (CH, C-21), 79.0 (CH, C-24), 77.8 (CH, C-35), 75.3 (CH, C-32), 73.5 (CH, C-18), 73.3 (CH, C-30), 73.13 (CH, C-39), 73.13 (CH, C-22), 73.07 (CH, C-40), 73.0 (CH, C-41), 72.7 (CH, C-38), 71.1 (CH, C-37), 68.9 (CH, C-44), 68.7 (CH, C-44'), 67.3 (CH₂, C-17), 67.1 (CH, C-34), 42.6 (CH₂, C-31), 42.3 (CH₂, C-23), 41.7 (CH₂, C-33), 37.3 (CH₂, C-25), 36.5 (CH₂, C-43'), 36.4 (CH₂, C-43), 34.1 (CH₂, C-36), 31.54 (CH₂, C-42), 31.54 (CH₂, C-42'), 31.2 (CH₂, C-19), 30.1 (CH₂, C-28), 27.62 (CH₂, C-26), 27.59 (CH₂, C-27), 26.1 (CH₂, C-20), 23.7 (CH₃, C-74'), 23.4 (CH₃, C-74).

1c: Colorless oil; LR-ESIMS m/z 381.2 [M + H]⁺.

¹H NMR (CD₃OD, 600 MHz) data for **1c**: δ 4.43 (m, 1H, H-50), 4.13 (ddd, 1H, J = 9.5, 7.0, 2.4 Hz, H-48), 4.03 (m, 1H, H-52), 3.99 (ddd, 1H, J = 5.8, 3.2, 2.0 Hz, H-56), 3.95 (m, 1H, H-60), 3.89 (m, 1H, H-46), 3.88 (m, 1H, H-58), 3.64 (td, 1H, J = 9.6, 9.6, 2.4 Hz, H-54), 3.51 (dd, 1H, J = 11.4, 4.8 Hz, H-45b), 3.47 (dd, 1H, J = 11.4, 6.6 Hz, H-45a), 3.43 (dd, 1H, J = 7.2, 4.2 Hz, H-49), 3.25 (dd, 1H, J = 9.8, 3.2 Hz, H-55), 2.37 (m, 1H, H-51b), 2.05 (ddd, 1H, J = 15.0, 6.0, 2.4 Hz, H-53b), 1.81 (m, 1H, H-53a), 1.81 (m, 1H, H-57b), 1.80 (m, 1H, H-47b), 1.63 (m, 1H, H-47a), 1.62 (m, 1H, H-51a), 1.60 (m, 1H, H-59b), 1.56 (m, 1H, H-57a), 1.44 (dt, 1H, J = 14.4, 4.8 Hz, H-59a), 1.14 (d, 3H, J = 6.0 Hz, H₃-75).

¹³C{¹H} NMR (CD₃OD, 150 MHz) data for **1c**: δ 86.6 (CH, C-49), 77.7 (CH, C-52), 75.4 (CH, C-54), 73.2 (CH, C-50), 72.9 (CH, C-55), 71.8 (CH, C-58), 70.2 (CH, C-46), 68.6 (CH, C-56), 68.2 (CH, C-48), 68.1 (CH₂, C-45), 67.6 (CH, C-60), 45.4 (CH₂, C-59), 42.4 (CH₂, C-51), 40.0 (CH₂, C-57), 39.6 (CH₂, C-53), 39.0 (CH₂, C-47), 23.3 (CH₃, C-75).

1d: Colorless oil; HR-ESIMS m/z [M + Na]⁺ (calcd for C₄H₁₀NaO₃, 129.0522, found 129.0525). ¹H NMR (CD₃OD, 600 MHz) data for **1d**: δ 3.75 (m, 1H, H-62), 3.69 (m, 1H, H-64a), 3.69 (m, 1H, H-64b), 3.53 (dd, 1H, J = 10.8, 5.4 Hz, H-61b), 3.47 (dd, 1H, J = 10.8, 4.8 Hz, H-61a), 1.73 (m, 1H, H-63b), 1.60 (m, 1H, H-63a).

¹³C{¹H} NMR (CD₃OD, 150 MHz) data for **1d**: δ 70.8 (CH, C-62), 67.5 (CH₂, C-61), 60.0 (CH₂, C-64), 37.2 (CH₂, C-63).

1e: Colorless oil; LR-ESIMS m/z 215.1 [M + Na]⁺.

¹H NMR (CD₃OD, 600 MHz) data for **1e**: δ 4.00 (dd, 1H, *J* = 5.8, 2.8 Hz, H-70), 3.87 (m, 1H, H-66), 3.73 (ddd, 1H, *J* = 12.4, 9.6, 2.4 Hz, H-72b), 3.66 (td, 1H, *J* = 9.6, 9.6, 3.0 Hz, H-68), 3.62 (ddd, 1H, *J* = 12.4, 5.4, 1.5 Hz, H-72a), 3.53 (dd, 1H, *J* = 11.4, 4.8 Hz, H-65b), 3.45 (dd, 1H, *J* = 11.4, 6.0 Hz, H-65a), 3.24 (dd, 1H, *J* = 9.6, 3.0 Hz, H-69), 2.02 (ddd, 1H, *J* = 14.4, 5.4, 3.0 Hz, H-67b), 1.84 (dddd, 1H, *J* = 12.4, 9.8, 5.4, 2.6 Hz, H-71b), 1.75 (dddd, 1H, *J* = 12.4, 5.6, 3.8, 2.0 Hz, H-71a), 1.53 (ddd, 1H, *J* = 14.4, 9.0, 6.6 Hz, H-67a).

¹³C{¹H} NMR (CD₃OD, 150 MHz) data for **1e**: *δ* 75.5 (CH, C-68), 73.4 (CH, C-69), 71.8 (CH, C-66), 68.1 (CH, C-70), 66.9 (CH₂, C-65), 62.7 (CH₂, C-72), 37.1 (CH₂, C-67), 33.8 (CH₂, C-71).

1.6 Mosher's MTPA Esters 1As/r, 1Bs/r, 1as/r, 1bs/r, 1cs/r, and 1es/r

The fragment **1A** (0.5 mg) was treated with (*R*)-MTPACI (16.0 μ L) in dried pyridine (0.6 mL) at room temperature for 12h. The reaction mixture was concentrated and purified by HPLC (YMC-Pack 250 cm × 4.6 mm i.d., MeCN/H₂O, 99:1) to afford the 2,5,6,14,18,22,30,34,37,38,40-O-undeca- (*S*)-MTPA ester of **1A**, namely **1As** (1.7 mg, t_R = 18.2 min). The 2,5,6, 14,18,22,30,34,37,38,40-O- undeca-(*R*)-MTPA ester of **1A**, namely **1Ar** (1.8 mg, t_R = 18.3 min) was prepared in the same way. Similarly, fragments **1B**, **1b**, and **1c** were esterified with (*R*)- and (*S*)-MTPACI, respectively, to yield **1Bs** (1.5 mg)/**1Br** (1.6 mg), **1bs** (1.4 mg)/**1br** (1.3 mg), and **1cs** (0.9 mg)/**1cr** (1.0 mg).

The fragment **1a** (0.4 mg) was dissolved in pyridine (0.6 mL) and then added with pivaloyl chloride (6.0 μ L) at 0 °C. The reaction mixture was stirred for 30.0 min and then added with water (50.0 μ L). The mixture was concentrated and dried under vacuum for 8h, and then treated with (*R*)-MTPACI (8.0 μ L) in dried pyridine (0.6 mL) at room temperature for 2h. The reaction mixture was concentrated and purified by HPLC (YMC-Pack 250 cm × 4.6 mm i.d., MeCN/H₂O, 92:8) to afford the 2,6,10,14-O-tetra-(*S*)-MTPA ester of **1a**, namely **1as** (1.0 mg, t_R = 15.3 min). The 2,6,10,14-O-tetra-(*R*)-MTPA ester of **1a**, namely **1ar** (1.1 mg, t_R = 15.2 min) was prepared in the same way. Similarly, the fragment **1e** was esterified with pivaloyl chloride and then treated with (*R*)- and (*S*)-MTPACI, respectively, to yield **1es** (0.5 mg) and **1er**

(0.5 mg). With the aid of key ${}^{1}H{-}{}^{1}H$ COSY or ${}^{1}H{-}{}^{1}H$ TOCSY correlations, ${}^{1}H$ NMR spectroscopic data of the above products were assigned.

1As: White, amorphous solid; HR-ESIMS *m*/*z* [M + Na]⁺ calcd for C₁₅₀H₁₄₇F₃₃NaO₃₈ 3205.8936, found 3205.8930.

¹H NMR (CDCl₃, 700 MHz) data for **1As**: δ 5.60 (m, 1H, H-16), 5.54 (m, 1H, H-6), 5.40 (m, 1H, H-17), 5.38 (m, 1H, H-14), 5.26 (m, 1H, H-30), 5.23 (m, 1H, H-18), 5.23 (m, 1H, H-34), 5.21 (m, 1H, H-22), 5.11 (t, 1H, *J* = 9.8 Hz, H-5), 4.79 (br s, 1H, H-73b), 4.75 (br s, 1H, H-73a), 4.35 (m, 1H, H-2b), 4.26 (m, 1H, H-37b), 4.26 (m, 1H, H-38b), 4.26 (m, 1H, H-40b), 4.18 (dd, 1H, *J* = 11.2, 7.0 Hz, H-40a), 4.14 (m, 1H, H-37a), 4.12 (m, 1H, H-2a), 4.03 (dd, 1H, *J* = 11.9, 4.9 Hz, H-38a), 3.86 (m, 1H, H-4), 3.81 (m, 1H, H-39), 3.65 (m, 1H, H-24), 3.59 (m, 1H, H-35), 3.52 (m, 1H, H-21), 3.49 (m, 1H, H-29), 3.48 (m, 1H, H-12), 3.38 (m, 1H, H-32), 2.47 (dd, 1H, *J* = 12.6, 5.6 Hz, H-7b), 2.44 (m, 1H, H-23b), 2.38 (m, 1H, H-15b), 2.30 (m, 1H, H-15a), 2.22 (d, 1H, *J* = 12.6 Hz, H-11a), 1.73 (m, 1H, H-31b), 2.16 (m, 1H, H-9a), 2.10 (d, 1H, *J* = 12.6 Hz, H-11b), 1.83 (t, 1H, *J* = 12.6 Hz, H-11a), 1.73 (m, 1H, H-33b), 1.63 (m, 1H, H-13b), 1.72 (m, 1H, H-36b), 1.71 (m, 1H, H-3a), 1.67 (m, 1H, H-13a), 1.66 (m, 1H, H-36a), 1.48 (m, 1H, H-20b), 1.48 (m, 1H, H-25b), 1.47 (m, 1H, H-23a), 1.47 (m, 1H, H-28b), 1.37 (m, 1H, H-31a), 1.36 (m, 1H, H-28a), 1.35 (m, 1H, H-27a).

1Ar: White, amorphous solid; HR-ESIMS *m*/*z* [M + Na]⁺ calcd for C₁₅₀H₁₄₇F₃₃NaO₃₈ 3205.8936, found 3205.8926.

¹H NMR (CDCl₃, 700 MHz) data for **1Ar**: δ 5.64 (m, 1H, H-16), 5.55 (m, 1H, H-6), 5.46 (dd, 1H, *J* = 14.7, 6.3 Hz, H-17), 5.38 (m, 1H, H-18), 5.29 (m, 1H, H-14), 5.29 (m, 1H, H-30), 5.25 (m, 1H, H-22), 5.16 (m, 1H, H-34), 5.10 (t, 1H, *J* = 9.8 Hz, H-5), 4.69 (br s, 1H, H-73a), 4.69 (br s, 1H, H-73b), 4.43 (m, 1H, H-2b), 4.18 (m, 1H, H-37b), 4.17 (m, 1H, H-38b), 4.17 (m, 1H, H-40a), 4.17 (m, 1H, H-40b), 4.10 (m, 1H, H-2a), 4.10 (m, 1H, H-38a), 3.99 (m, 1H, H-37a), 3.86 (m, 1H, H-39), 3.73 (m, 1H, H-4), 3.69 (m, 1H, H-32), 3.65 (m, 1H, H-24), 3.63 (m, 1H, H-29), 3.60 (m, 1H, H-21), 3.60 (m, 1H, H-35), 3.37 (m, 1H, H-12), 2.45 (m, 1H, H-15b), 2.40 (m, 1H, H-23b), 2.37 (m, 1H, H-15a), 2.37 (m, 1H, H-31b), 2.32 (m, 1H, H-7b), 2.16 (d, 1H, *J* = 13.3 Hz, H-9b), 2.08 (d, 1H, *J* = 13.3 Hz, H-9a), 1.90 (d, 1H, *J* = 12.6 Hz, H-11b), 1.77 (m, 1H, H-19b), 1.74 (m, 1H, H-11a), 1.71 (m, 1H, H-19a), 1.69 (m, 1H, H-3b), 1.65 (m, 1H, H-20a), 1.49 (m, 1H, H-7a), 1.46 (m, 1H, H-28a), 1.46 (m, 1H, H-33b), 1.45 (m, 1H, H-36b), 1.43 (m, 1H, H-33a), 1.42 (m, 1H, H-31a), 1.38 (m, 1H, H-23a), 1.33 (m, 1H, H-36a), 1.32 (m, 1H, H-25b), 1.20 (m, 1H, H-27a).

1Bs: White, amorphous solid; HR-ESIMS *m*/*z* [M + Na]⁺ calcd for C₁₃₄H₁₃₂F₃₀NaO₃₃ 2861.8064, found 2861.8070.

¹H NMR (CDCl₃, 700 MHz) data for **1Bs**: δ 5.71 (m, 1H, H-46), 5.70 (m, 1H, H-64), 5.56 (m, 1H, H-62), 5.49 (dd, 1H, J = 15.4, 7.7 Hz, H-65), 5.43 (m, 1H, H-66), 5.29 (m, 1H, H-48), 5.21 (m, 1H, H-50), 5.04 (br d, 1H, J = 8.4 Hz, H-61), 4.94 (br d, 1H, J = 9.1 Hz, H-45), 4.44 (dd, 1H, J = 11.9, 3.5 Hz, H-69b), 4.34 (m, 1H, H-56b), 4.33 (m, 1H, H-70b), 4.28 (m, 1H, H-41b), 4.25 (m, 1H, H-55a), 4.25 (m, 1H, H-55b), 4.25 (m, 1H, H-70a), 4.20 (m, 1H, H-41a), 4.08 (m, 1H, H-56a), 3.92 (dd, 1H, J = 11.9, 5.6 Hz, H-69a), 3.88 (m, 1H, H-52), 3.69 (dd, 1H, J = 7.0, 2.8 Hz, H-49), 3.61 (m, 1H, H-54), 3.53 (m, 1H, H-58), 3.34 (m, 1H, H-72b), 3.24 (m, 1H, H-68), 3.20 (m, 1H, H-72a), 2.43 (m, 1H, H-51b), 2.42 (m, 1H, H-63b), 2.28 (m, 1H, H-63a), 2.26 (m, 1H, H-47b), 2.19 (dd, 1H, J = 14.0, 4.2 Hz, H-59b), 1.96 (m, 1H, H-43a), 1.96 (m, 1H, H-71b), 1.76 (m, 1H, H-53b), 1.74 (m, 1H, H-42b), 1.71 (m, 1H, H-42a), 1.64 (m, 1H, H-57b), 1.64 (m, 1H, H-67a), 1.63 (br s, 3H, H₃-75), 1.62 (br s, 3H, H₃-74), 1.55 (m, 1H, H-53a), 1.47

(m, 1H, H-51a), 1.44 (m, 1H, H-57a).

1Br: White, amorphous solid; HR-ESIMS *m*/*z* [M + Na]⁺ calcd for C₁₃₄H₁₃₂F₃₀NaO₃₃ 2861.8064, found 2861.8057.

¹H NMR (CDCl₃, 700 MHz) data for **1B**r: δ 5.70 (m, 1H, H-46), 5.57 (m, 1H, H-64), 5.54 (m, 1H, H-62), 5.40 (m, 1H, H-66), 5.30 (dd, 1H, J = 15.4, 7.7 Hz, H-65), 5.15 (m, 1H, H-48), 5.14 (m, 1H, H-50), 5.11 (m, 1H, H-45), 5.10 (m, 1H, H-61), 4.46 (dd, 1H, J = 11.9, 3.5 Hz, H-69b), 4.31 (m, 1H, H-70b), 4.31 (m, 1H, H-70a), 4.27 (m, 1H, H-56b), 4.26 (m, 1H, H-41b), 4.23 (m, 1H, H-41a), 4.12 (dd, 1H, J = 11.9, 2.8 Hz, H-55b), 4.08 (dd, 1H, J = 11.9, 4.9 Hz, H-55a), 4.04 (m, 1H, H-56a), 4.02 (dd, 1H, J = 11.9, 5.6 Hz, H-69a), 3.86 (m, 1H, H-52), 3.71 (m, 1H, H-49), 3.43 (m, 1H, H-58), 3.42 (m, 1H, H-72b), 3.36 (m, 1H, H-68), 3.34 (m, 1H, H-54), 3.25 (m, 1H, H-72a), 2.37 (m, 1H, H-63b), 2.26 (m, 1H, H-51b), 2.21 (m, 1H, H-47b), 2.19 (m, 1H, H-59b), 2.19 (m, 1H, H-63a), 2.00 (m, 1H, H-47a), 1.82 (m, 1H, H-71b), 1.86 (m, 1H, H-59a), 1.82 (m, 1H, H-71a), 1.82 (m, 1H, H-71b), 1.76 (m, 1H, H-42b), 1.64 (m, 1H, H-67a), 1.60 (m, 1H, H-57b), 1.59 (br s, 3H, H₃-74), 1.59 (br s, 3H, H₃-75), 1.42 (m, 1H, H-53b), 1.41 (m, 1H, H-57a), 1.26 (m, 1H, H-51a), 1.14 (m, 1H, H-53a).

1as: Colorless oil; HR-ESIMS m/z [M + H]⁺ calcd for C₆₆H₇₅F₁₂O₁₉ 1399.4705, found 1399.4731. ¹H NMR (CD₃OD, 600 MHz) data for **1as**: δ 5.48 (m, 1H, H-2), 5.38 (m, 1H, H-14), 5.35 (m, 1H, H-10), 5.28 (m, 1H, H-6), 4.40 (dd, 1H, J = 12.6, 1.8 Hz, H-1b), 3.99 (m, 1H, H-12), 3.96 (m, 1H, H-1a), 3.96 (m, 1H, H-16b), 3.80 (m, 1H, H-16a), 3.64 (m, 1H, H-4), 3.28 (t, 1H, J = 9.6 Hz, H-5), 2.14 (dd, 1H, J = 12.0, 4.8 Hz, H-7b), 2.00 (m, 1H, H-15b), 1.98 (m, 1H, H-11b), 1.91 (m, 1H, H-3b), 1.90 (m, 1H, H-9b), 1.86 (m, 1H, H-15a), 1.83 (m, 1H, H-3a), 1.80 (m, 1H, H-13a), 1.80 (m, 1H, H-13b), 1.73 (m, 1H, H-11a), 1.72 (m, 1H, H-9a), 1.51 (t, 1H, J = 12.0 Hz, H-7a).

1ar: Colorless oil; HR-ESIMS m/z [M + H]⁺ calcd for C₆₆H₇₅F₁₂O₁₉ 1399.4705, found 1399.4719. ¹H NMR (CD₃OD, 600 MHz) data for **1ar**: δ 5.44 (m, 1H, H-2), 5.37 (m, 1H, H-10), 5.28 (m, 1H, H-6), 5.19 (m, 1H, H-14), 4.09 (m, 1H, H-16a), 4.09 (m, 1H, H-16b), 3.91 (dd, 1H, J = 12.6, 1.8 Hz, H-1b), 3.86 (dd, 1H, J = 12.6, 4.8 Hz, H-1a), 3.68 (m, 1H, H-12), 3.50 (m, 1H, H-4), 3.38 (t, 1H, J = 9.6 Hz, H-5), 2.08 (dd, 1H, J = 12.0, 4.8 Hz, H-7b), 2.07 (m, 1H, H-3b), 2.06 (m, 1H, H-15b), 1.96 (m, 1H, H-9b), 1.90 (m, 1H, H-15a), 1.88 (m, 1H, H-3a), 1.86 (m, 1H, H-9a), 1.78 (m, 1H, H-13a), 1.78 (m, 1H, H-13b), 1.75 (m, 1H, H-11b), 1.57 (m, 1H, H-11a), 1.50 (t, 1H, J = 12.0 Hz, H-7a).

1bs: White, amorphous solid; HR-ESIMS m/z [M + H]⁺ calcd for C₁₁₉H₁₁₈F₂₇O₃₁ 2555.7220, found 2555.7216.

¹H NMR (CDCl₃, 700 MHz) data for **1bs**: δ 5.33 (m, 1H, H-30), 5.26 (m, 1H, H-34), 5.25 (m, 1H, H-22), 5.21 (m, 1H, H-18), 5.19 (m, 1H, H-37), 5.11 (m, 1H, H-38'), 5.09 (m, 1H, H-34), 4.92 (m, 1H, H-44'), 4.89 (m, 1H, H-44), 4.81 (m, 1H, H-41'), 4.80 (m, 1H, H-41), 4.48 (dd, 1H, *J* = 11.9, 2.1 Hz, H-17b), 4.18 (dd, 1H, *J* = 11.9, 5.6 Hz, H-17a), 4.08 (m, 1H, H-35), 3.68 (m, 1H, H-24), 3.66 (m, 1H, H-39'), 3.58 (m, 1H, H-39), 3.53 (m, 1H, H-29), 3.51 (m, 1H, H-21), 3.50 (m, 1H, H-40'), 3.48 (m, 1H, H-40), 3.47 (m, 1H, H-32), 2.48 (m, 1H, H-23b), 2.36 (m, 1H, H-31b), 1.90 (m, 1H, H-36b), 1.79 (m, 1H, H-33b), 1.73 (m, 1H, H-36a), 1.70 (m, 1H, H-19b), 1.65 (m, 1H, H-33a), 1.59 (m, 1H, H-42a'), 1.59 (m, 1H, H-42b'), 1.58 (m, 1H, H-42b), 1.54 (m, 1H, H-19a), 1.50 (m, 1H, H-31a), 1.49 (m, 1H, H-23a), 1.47 (m, 1H, H-28b), 1.43 (m, 1H, H-25b), 1.42 (m, 1H, H-20b), 1.41 (m, 1H, H-28a), 1.38 (m, 1H, H-43b'), 1.25 (m, 1H, H-20a), 1.33 (m, 1H, H-25a), 1.29 (m, 1H, H-43a'), 1.29 (m, 1H, H-43b'), 1.28 (m, 1H, H-27b), 1.25 (m, 1H, H-26b), 1.16 (d, 3H, *J* = 6.3 Hz, H₃-74), 1.15 (m, 1H, H-26a), 1.13 (m, 1H, H-27a), 1.06 (d, 3H, *J* = 6.3 Hz, H₃-74').

1br: White, amorphous solid; HR-ESIMS m/z [M + H]⁺ calcd for C₁₁₉H₁₁₈F₂₇O₃₁ 2555.7220, found 2555.7240.

¹H NMR (CDCl₃, 700 MHz) data for **1br**: δ 5.32 (m, 1H, H-30), 5.31 (m, 1H, H-18), 5.24 (m, 1H, H-22), 5.21(dd, 1H, J = 9.8, 4.9 Hz, H-38), 5.20 (dd, 1H, J = 9.8, 4.9 Hz, H-38'), 5.12 (m, 1H, H-37), 5.02 (m, 1H, H-34), 5.00 (m, 1H, H-44'), 4.96 (m, 1H, H-44), 4.83 (m, 1H, H-41), 4.78 (m, 1H, H-41'), 4.50 (dd, 1H, J = 11.9, 2.1 Hz, H-17b), 4.17 (dd, 1H, J = 11.9, 5.6 Hz, H-17a), 3.67 (m, 1H, H-39), 3.67 (m, 1H, H-24), 3.66 (m, 1H, H-35), 3.66 (m, 1H, H-39'), 3.63 (m, 1H, H-32), 3.61 (m, 1H, H-29), 3.56 (m, 1H, H-21), 3.16 (m, 1H, H-40), 3.12 (m, 1H, H-40'), 2.50 (m, 1H, H-31b), 2.42 (m, 1H, H-23b), 1.76 (m, 1H, H-19b), 1.73 (m, 1H, H-36b), 1.71 (m, 1H, H-19a), 1.67 (m, 1H, H-42a), 1.67 (m, 1H, H-42b), 1.64 (m, 1H, H-42a'), 1.64 (m, 1H, H-42b'), 1.63 (m, 1H, H-33b), 1.59 (m, 1H, H-20b), 1.59 (m, 1H, H-28b), 1.54 (m, 1H, H-43a'), 1.53 (m, 1H, H-43a), 1.52 (m, 1H, H-33a), 1.49 (m, 1H, H-20a), 1.48 (m, 1H, H-28a), 1.47 (m, 1H, H-31a), 1.46 (m, 1H, H-36a), 1.41 (m, 1H, H-43b'), 1.39 (m, 1H, H-23a), 1.39 (m, 1H, H-43b), 1.29 (m, 1H, H-25b), 1.29 (m, 1H, H-27b), 1.25 (d, 3H, J = 6.3 Hz, H₃-74'), 1.23 (m, 1H, H-25a), 1.22 (m, 1H, H-26b), 1.16 (d, 3H, J = 6.3 Hz, H₃-74), 1.13 (m, 1H, H-26a), 1.12 (m, 1H, H-27a).

1cs: Colorless oil; HR-ESIMS m/z [M + H]⁺ calcd for C₈₇H₈₂F₂₁O₂₃ 1893.4906, found 1893.4936. ¹H NMR (CD₃OD, 400 MHz) data for **1cs**: δ 5.55 (m, 1H, H-56), 5.40 (m, 1H, H-46), 5.26 (m, 1H, H-48), 5.26 (m, 1H, H-50), 5.12 (dd, 1H, J = 10.4, 2.8 Hz, H-55), 5.09 (m, 1H, H-60), 4.54 (dd, 1H, J = 12.8, 2.8 Hz, H-45b), 4.12 (dd, 1H, J = 12.8, 5.2 Hz, H-45a), 4.05 (m, 1H, H-52), 3.74 (dd, 1H, J = 7.2, 3.2 Hz, H-49), 3.67 (m, 1H, H-54), 3.10 (m, 1H, H-58), 2.54 (m, 1H, H-51b), 2.18 (m, 1H, H-47b), 2.06 (m, 1H, H-47a), 1.87 (m, 1H, H-53b), 1.80 (m, 1H, H-57b), 1.80 (m, 1H, H-59b), 1.68 (m, 1H, H-53a), 1.44 (m, 1H, H-51a), 1.43 (m, 1H, H-57a), 1.42 (m, 1H, H-59a), 1.00 (d, 3H, J = 6.4 Hz, H₃-75).

1cr: Colorless oil; HR-ESIMS m/z [M + H]⁺ calcd for C₈₇H₈₂F₂₁O₂₃ 1893.4906, found 1893.4932. ¹H NMR (CD₃OD, 400 MHz) data for **1cr**: δ 5.61 (m, 1H, H-56), 5.32 (m, 1H, H-46), 5.20 (m, 1H, H-60), 5.13 (m, 1H, H-50), 5.12 (m, 1H, H-48), 4.96 (dd, 1H, J = 10.4, 2.8 Hz, H-55), 4.54 (dd, 1H, J = 12.8, 2.8 Hz, H-45b), 4.17 (dd, 1H, J = 12.8, 5.2 Hz, H-45a), 3.78 (m, 1H, H-52), 3.74 (dd, 1H, J = 7.2, 3.2 Hz, H-49), 3.51 (m, 1H, H-58), 3.41 (m, 1H, H-54), 2.38 (m, 1H, H-51b), 2.04 (m, 1H, H-47b), 2.00 (m, 1H, H-47a), 1.86 (m, 1H, H-57b), 1.77 (m, 1H, H-59b), 1.67 (m, 1H, H-57a), 1.59 (m, 1H, H-59a), 1.26 (d, 3H, J = 6.4 Hz, H₃-75), 1.24 (m, 1H, H-53b), 1.16 (m, 1H, H-51a), 0.96 (m, 1H, H-53a).

1es: Colorless oil; LR-ESIMS m/z 956.6 [M + Cl]-.

¹H NMR (CD₃OD, 600 MHz) data for **1es**: δ 5.56 (m, 1H, H-70), 5.47 (m, 1H, H-66), 5.03 (dd, 1H, J = 9.6, 2.4 Hz, H-69), 4.39 (dd, 1H, J = 12.6, 2.4 Hz, H-65b), 4.10 (dd, 1H, J = 12.6, 6.0 Hz, H-65a), 3.76 (td, 1H, J = 10.2, 2.4 Hz, H-68), 3.55 (ddd, 1H, J = 12.0, 4.8, 1.2 Hz, H-72b), 3.05 (td, 1H, J = 12.0, 2.4 Hz, H-72a), 2.01 (m, 1H, H-71b), 1.96 (m, 1H, H-67b), 1.84 (m, 1H, H-67a), 1.75 (m, 1H, H-71a).

1er: Colorless oil; LR-ESIMS m/z 956.6 [M + Cl]-.

¹H NMR (CD₃OD, 600 MHz) data for **1er**: δ 5.75 (m, 1H, H-70), 5.30 (m, 1H, H-66), 5.04 (dd, 1H, J = 9.6, 2.4 Hz, H-69), 4.08 (dd, 1H, J = 12.6, 2.4 Hz, H-65b), 3.82 (dd, 1H, J = 12.6, 6.0 Hz, H-65a), 3.76 (ddd, 1H, J = 12.0, 4.8, 1.2 Hz, H-72b), 3.63 (td, 1H, J = 10.2, 2.4 Hz, H-68), 3.50 (td, 1H, J = 12.0, 2.4 Hz, H-72a), 2.18 (m, 1H, H-71b), 1.97 (m, 1H, H-71a), 1.72 (m, 1H, H-67b), 1.53 (m, 1H, H-67a).

1.7 Relative Configurations of Segments Established by JBCA.

For the C32–C34 segment in **1A**, the anti orientations between H32/H33b and H34/H33a were suggested by the large ${}^{3}J_{H32,H33b}$ (9.5 Hz) and ${}^{3}J_{H34,H33a}$ (9.2 Hz), respectively, while the gauche orientations between H32/H33a and H34/H33b were provided by the small ${}^{3}J_{H32,H33a}$ (3.0 Hz) and ${}^{3}J_{H34,H33b}$ (3.5 Hz), respectively (Figure S3A). The anti orientations between 32-O/H33a and 34-OH/H33b

were deduced from the small ${}^{2}J_{C32,H33a}$ (-2.0 Hz) and ${}^{2}J_{C34,H33b}$ (-0.6 Hz), respectively, whereas the gauche orientations between 32-*O*/H33b and 34-OH/H33a were assigned by the large ${}^{2}J_{C32,H33b}$ (-5.2 Hz) and ${}^{2}J_{C34,H33a}$ (-6.9 Hz), respectively. The gauche orientations between C31/H33a and C31/H33b were assigned by the small ${}^{3}J_{C31,H33a}$ (2.6 Hz) and ${}^{3}J_{C31,H33b}$ (2.9 Hz), respectively. Similarly, the gauche orientations between C35/H33a and C35/H33b were established by the small ${}^{3}J_{C35,H33a}$ (3.0 Hz) and ${}^{3}J_{C35,H33b}$ (1.6 Hz), respectively. Thus, the relative configuration between 32-O and 34-OH was concluded to be anti (Figure S3A). For the C34–C35 segment in **1A**, the gauche orientation between H34/H35 was supported by the small ${}^{3}J_{H34,H35}$ (2.9 Hz). The anti orientations between 34-OH/H35 and 35-O/H34 were indicated by the small ${}^{2}J_{C34,H35}$ (0.9 Hz) and ${}^{2}J_{C35,H34}$ (0.9 Hz), respectively, whereas the gauche orientations between C33/H35 and C36/H34 were established by the small ${}^{3}J_{C33,H35}$ (1.0 Hz) and ${}^{3}J_{C36,H34}$ (2.5 Hz), respectively. Therefore, the relationship between 34-OH and 35-O was assigned as *syn*. Finally, the relative configuration of the C32–C35 segment in **1A** was determined to be (anti/*syn*) along the direction of the wedge-shaped carbon chain (Figure S3A).

For the C46–C49 segment in **1B**, the anti orientations between H46/H47b and H48/H47a were indicated by the large ${}^{3}J_{H46,H47b}$ (9.6 Hz) and ${}^{3}J_{H48,H47a}$ (9.5 Hz), respectively, while the gauche orientations between H46/H47a and H48/H47b were assigned by the small ${}^{3}J_{H46,H47a}$ (3.1 Hz) and ${}^{3}J_{H48,H47b}$ (2.3 Hz), respectively. The gauche orientations between 46-OH/H47b and 48-OH/H47a were elucidated by the large ${}^{2}J_{C46,H47b}$ (-6.5 Hz) and ${}^{2}J_{C48,H47a}$ (-6.9 Hz), respectively, whereas the anti orientations between 46-OH/H47a and 48-OH/H47b were indicated by the small ${}^{2}J_{C46,H47a}$ (-1.6 Hz) and ${}^{2}J_{C48,H47b}$ (-1.8 Hz), respectively. The gauche orientations between C-27/H-29a, C-27/H-29b, C-31/H-29a, C-31/H-29b were supported by the small ${}^{3}J_{C45,H47a}$ (1.6 Hz), ${}^{3}J_{C45,H47b}$ (1.8 Hz), ${}^{3}J_{C49,H47a}$ (1.7 Hz), and ${}^{3}J_{C49,H47b}$ (1.9 Hz), respectively. Thus, the orientation between 46-OH and 48-OH was assigned as anti (Figure S3B). Similarly, the anti orientation between H48/H49 was indicated by the large ${}^{3}J_{H48,H49}$ (-5.5 Hz) and ${}^{2}J_{C48,H49}$ (-4.5 Hz) and ${}^{2}J_{C48,H49}$ (-4.5 Hz) and ${}^{2}J_{C48,H49}$ (-4.2 Hz), respectively. The gauche orientations between 46-OH and 48-OH was assigned as anti (Figure S3B). and ${}^{2}J_{C49,H48}$ (-4.2 Hz), respectively. The gauche orientations between 46-OH and 48-OH were assigned by the large ${}^{2}J_{C48,H49}$ (-4.5 Hz) and ${}^{2}J_{C49,H48}$ (-4.2 Hz), respectively. The gauche orientations between C50/H48 and C47/H49 were suggested by the small ${}^{3}J_{C50,H48}$ (1.8 Hz) and ${}^{3}J_{C47,H49}$ (2.8 Hz), respectively. Therefore, the orientation between 48-OH and 49-O was assigned as anti. Based on the above results, the (anti/anti) relationship was concluded for the relative configuration of the C46–C49 segment in **1B** (Figure S3B).

For the C52–C54 segment in **1B**, the moderate ${}^{3}J_{H52,H53a}$ (5.4 Hz) and ${}^{3}J_{H52,H53b}$ (6.7 Hz) suggested two interconverting conformations for both H52/H53a and H52/H53b. Similarly, the ${}^{2}J_{C52,H53a}$ (-2.4 Hz) and ${}^{3}J_{C51,H53b}$ (3.4 Hz) indicated two alternating conformations for both 52-*O*/H53a and C51/H53b. The large ${}^{2}J_{C52,H53b}$ (-6.9 Hz) and the small ${}^{3}J_{C51,H53a}$ (2.8 Hz) revealed that both 52-*O*/H53b and C51/H53a remained in a gauche orientation. Thus, two alternating conformers were assigned for the C52–C53 segment (Figure S3C). The anti orientations between H54/H53a and C55/H53b were determined by the large ${}^{3}J_{H54,H53a}$ (8.2 Hz) and ${}^{3}J_{C55,H53b}$ (7.4 Hz), respectively, whereas the gauche orientations between H54/H53b, C55/H53a, 54-O/H53a, and 54-O/H53b were supported by the small ${}^{3}J_{H54,H53b}$ (4.0 Hz) and ${}^{3}J_{C55,H53a}$ (1.2 Hz), and the large ${}^{2}J_{C54,H53a}$ (-6.0 Hz) and ${}^{2}J_{C54,H53b}$ (-6.2 Hz), respectively. Finally, the relative configuration between 52-O and 54-O in **1B** was assigned as *syn* (Figure S3C).

For the C66–C68 segment in **1B**, the intermediate ${}^{3}J_{H66,H67a}$ (7.0 Hz) and ${}^{3}J_{H66,H67b}$ (7.0 Hz) suggested two interconverting conformations for both H66/H67a and H66/H67b. Similarly, the moderate ${}^{2}J_{C66,H67a}$ (-3.8 Hz) and ${}^{3}J_{C65,H67b}$ (5.5 Hz) indicated two alternating conformations for both 66-OH/H67a and C65/H67b. The large ${}^{2}J_{C66,H67b}$ (-5.7 Hz) and the small ${}^{3}J_{C65,H67a}$ (2.2 Hz) revealed that both 66-OH/H67b and C65/H67b and C65/H67a remained in a gauche orientation. Thus, two alternating conformers were assigned for the C66–C67 segment (Figure S3D). Similarly, the intermediate ${}^{3}J_{H68,H67a}$ (5.0 Hz) and ${}^{3}J_{H68,H67b}$ (4.9 Hz) indicated two interconverting conformations for both H68/H67a and H68/H67b. The ${}^{2}J_{C68,H67b}$ (5.7 Hz) suggested two alternating conformations for both 68-O/H67a and C69/H67b. The large ${}^{2}J_{C68,H67b}$ (5.7 Hz) suggested two alternating conformations for both 68-O/H67a and C69/H67b. The large ${}^{2}J_{C68,H67b}$ (5.7 Hz) suggested two alternating conformations for both 68-O/H67a and C69/H67b. The large ${}^{2}J_{C68,H67b}$ (-6.8 Hz) and the small ${}^{3}J_{C69,H67a}$ (1.2 Hz) revealed that both 68-O/H67a and C69/H67b. The large ${}^{2}J_{C68,H67b}$ (-6.8 Hz) and the small ${}^{3}J_{C69,H67a}$ (1.2 Hz) revealed that both 68-O/H67b and C69/H67b and C69/H67a were in a gauche orientation. Therefore, two alternating conformers were

assigned for the C67–C68 segment. Based on the above results, the relative configuration between 66-OH and 68-O in **1B** was determined as *syn* (Figure S3D). To sum up, the relative configurations of the C32–C35 segment in **1A**, and the C46–C49, C52–C54, and C66–C68 segments in **1B** were assigned as (anti/syn), (anti/anti), *syn*, and *syn*, respectively, by application of *J*BCA.

In conclusion, the relative configurations of the C32–C35 segment in **1A**, and the C46–C49, C52–C54, and C66–C68 segments in **1B** were assigned as (anti/*syn*), (anti/anti), *syn*, and *syn*, respectively, by application of *J*BCA (Figure S3).

1.8 Computational Details

Mixed torsional/low-mode conformational searches were carried out by means of the Macromodel 10.8.011 software using the MMFF with an implicit solvent model for CHCl₃ applying a 21 kJ/mol energy window.¹⁰⁷ Geometry re-optimizations of the resultant conformers [B3LYP/6-31+G(d,p) level in vacuo] and DFT-NMR calculations [mPW1PW91/6-311+G(2d,p)] were performed with Gaussian 09 package.¹⁰⁸ Computed NMR shift data were corrected with I = 185.6277 and S = -1.0175 for MeOH.^{109,110} Boltzmann distributions were estimated from the B3LYP energies. Model compounds for DFT-NMR calculations were shown in Figure S5B.

1.9 Principal Component Analysis (PCA)

The structural characteristic data of SCCCs were imported into the SIMCA-P software package (v14.1, Umetric, Umea°, Sweden) for PCA analysis.^{111,112} The normalized data were used to categorize benthol A (**1**) and previously reported 187 known SCCCs from marine dinoflagellates of eight genera, viz., *Amphidinium, Gambierdiscus, Karenia, Karlodinium, Ostreopsis, Prorocentrum, Protoceratium*, and *Symbiodinium*. The summary of fit report was shown in Figure S6, whereas partial enlarged view of PCA score plot of **1** and previously reported 187 SCCCs was shown in Figure S7.

1.10 Bioassay

1.10.1 In vitro Antiplasmodial Assay

P. falciparum 3D7 (drug-sensitive) was cultured according to the method described by Trager and Jensen.¹¹³ Parasites were maintained in fresh human erythrocytes at 2% hematocrit in complete culture medium (Thermo Fisher Scientific Cat# 22400089) containing 0.5% AlbuMAX II (Thermo Fisher Scientific Cat# 11021045). *In vitro* drug screening was performed using the SYBR green I fluorescence assay.¹¹⁴ Synchronous ring-stage parasites (> 80%) were plated in triplicate at 2% hematocrit and 0.5% parasitemia in 100.0 μ L and treated with serial dilutions of compounds at 37°C for 72 h. *In vitro* antiplasmodial activity was expressed as the compound concentration that inhibited parasite growth by 50%. The experiments were repeated three times.

1.10.2 In vitro HIV-1-Inhibitory Assay

293 T cells (2 × 10⁵) were co-transfected with 0.6 μ g of pNL-Luv-E⁻-Vpu⁻ and 0.4 μ g of pHIT/G. After 48h, the VSV-G pseudotyped viral supernatant (HIV-1) was harvested by filtration through a 0.45 μ m filter and the concentration of viral capsid protein was determined by p24 antigen capture ELISA (Biomerieux). SupT1 cells were exposed to VSV-G pseudotyped HIV-1 (MOI = 1) at 37 °C for 48 h in the absence or presence of the test compounds. Efavirenz was used as the positive control. The inhibition rates were determined by using a firefly Luciferase Assay System (Promega).¹¹⁵

References

- 1. Inuzuka, T., Yamamoto, Y., Yamada, K., and Uemura, D. (2012). Amdigenol A, a long carbonbackbone polyol compound, produced by the marine dinoflagellate *Amphidinium* sp.. Tetrahedron Lett. *53*, 239–242.
- 2. Matsuda, M., Kubota, Y., Funabiki, K., Uemura, D., and Inuzuka, T. (2020). Amdigenol D, a long carbon-chain polyol, isolated from the marine dinoflagellate *Amphidinium* sp.. Tetrahedron Lett. *61*, 152376.
- 3. Inuzuka, T., Yamada, K., and Uemura, D. (2014). Amdigenols E and G, long carbon-chain polyol compounds, isolated from the marine dinoflagellate *Amphidinium* sp.. Tetrahedron Lett. *55*, 6319–6323.
- 4. Kubota, T., Sakuma, Y., Shimbo, K., Tsuda, M., Nakano, M., Uozumi, Y., and Kobayashi, J. (2006). Amphezonol A, a novel polyhydroxyl metabolite from marine dinoflagellate *Amphidinium* sp... Tetrahedron Lett. *47*, 4369–4371.
- 5. Satake, M., Murata, M., Yasumoto, T., Fujita, T., and Naoki, H. (1991). Amphidinol, a Polyhydroxypolyene Antifungal Agent with an Unprecedented Structure, from a Marine Dinoflagellate, *Amphidinium klebsii*. J. Am. Chem. Soc. *113*, 9859–9861.
- 6. Paul, G.K., Matsumori, N., Murata, M., and Tachibana, K. (1995). Isolation and Chemical Structure of Amphidinol 2, a Potent Hemolytic Compound from Marine Dinoflagellate *Amphidinium klebsii*. Tetrahedron Lett. *36*, 6279–6282.
- 7. Murata, M., Matsuoka, S., Matsumori, N., Paul, G.K. and Tachibana, K. (1999). Absolute Configuration of Amphidinol 3, the First Complete Structure Determination from Amphidinol Homologues: Application of a New Configuration Analysis Based on Carbon-Hydrogen Spin-Coupling Constants. J. Am. Chem. Soc. *121*, 870–871.
- 8. Houdai, T., Matsuoka, S., Murata, M., Satake, M., Ota, S., Oshima, Y., and Rhodes, L.L. (2001). Acetate labeling patterns of dinoflagellate polyketides, amphidinols 2, 3 and 4. Tetrahedron *57*, 5551–5555.
- 9. Paul, G.K., Matsumori, N., Konoki, K., Murata, M., and Tachibana, K. (1997). Chemical structures of amphidinols 5 and 6 isolated from marine dinoflagellate *Amphidinium klebsii* and their cholesterol-dependent membrane disruption. J. Mar. Biotechnol. *5*, 124–128.
- Morsy, N., Matsuoka, S., Houdai, T., Matsumori, N., Adachi, S., Murata, M., Iwashita, T., and Fujita, T. (2005). Isolation and structure elucidation of a new amphidinol with a truncated polyhydroxyl chain from *Amphidinium klebsii*. Tetrahedron *61*, 8606–8610.
- Morsy, N., Houdai, T., Matsuoka, S., Matsumori, N., Adachi, S., Oishi, T., Murata, M., Iwashita, T., and Fujita, T. (2006). Structures of new amphidinols with truncated polyhydroxyl chain and their membrane-permeabilizing activities. Bioorg. Med. Chem. 14, 6548–6554.
- 12. Echigoya, R., Rhodes, L., Oshima, Y., and Satake, M. (2005). The structures of five new antifungal and hemolytic amphidinol analogs from *Amphidinium carterae* collected in New Zealand. Harmful Algae *4*, 383–389.
- 13. Meng, Y., Van Wagoner, R.M., Misner, I., Tomas, C., and Wright, J.L.C. (2010). Structure and Biosynthesis of Amphidinol 17, a Hemolytic Compound from *Amphidinium carterae*. J. Nat. Prod. 73, 409–415.
- 14. Nuzzo, G., Cutignano, A., Sardo, A., and Fontana, A. (2014). Antifungal Amphidinol 18 and Its 7-Sulfate Derivative from the Marine Dinoflagellate *Amphidinium carterae*. J. Nat. Prod. 77, 1524– 1527.
- 15. Satake, M., Cornelio, K., Hanashima, S., Malabed, R., Murata, M., Matsumori, N., Zhang, H., Hayashi, F., Mori, S., Kim, J.S., Kim, C.-H., and Lee, J.-S. (2017). Structures of the Largest Amphidinol Homologues from the Dinoflagellate *Amphidinium carterae* and Structure-Activity Relationships. J. Nat. Prod. *80*, 2883–2888.
- Martínez, K.A., Lauritano, C., Druka, D., Romano, G., Grohmann, T., Jaspars, M., Martín, J., Díaz, C., Cautain, B., de la Cruz, M., Lanora, A., and Reyes, F. (2019). Amphidinol 22, a New Cytotoxic and Antifungal Amphidinium from the Dinoflagellate *Amphidinium carterae*. Mar. Drugs *17*, 385.
- 17. Cutignano, A., Nuzzo, G., Sardo, A., and Fontana, A. (2017). The Missing Piece in Biosynthesis of Amphidinols: First Evidence of Glycolate as a Starter Unit in New Polyketides from *Amphidinium carterae*. Mar. Drugs *15*, 157.
- 18. Huang, S.-J., Kuo, C.-M., Lin, Y.-C., Chen, Y.-M., and Lu, C.-K. (2009). Carteraol E, a potent polyhydroxyl ichthyotoxin from the dinoflagellate *Amphidinium carterae*. Tetrahedron Lett. *50*, 2512–2515.
- 19. Kobayashi, J., Kubota, T., Takahashi, M., Ishibashi, M., Tsuda, M., and Naoki, H. (1999). Colopsinol A, a Novel Polyhydroxyl Metabolite from Marine Dinoflagellate *Amphidinium* sp. J. Org. Chem. *64*,

1478–1482.

- 20. Kubota, T., Tsuda, M., Takahashi, M., Ishibashi, M., Naoki, H., and Kobayashi, J. (1999). Colopsinols B and C, new long chain polyhydroxy compounds from cultured marine dinoflagellate *Amphidinium* sp.. J. Chem. Soc. Perkin Trans. 1, 3483–3487.
- 21. Kubota, T., Tsuda, M., Takahashi, M., Ishibashi, M., Oka, S., and Kobayashi, J. (2000). Colopsinols D and E, New polyhydroxyl Linear Carbon Chain Compounds from Marine Dinoflagellate *Amphidinium* sp.. Chem. Pharm. Bull. *48*, 1447–1451.
- 22. Li, W., Yan, R., Yu, Y., Shi, Z., Mándi, A., Shen, L., Kurtán, T., and Wu, J. (2020). Determination of the absolute configuration of super-carbon-chain compounds by a combined chemical, spectroscopic, and computational approach: Gibbosols A and B. Angew. Chem. Int. Ed. *59*, 13028–13036.
- 23. Li, W., Luo, Z., Zhu, Y., Yu, Y., Wu, J., Shen, L. (2020). A Polyol-Polyol Super-Carbon-Chain Compound Containing Thirty-Six Carbon Stereocenters from the Dinoflagellate *Amphidinium gibbosum*: Absolute Configuration and Multi-Segment Modification. Mar. Drugs *18*, 590.
- 24. Washida, K., Koyama, T., Yamada, K., Kita, M., and Uemura, D. (2006). Karatungiols A and B, two novel antimicrobial polyol compounds, from the symbiotic marine dinoflagellate *Amphidinium* sp... Tetrahedron Lett. *47*, 2521–2525.
- 25. Huang, X.-C., Zhao, D., Guo, Y.-W., Wu, H.-M., Lin, L.-P., Wang, Z.-H, Ding, J., and Lin, Y.-S. (2004). Lingshuiol, a novel polyhydroxyl compound with strongly cytotoxic activity from the marine dinoflagellate *Amphidinium* sp.. Bioorg. Chem. Lett. *14*, 3117–3120.
- 26. Huang, X.-C., Zhao, D., Guo, Y.-W., Wu, H.-M., Trivellone, E., and Cimino, G. (2004). Lingshuiols A and B, two new polyhydroxy compounds from the Chinese marine dinoflagellate *Amphidinium* sp.. Tetrahedron Lett. *45*, 5501–5504.
- 27. Doi, Y., Ishibashi, M., Nakamichi, H., Kosaka, T., Ishikawa, T., and Kobayashi, J. (1997). Luteophanol A, a New Polyhydroxyl Compound from Symbiotic Marine Dinoflagellate *Amphidinium* sp.. J. Org. Chem. 62, 3820–3823.
- 28. Kubota, T., Tsuda, M., Doi, Y., Takahashi, A., Nakamichi, H., Ishibashi, M., Fukushi, E., Kawabata, J., and Kobayashi, J. (1998). Luteophanols B and C, New Polyhydroxyl Compounds from Marine Dinoflageilate *Amphidinium* sp.. Terahedron *54*, 14455–14464.
- 29. Kubota, T., Takahashi, A., Tsuda, M., and Kobayashi, J. (2005). Luteophanol D, New Polyhydroxyl Metabolite from Marine Dinoflagellate *Amphidinium* sp.. Mar. Drugs *3*, 113–118.
- Hanif, N., Ohno, O., Kitamura, M., Yamada, K., and Uemura, D. (2010). Symbiopolyol, a VCAM-1 Inhibitor from a Symbiotic Dinoflagellate of the Jellyfish *Mastigias papua*. J. Nat. Prod. *73*, 1318– 1322.
- 31. Murata, M., Legrand, A.M., Ishibashi, Y., Fukui, M., and Yasumoto, T. (1990). Structures and configurations of ciguatoxin from the moray eel *Gymnothorax javanicus* and its likely precursor from the dinoflagellate *Gambierdiscus toxicus*. J. Am. Chem. Soc. *112*, 4380–4386.
- 32. Satake, M., Morohashi, A., Oguri, H., Oishi, T., Hirama, M., Harada, N., and Yasumoto, T. (1997). The absolute configuration of ciguatoxin. J. Am. Chem. Soc. *119*, 11325–11326.
- 33. Yasumoto, T., Igarashi, T., Legrand, A.-M., Cruchet, P., Chinain, M., Fujita, T., and Naoki, H. (2000). Structural elucidation of ciguatoxin congeners by fast-atom bombardment tandem mass spectroscopy. J. Am. Chem. Soc. *122*, 4988–4989.
- 34. Soliño, L., and Costa, P.R. (2018). Differential toxin profiles of ciguatoxins in marine organisms : chemistry, fate and global distribution. Toxicon *150*, 124–143.
- 35. Lewis, R.J., Sellin, M., Poli, M.A., Norton, R.S., MacLeod, J.K., and Sheil, M.M. (1991). Purification and characterization of ciguatoxins from moray eel (*Lycodontis javanicus*, Muraenidae). Toxicon *29*, 1115–1127.
- 36. Satake, M., Murata, M., and Yasumoto, T. (1993). The structure of CTX3C, a ciguatoxin congener isolated from cultured *Gambierdiscus toxicus*. Tetrahedron Lett. *34*, 1975–1978.
- 37. Satake, M., Fukui, M., Legrand, A.-M., Cruchet, P., and Yasumoto, T. (1998). Isolation and structures of new ciguatoxin analogs, 2, 3-dihydroxy CTX3C and 51-hydroxy CTX3C, accumulated in tropical reef fish. Tetrahedron Lett. *39*, 1197–1198.
- 38. Lewis, R.J., Vernoux, J.-P., and Brereton, I.M. (1998). Structure of Caribbean ciguatoxin isolated from *Caranx latus*. J. Am. Chem. Soc. *120*, 5914–5920.
- 39. Kryuchkov, F., Robertson, A., Miles, C.O., Mudge, E.M., and Uhlig, S. (2020). LC-HRMS and Chemical Derivatization Strategies for the Structure Elucidation of Caribbean Ciguatoxins: Identification of C-CTX-3 and -4. Mar. Drugs *18*, 182.
- 40. Murata, M., Naoki, H., Iwashita, T., Matsunaga, S., Sasaki, M., Yokoyama, A., and Yasumoto, T. (1993). Structure of maitotoxin. J. Am. Chem. Soc. *115*, 2060–2062.
- 41. Boente-Juncal, A., Álvarez, M., Antelo, Á., Rodríguez, I., Calabro, K., Vale, C., Thomas, O.P., and

Botana, L.M. (2019). Structure Elucidation and Biological Evaluation of Maitotoxin-3, a Homologue of Gambierone, from *Gambierdiscus belizeanus*. Toxins *11*, 79.

- 42. Morohashi, A., Satake, M., Nagai, H., Oshima, Y., and Yasumoto, T. (2000). The Absolute Configuration of Gambieric Acids A-D, Potent Antifungal Polyethers, Isolated from the Marine Dinoflagellate *Gambierdiscus toxicus*. Tetrahedron *56*, 8995–9001.
- 43. Murata, M., Torigoe, K., Statake, M., and Yasumoto, T. (1992). Gambieric Acids, New Potent Antifungal Substances with Unprecedented Polyether Structures from a Marine Dinoflagellate *Gambierdiscus toxicus.* J. Org. Chem. *57*, 5448–5453.
- Watanabe, R., Uchida, H., Suzuki, T., Matsushima, R., Nagae, M., Toyohara, Y., Satake, M., Oshima, Y., Inoue, A., and Yasumoto, T. (2013). Gambieroxide, a novel epoxy polyether compound from the dinoflagellate *Gambierdiscus toxicus* GTP2 strain. Tetrahedron *69*, 10299–10303.
- 45. Rodríguez, I., Genta-Jouve, G., Alfonso, C., Calabro, K., Alonso, E., Sánchez, J.A., Alfonso, A., Thomas, O.P., and Botana, L.M. (2015). Gambierone, a ladder-shaped polyether from the dinoflagellate *Gambierdiscus belizeanus*. Org. Lett. *17*, 2392–2395.
- 46. Satake, M., Irie, R., Holland, P.T., Harwood, D.T., Shi, F., Itoh, Y., Hayashi, F., and Zhang, H. (2021). Brevisulcenals-A1 and A2, Sulfate Esters of Brevisulcenals, Isolated from the Red Tide Dinoflagellate *Karenia brevisulcata*. Toxins *13*, 82.
- 47. Hamamoto, Y., Tachibana, K., Holland, P.T., Shi, F., Beuzenberg, V., Itoh, Y., and Statake, M. (2012). Brevisulcenal-F: A Polycyclic Ether Toxin Associated with Massive Fish-kills in New Zealand. J. Am. Chem. Soc. *134*, 4963–4968.
- Satake, M., Irie, R., Hamamoto, Y., Tachibana, K., Holland, P.T., Harwood, D. T., Shi, F., Beuzenberg, V., Itoh, Y., Hayashi, F., and Zhang, H. (2018). Brevisulcenal-G, -H, and -I, Polycyclic Ether Marine Toxins From the Dinoflagellate *Karenia Brevisulcata*. Heterocycles *96*, 2096–2105.
- 49. Abraham, A., El Said, K.R., Wang, Y., Jester, E.L.E., Plakas, S.M., Flewelling, L.J., Henry, M.S., and Pierce, R.H. (2015). Biomarkers of brevetoxin exposure and composite toxin levels in hardclam (*Mercenaria* sp.) exposed to *Karenia brevis* blooms. Toxicon *96*, 82–88.
- 50. Ishida, H., Nozawa, A., Totoribe, K., Muramaatsu, N., Nukaya, H., Tsuji, K., Yamaguchi, K., Yasumoto, T., Kaspar, H., Berkett, N., and Kosuge, T. (1995). Brevetoxin B1, A New Polyether Marine Toxin From The New Zealand Shellfish, *Austrovenus stutchburyi*. Terahedron Lett. *36*, 725–728.
- 51. Murata, K., Satake, M., Naoki, H., Kaspar, H. F., and Yasumoto, T. (1998). Isolation and Structure of a New Brevetoxin Analog, Brevetoxin B2, from Greenshell Mussels from New Zealand. Tetrahedron *54*, 735–742.
- 52. Tsukano, C., and Sasaki, M. (2006). Structure–activity relationship studies of gymnocin-A. Tetrahedron Lett. 47, 6803–6807.
- 53. Satake, M., Tanaka, Y., Ishikura, Y., Oshima, Y., Naoki, H., and Yasumoto, T. (2005). Gymnocin-B with the largest contiguous polyether rings from the red tide dinoflagellate, *Karenia* (formerly *Gymnodinium*) *mikimotoi.* Tetrahedron Lett. *46*, 3537–3540.
- 54. Satake, M., Shoji, M., Oshima, Y., Naoki, H., Fujita, T., and Yasumoto, T. (2002). Gymnocin-A, a cytotoxic polyether from the notorious red tide dinoflagellate, *Gymnodinium mikimotoi*. Tetrahedron Lett. *43*, 5829–5832.
- Rasmussen, S. A., Binzer, S. B., Hoeck, C., Meier, S., de Medeiros, L. S., Andersen, N. G., Place, A., Nielsen, K. F., Hansen, P. J., and Larsen, T. O. (2017). Karmitoxin: An Amine-Containing Polyhydroxy-Polyene Toxin from the Marine Dinoflagellate *Karlodinium armiger*. J. Nat. Prod. *80*, 1287–1293.
- 56. Peng, J., R. Place, A., Yoshida, W., Anklin, C., and Hamann, M. T.(2010). Structure and Absolute Configuration of Karlotoxin-2, an Ichthyotoxin from the Marine Dinoflagellate *Karlodinium veneficum*. J. Am. Chem. Soc. *132*, 3277–3279.
- 57. Cai, P., He, S., Zhou, C., Place, A. R., Haq, S., Ding, L., Chen, H., Jiang, Y., Guo, C., Xu, Y., Zhang, J., and Yan, X. (2016). Two new karlotoxins found in *Karlodinium veneficum* (strain GM2) from the East China Sea. Harmful Algae. *58*, 66–73.
- 58. Wang, R., Wu, J., Zhou, S., Cao, R., and Chan, L. (2020). A preliminary study on the allelopathy and toxicity of the dinoflagellate *Karlodinium veneficum*. Mar. Pollut. Bull. *158*, 111400.
- 59. Place, A. R., Bowers, H. A., Bachvaroff, T. R., Adolf, J. E., Deeds, J. R., and Sheng, J. (2012). *Karlodinium veneficum*-The little dinoflagellate with a big bite. Harmful Algae. *14*, 179–195.
- Van Wagoner, R. M., Deeds, J. R., Satake, M., Ribeiro, A. A., Place, A. R., and Wright, J. L. C. (2008). Isolation and characterization of karlotoxin 1, a new amphipathic toxin from *Karlodinium veneficum*. Tetrahedron Lett. *49*, 6457–6461.
- 61. Roy, J. S., Poulson-Ellestad, K. L., Sieg, R. D., Poulin, R. X., and Kubanek, J. (2013). Chemical ecology of the marine plankton. Nat. Prod. Rep. *30*, 1364–1379.

- 62. Waters, A. L., Oh, J., Place, A. R., and Hamann, M. T. (2015). Stereochemical Studies of the Karlotoxin Class Using NMR Spectros-copy and DP4 Chemical-Shift Analysis: Insights into their Mechanism of Action. Angew. Chem. Int. Ed. *54*, 15705–15710.
- Van Wagoner, R. M., Deeds, J. R., Tatters, A. O., Place, A. R., Tomas, C. R., and Wright, J. L. C. (2010). Structure and Relative Potency of Several Karlotoxins from *Karlodinium veneficu*. J. Nat. Prod. 73, 1360–1365.
- 64. Ukena, T., Satake, M. Usami, M., Oshima, Y., Naoki, H., Fujita, T., Kan, Y., and Yasumoto, T. (2001). Structure Elucidation of Ostreocin D, a Palytoxin Analog Isolated from the Dinoflagellate *Ostreopsis siamensis*. Bios. Biotechnol. Biochem. *65*, 2585–2588.
- 65. Usami, M., Satake, M., Ishida, S., Inoue, A., Kan, Y., and Yasumoto, T. (1995). Palytoxin Analogs from the Dinoflagellate *Ostreopsis siamensis*. J. Am. Chem. Soc. *117*, 5389–5290.
- 66. Ciminiello, P., Dell'Aversano, C., Iacovo, E. D., Fattorusso, E., Forino, M., Grauso, L., and Tartaglione, L. (2012) Isolation and Structure Elucidation of Ovatoxin-a, the Major Toxin Produced by *Ostreopsis ovata.* J. Am. Chem. Soc. *134*, 1869–1875.
- Ciminiello, P., Dell'Aversano, C., Fattorusso, E., Forino, M., Tartaglione, L., Grillo, C., and Melchiorre, N. (2008). Putative Palytotxin and Its New Analogue Ovatoxin-a, in *Ostreopsis ovata* Collected Along the Ligurina Coasts During the 2006 Toxic Outbreak. J. Am. Soc. Mass Spectrom. *19*, 111–120.
- 68. Hwang, B. S., Yoon, E. Y., Kim, H. S., Yih, W., Park, J. Y., Jeong, H. J., and Rho, J.-R. (2013). Ostreol A: A new cytotoxic compound isolated from the epiphytic dinoflagellate *Ostreopsis* cf. *ovata* from the coastal waters of Jeju Island, Korea. Bioorg. Med. Chem. Lett. 23, 3023–3027.
- 69. Hwang, B. S., Yoon, E. Y., Jeong, E. J., Park, J., Kim, E.-H., and Rho, J.-R. (2018). Determination of the Absolute Configuration of Polyhydroxy Compound Ostreol B Isolated from the Dinoflagellate *Ostreopsis* cf. *Ovata*. J. Org. Chem. 83, 194–202.
- 70. Uchida, H., Taira, Y., and Yasumoto, T. (2013). Structural elucidation of palytoxin analogs produced by the dinoflagellate *Ostreopsis ovata* IK2 strain by complementary use of positive and negative ion liquid chromatography/quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. *27*, 1999–2008.
- 71. Terajima, T., Uchida, H., Abe, N., and Yasumoto, T. (2018). Simple structural elucidation of ostreocin B, a new palytoxin congener isolated from the marine dinoflagellate *Ostreopsis siamensis* using complementary positive and negative ion liquid chromatography/quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. *32*, 1001–1007.
- Ciminiello, P., Dell'Aversano, C., Iacovo, E. D., Fattorusso, E., Forino, M., Tartaglione, L., Yasumoto, T., Battocchi, C., Giacobbe, M., Amorim, A., and Penna, A. (2013). Investigation of toxin profile of Mediterranean and Atlantic strains of *Ostreopsis* cf. *siamensis* (Dinophyceae) by liquid chromatography-high resolution mass spectrometry. Harmful Algae. 23, 19–27.
- 73. Terajima, T., Uchida, H., Abe, N., and Yasumoto, T. (2019). Structure elucidation of ostreocin-A and ostreocin-E1, novel palytoxin analogs produced by the dinoflagellate *Ostreopsis siamensis*, using LC/Q-TOF MS. Bios. Biotechnol. Biochem. *83*, 381–390.
- Taniyama, S., Arakawa, O., Terada, M., Nishio, S., Takatani, T., Mahmud, Y., and Noguchi, T. (2003). Ostreopsis sp., a possible origin of palytoxin (PTX) in parrotfish *Scarus ovifrons*. Toxicon. *42*, 29–33.
- 75. Hu,T., Curtis, J. M., Walter, J. A., and Wright, J. L. C. (1995). Identification of DTX-4, a new watersoluble phosphatase inhibitor from the toxic dinoflagellate *Prorocentrum lima*. J. Chem. Soc., Chem. Commun. 597–599.
- 76. Hu, T., Curtis, J.M., Walter, J.A., McLachlan, J.L., and Wright, J.L.C. (1995). Two new water-soluble DSP toxin derivatives from the dinoflagellate *Prorocentrum maculosum*: Possible storage and excretion products. Tetrahedron Lett. *36*, 9273–9276.
- 77. Cruz, P.G., Daranas, A.H., Fernández, J.J., Souto, M.L., and Norte, M. (2006). DTX5c, a new OA sulphate ester derivative from cultures of *Prorocentrum belizeanum*. Toxicon *47*, 920–924.
- Paz, B., Daranas, A.H., Cruz, P.G., Franco, J.M., Napolitano, J.G., Norte, M., and Fernández, J.J. (2007). Identification and characterization of DTX-5c and 7-hydroxymethyl-2-methylene-octa-4,7dienyl okadaate from *Prorocentrum belizeanum* cultures by LC-MS. Toxicon *50*, 470–478.
- 79. Napolitano, J.G., Norte, M., Padrón, J.M., Fernández, J.J., and Daranas, A.H. (2009). Belizeanolide, a cytotoxic macrolide from the dinoflagellate *Prorocentrum belizeanum*. Angew. Chem. Int. Ed. *48*, 796–799.
- 80. Sugahara, K., Kitamura, Y., Murata, M., Satake, M., and Tachibana, K. (2011). Prorocentrol, a Polyoxy Linear Carbon Chain Compound Isolated from the Toxic Dinoflagellate *Prorocentrum hoffmannianum*. J. Org. Chem. *76*, 3131–3138.
- 81. Domínguez, H.J., Cabrera-García, D., Cuadrado, C., Novelli, A., Fernández-Sánchez, M.T.,
Fernández, J.J., and Daranas, A.H. (2021). Prorocentroic Acid, a Neuroactive Super-Carbon-Chain Compound from the Dinoflagellate *Prorocentrum hoffmannianum*. Org. Lett. 23, 13–18.

- 82. Hu, T., deFreitas, A.S.W., Curtis, J.M., Oshima, Y., Walter, J.A., and Wright, J.L.C. (1996). Isolation and structure of prorocentrolide B, a fast-acting toxin from *Prorocentrum maculosum*. J. Nat. Prod. *59*, 1010–1014.
- 83. Satake, M., MacKenzie, L., and Yasumoto, T. (1997). Identification of *Protoceratium reticulatum* as the Biogenetic Origin of Yessotoxin. Nat. Toxins *5*, 164–167.
- Satake, M., Ichimura, T., Sekiguchi, K., Yoshimatsu, S., and Oshima, Y. (1999). Confirmation of Yessotoxin and 45,46,47-Trinoryessotoxin Production by *Protoceratium reticulatum* Collected in Japan. Nat. Toxins 7, 147–150.
- 85. Ciminiello, P., Dell'Aversano, C., Fattorusso, E., Forino, M., Magno, S., Guerrini, F., Pistocchi, R., and Boni, L. (2003). Complex yessotoxins profile in *Protoceratium reticulatum* from north-western Adriatic sea revealed by LC–MS analysis. Toxicon *42*, 7–14.
- Miles, C.O., Wilkins, A.L., Jensen, D.J., Cooney, J.M., Quilliam, M.A., Aasen, J., and MacKenzie, A.L. (2004). Isolation of 41a-Homoyessotoxin and the Identification of 9-Methyl-41a-homo yessotoxin and Nor-ring A-yessotoxin from *Protoceratium reticulatum*. Chem. Res. Toxicol. *17*, 1414–1422.
- Miles, C.O., Wilkins, A.L., Hawkes, A.D., Selwood, A., Jensen, D.J., Aasen, J., Munday, R., Samdal, I.A., Briggs, L.R., Beuzenberg, V., and MacKenzie, A. L. (2004). Isolation of a 1,3-enone isomer of heptanor-41-oxoyessotoxin from *Protoceratium reticulatum* cultures. Toxicon *44*, 325–336.
- 88. Aasen, J., Samdal, I.A., Miles, C.O., Dahl, E., Briggs, L.R., and Aune, T. (2005). Yessotoxins in Norwegian blue mussels (*Mytilus edulis*): uptake from *Protoceratium reticulatum*, metabolism and depuration. Toxicon *45*, 265–272.
- 89. Konishi, M., Yang, X., Li, B., Fairchild, C.R., and Shimizu, Y. (2004). Highly Cytotoxic Metabolites from the Culture Supernatant of the Temperate Dinoflagellate *Protoceratium reticulatum*. J. Nat. Prod. 67, 1309–1313.
- Miles, C.O., Wilkins, A.L., Hawkes, A.D., Selwood, A.I., Jensen, D.J., Munday, R., Cooney, J.M., and Beuzenberg, V. (2005). Polyhydroxylated amide analogs of yessotoxin from *Protoceratium reticulatum*. Toxicon 45, 61–71.
- Miles, C.O., Wilkins, A.L., Selwood, A.I., Hawkes, A.D., Jensen, D.J., Cooney, J.M., Beuzenberg, V., and MacKenzie, A.L. (2006). Isolation of Yessotoxin 32-O-[β-L-arabinofuranosyl- (5'→1")-β-L-arabinofuranoside] from *Protoceratium reticulatum*. Toxicon, *47*, 510–516.
- 92. Paz, B., Riobó, P., Souto, M.L., Gil, L.V., Norte, M., Fernández, J.J., and Franco, J.M. (2006). Detection and identification of glycoyessotoxin A in a culture of the dinoflagellate *Protoceratium reticulatum*. Toxicon *48*, 611–619.
- 93. Suzuki, T., Horie, Y., Koike, K., Satake, M., Oshima, Y., Iwataki, M., and Yoshimatsu, S. (2007). Yessotoxin analogues in several strains of *Protoceratium reticulatum* in Japan determined by liquid chromatography–hybrid triple quadrupole/linear ion trap mass spectrometry. J. Chromatogr. A. *1142*, 172–177.
- Loader, J.I., Hawkes, A.D., Beuzenberg, V., Jensen, D.J., Cooney, J.M., Wilkins, A.L., Fitzgerald, J.M., Briggs, L.R., and Miles, C.O. (2007). Convenient large-scale purification of Yessotoxin from *Protoceratium reticulatum* culture and isolation of a novel furanoyessotoxin. J. Agric. Food Chem. 55, 11093–11100.
- 95. Paz, B., Daranas, A.H., Norte, M., Riobó, P., Franco, J.M., and Fernández, J.J. (2008). Yessotoxins, a Group of Marine Polyether Toxins: an Overview. Mar. Drugs *6*, 73–102.
- Finch, S.C., Wilkins, A.L., Hawkes, A.D., Jensen, D.J., MacKenzie, L., Beuzenberg, V., Quilliam, M.A., Olseng, C.D., Samdal, I.A., Aasen, J.A.G., Selwood, A.I., Cooney, J.M., Sandvik, M., and Miles, C.O. (2005). Isolation and identification of (44-R, S)-44,55-dihydroxyyessotoxin from *Protoceratium reticulatum*, and its occurrence in extracts of shellfish from New Zealand, Norway and Canada. Toxicon 46, 160–170.
- 97. Miles, C.O., Wilkins, A.L., Allan, D.H., Selwood, A.I., Jensen, D.J., Cooney, J.M., Beuzenberg, V., and MacKenzie, A.L. (2006). Identification of 45-hydroxy-46,47-dinoryessotoxin, 44-oxo-45,46,47-trinoryessotoxin, and 9-methyl-42,43,44,45,46,47,55-heptanor-38-en-41-oxoyessotoxin, and partial characterization of some minor yessotoxins, from *Protoceratium reticulatum*. Toxcin *47*, 229–240.
- Ciminiello, P., Dell'Aversano, C., Fattorusso, E., Forino, M., Grauso, L., Magno, S.G., Poletti, R., and Tartaglione, L. (2007). Desulfoyessotoxins from Adriatic Mussles: A New Problem for Seafood Safety Control. Chem. Res. Toxicol. 20, 95–98.
- 99. Kita, M., Ohishi, N., Konishi, K., Kondo, M., Koyama, T., Kitamura, M., Yamada, K., Uemura, D. (2007). Symbiodinolide, a novel polyol macrolide that activates N-type Ca²⁺ channel, from the

symbiotic marine dinoflagellate Symbiodinium sp.. Tetrahedron 63, 6241–6251.

- 100. Onodera, K., Nakamura, H., Oba, Y., Ohizumi, Y., and Ojika, M. (2005). Zooxanthellamide Cs: Vasoconstrictive Polyhydroxylated Macrolides with the Largest Lactone Ring Size from a Marine Dinoflagellate of *Symbiodinium* sp. J. Am. Chem. Soc. *127*, 10406–10411.
- 101. Nakamura, H., Asari, T., Murai, A., Kan, Y., Kondo, T., Yoshida, K., and Ohizumi, Y. (1995). Zooxanthellatoxin-A, a Potent Vasoconstrictive 62-Membered Lactone from a Symbiotic Dinoflagellate. J. Am. Chem. Soc. *117*, 550–551.
- 102. Tsunematsu, Y., Ohno, O., Konishi, K., Yamada, K., Suganuma, M., and Uemura, D. (2009). Symbiospirols: Novel Long Carbon-Chain Compounds Isolated from Symbiotic Marine Dinoflagellate Symbiodinium sp.. Org. lett. *11*, 2153–2156.
- 103. Fukatsu, T., Onodera, K., Ohta, Y., Oba, Y., Nakamura, H., Shintani, T., Yoshioka, Y., Okamoto, T., Lohuis, M.T., Miller, D.J., Kawachi, M., and Ojika, M. (2007). Zooxanthellamide D, a Polyhydroxy Polyene Amide from a Marine Dinoflagellate, and Chemotaxonomic Perspective of the *Symbiodinium* Polyols. J. Nat. Prod. 70, 407–411.
- 104. Keller, M., and Guillard, R.R.L. (1985). Proceedings of the 3rd international conference on toxic dinoflagellates. In Toxic Dinoflagellates, D.M. Anderson, A.W. White, and D.G. Baden, eds. (Elsevier), pp. 113–116.
- 105. Horiguchi, T., Tamura, M., Katsumata, K., and Yamaguchi, A. (2012). *Testudodinium* gen. nov. (Dinophyceae), a new genus of sand-dwelling dinoflagellates formerly classified in the genus *Amphidinium*. J. Phycol. Res. *60*, 137–149.
- 106. Satake, M., Murata, M., Yasumoto, T., Fujita, T., and Naoki, H. (1991). Amphidinol, a polyhydroxypolyene antifungal agent with an unprecedented structure, from a marine dinoflagellate, *Ampbidnium klebsii*. J. Am. Chem. Soc. *113*, 9859–9861.
- 107. Schrödinger, L.L.C. (2015). MacroModel. http://www.schrodinger.com/MacroModel.
- 108. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. (2013). Gaussian 09, Revision E. 01; Gaussian: Wallingford, CT, USA.
- 109. CHESHIRE CCAT, the Chemical shift repository for computed NMR scaling factors, http://cheshirenmr.info/index.htm.
- 110. Pierens, G.K. (2014). ¹H and ¹³C NMR scaling factors for the calculation of chemical shifts in commonly used solvents using density functional theory. J. Comput. Chem. *35*, 1388–1394.
- 111. Ivosev, G., Burton, L., and Bonner, R. (2008). Dimensionality reduction and visualization in principal component analysis. Anal. Chem. *80*, 4933–4944.
- 112. Yu, M., Zhou, C., Tian, D., Jia, H.M., Li, Z.Q., Yang, C., Ba, Y.M., Wu, H.K., and Zou, Z.M. (2021). Molecular classification and clinical diagnosis of acute-on-chronic liver failure patients by serum metabolomics. J. Pharm. Biomed. Ana. 198, 114004.
- 113. Trager, W., and Jensen, J.B. (1976). Human malaria parasites in continuous culture. Science *193*, 673–675.
- 114. Smilkstein, M., Sriwilaijaroen, N., Kelly, J.X., Wilairat, P., and Riscoe, M. (2004). Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob. Agents Chemother. *48*, 1803–1806.
- 115. Zhang, Q., Liu, Z.L., Mi, Z.Y., Li, X.Y., Jia, P.P., Zhou, J.M., Yin, X., You, X.F., Yu, L.Y., Guo, F., et al. (2011). High-throughput assay to identify inhibitors of Vpu-mediated down-regulation of cell surface BST-2. Antiviral. Res. *91*, 321-329.

Supporting Information-II

Supplemental Figures S7–S222, including copies of HR-ESIMS for compound **1** and fragments **1A**, **1B**, **1d**, **1As/r**, **1Bs/r**, **1as/r**, **1bs/r** and **1cs/r**; LR-ESIMS for fragments **1a–1c**, **1e**, and **1es/r**; and 1D and 2D NMR spectra for compound **1** and fragments **1A**, **1B**, **1a–1e**, **1As/r**, **1Bs/r**, **1as/r**, **1bs/r**, **1cs/r**, and **1es/r**.

(**1A**, **1B**, **1As/r**, and **1Bs/r** are chemical entities of ¹³C natural abundance, whereas **1a–1e** and **1as/r–1es/r** are those of ¹³C-enriched abundance, except for MTPA ester groups)

Table of Contents:

1.	HR-ESIMS for compound 1······	··S7-S8
2.	¹ H (700 MHz) NMR spectrum of compound 1 in CD ₃ OD······	·S9-S15
3.	¹³ C (175 MHz) NMR spectrum of compound 1 in CD ₃ OD·······	S16-S22
4.	DEPT135 (175 MHz) spectrum of compound 1 in CD_3OD	S23-S27
5.	HSQC (700 MHz) spectrum of compound 1 in CD ₃ OD······	·····S28
6.	Selective-HSQC (700 MHz) spectrum of compound 1 in CD ₃ OD ······	S29-S33
7.	2D INADEQUATE (175 MHz) spectrum of compound 1 in CD ₃ OD······	S34-S36
8.	¹ H– ¹ H COSY (700 MHz) spectrum of compound 1 in CD_3OD	·····S37
9.	HMBC (700 MHz) spectrum of compound 1 in CD ₃ OD ······	·····S38
10.	H2BC (700 MHz) spectrum of compound 1 in CD ₃ OD ······	·····S39
11.	HSQC-TOCSY (700 MHz) spectrum of compound 1 in CD ₃ OD ······	·····S40
12.	NOESY (700 MHz) spectrum of compound 1 in CD_3OD	·····S41
13.	13 C (100 MHz) spectrum of compound 1 in CD ₃ OD	·····S42
14.	13 C (100 MHz) spectrum of compound 1 in CD ₃ OH	·····S43
15.	Comparison of ¹³ C (100 MHz) NMR spectrum of compound 1 in CD ₃ OH with that in CD ₃ OD \cdots	·S44-S46
16.	HR-ESIMS for fragment 1A ····································	S47-S48
17.	¹ H (700 MHz) NMR spectrum of the fragment 1A in CD ₃ OD·······	S49-S53
18.	¹³ C (175 MHz) NMR spectrum of the fragment 1A in CD ₃ OD·······	S54-S57
19.	DEPT135 (175 MHz) spectrum of the fragment 1A in CD_3OD	·····S58
20.	¹ H– ¹ H COSY (700 MHz) spectrum of the fragment 1A in CD ₃ OD	·····S59
21.	HSQC (700 MHz) spectrum of the fragment 1A in CD ₃ OD ······	·····S60
22.	HMBC (700 MHz) spectrum of the fragment 1A in CD ₃ OD	·····S61

23.	H2BC (700 MHz) spectrum of the fragment 1A in CD ₃ OD ····································	362
24.	NOESY (700 MHz) spectrum of the fragment 1A in CD ₃ OD ····································	363
25.	2D JRES (700 MHz) spectrum of the fragment 1A in CD ₃ OD·······S	364
26.	HETLOC (700 MHz) spectrum of the fragment 1A in CD ₃ OD······S	\$65
27.	HR-ESIMS for fragment 1B ···································	367
28.	¹ H (400 MHz) NMR spectrum of the fragment 1B in CD ₃ OD·······S68-S	371
29.	¹³ C (100 MHz) NMR spectrum of the fragment 1B in CD ₃ OD·······S72-S	375
30.	DEPT135 (100 MHz) spectrum of the fragment 1B in CD ₃ OD·······S	376
31.	¹ H– ¹ H COSY (400 MHz) spectrum of the fragment 1B in CD ₃ OD ····································	377
32.	HSQC (400 MHz) spectrum of the fragment 1B in CD ₃ OD ····································	378
33.	HMBC (400 MHz) spectrum of the fragment 1B in CD ₃ OD ····································	379
34.	NOESY (400 MHz) spectrum of the fragment 1B in CD ₃ OD ····································	380
35.	¹ H (700 MHz) NMR spectrum of the fragment 1B in CD_3OD S	381
36.	2D JRES (700 MHz) spectrum of the fragment 1B in CD ₃ OD	382
37.	HETLOC (700 MHz) spectrum of the fragment 1B in CD ₃ OD······S	\$83
38.	LR-ESIMS for fragment 1a ···································	384
39.	¹ H (600 MHz) NMR spectrum of the fragment 1a in CD ₃ OD···········S85-S	387
40.	¹³ C (150 MHz) NMR spectrum of the fragment 1a in CD ₃ OD··········S88-S	389
41.	DEPT135 (150 MHz) spectrum of the fragment 1a in CD ₃ OD·······S	390
42.	¹ H– ¹ H COSY (600 MHz) spectrum of the fragment 1a in CD ₃ OD ····································	391
43.	HSQC (600 MHz) spectrum of the fragment 1a in CD ₃ OD ·······S	392
44.	HMBC (600 MHz) spectrum of the fragment 1a in CD ₃ OD ·······S	393
45.	NOESY (600 MHz) spectrum of the fragment 1a in CD ₃ OD ························ S94-S	397
46.	LR-ESIMS for fragment 1b Sector Secto	398

47.	¹ H (600 MHz) NMR spectrum of the fragment 1b in CD ₃ OD······	···S99-S101
48.	¹³ C (150 MHz) NMR spectrum of the fragment 1b in CD ₃ OD······	·S102-S104
49.	DEPT135 (150 MHz) spectrum of the fragment 1b in CD ₃ OD·······	······S105
50.	¹ H– ¹ H COSY (600 MHz) spectrum of the fragment 1b in CD ₃ OD	······S106
51.	HSQC (600 MHz) spectrum of the fragment 1b in CD ₃ OD ······	······S107
52.	HMBC (600 MHz) spectrum of the fragment $1b$ in CD_3OD	······S108
53.	NOESY (600 MHz) spectrum of the fragment 1b in CD ₃ OD ······	··S109-S112
54.	LR-ESIMS for fragment 1c	······S113
55.	¹ H (600 MHz) NMR spectrum of the fragment 1c in CD ₃ OD······	··S114-S116
56.	¹³ C (150 MHz) NMR spectrum of the fragment 1c in CD_3OD	··S117-S118
57.	DEPT135 (150 MHz) spectrum of the fragment $1c$ in CD_3OD	······S119
58.	¹ H– ¹ H COSY (600 MHz) spectrum of the fragment 1c in CD_3OD	······S120
59.	HSQC (600 MHz) spectrum of the fragment $1c$ in CD_3OD	······S121
60.	HMBC (600 MHz) spectrum of the fragment $1c$ in CD_3OD	······S122
61.	NOESY (600 MHz) spectrum of the fragment 1c in CD ₃ OD ······	·S123-S126
62.	HR-ESIMS for fragment 1d	·····S127
63.	¹ H (600 MHz) NMR spectrum of the fragment 1d in CD_3OD	·S128-S129
64.	¹³ C (150 MHz) NMR spectrum of the fragment 1d in CD_3OD	······S130
65.	¹ H– ¹ H COSY (600 MHz) spectrum of the fragment 1d in CD_3OD	······S131
66.	HSQC (600 MHz) spectrum of the fragment $1d$ in CD_3OD	······S132
67.	LR-ESIMS for fragment 1e	······S133
68.	¹ H (600 MHz) NMR spectrum of the fragment 1e in CD ₃ OD······	·S134-S135
69.	¹³ C (150 MHz) NMR spectrum of the fragment 1e in CD_3OD	······S136
70.	DEPT135 (150 MHz) spectrum of the fragment 1e in CD ₃ OD······	······S137

71. ¹ H– ¹ H COSY (600 MHz) spectrum of the fragment 1e in CD_3OD	·····S138
72. HSQC (600 MHz) spectrum of the fragment 1e in CD ₃ OD	·····S139
73. HMBC (600 MHz) spectrum of the fragment 1e in CD ₃ OD	·····S140
74. NOESY (600 MHz) spectrum of the fragment 1e in CD ₃ OD	······S141-S144
75. HR-ESIMS for fragment 1As	······S145-S146
76. ¹ H (700 MHz) NMR spectrum of the fragment 1As in CDCl ₃	······S147-S149
77. ¹ H– ¹ H COSY (700 MHz) spectrum of the fragment 1As in CDCl ₃	······S150
78. HSQC (700 MHz) spectrum of the fragment 1As in $CDCl_3$	·····S151
79. HR-ESIMS for fragment 1Ar	······S152-S153
80. ¹ H (700 MHz) NMR spectrum of the fragment 1Ar in CDCl ₃	······S154-S156
81. ¹ H– ¹ H COSY (700 MHz) spectrum of the fragment 1Ar in CDCl ₃	······S157
82. HSQC (700 MHz) spectrum of the fragment 1Ar in CDCl ₃	······S158
83. HR-ESIMS for fragment 1Bs	······S159-S160
84. ¹ H (700 MHz) NMR spectrum of the fragment 1Bs in CDCl ₃ ······	······S161-S163
85. $^{1}H-^{1}H$ COSY (700 MHz) spectrum of the fragment 1Bs in CDCl ₃	······S164
86. HSQC (700 MHz) spectrum of the fragment 1Bs in CDCl ₃	·····S165
87. HR-ESIMS for fragment 1Br	······S166-S167
88. ¹ H (700 MHz) NMR spectrum of the fragment 1Br in CDCl ₃	······S168-S170
89. ¹ H– ¹ H COSY (700 MHz) spectrum of the fragment 1Br in $CDCI_3$	······S171
90. HSQC (700 MHz) spectrum of the fragment $1Br$ in $CDCl_3$	·····S172
91. HR-ESIMS for fragment 1as	······S173-S174
92. ¹ H (600 MHz) NMR spectrum of the fragment 1as in CD ₃ OD	······S175-S177
93. ¹ H– ¹ H COSY (600 MHz) spectrum of the fragment 1as in CD_3OD	·····S178
94. HR-ESIMS for fragment 1ar	·····S179-S180

95. ¹ H (600 MHz) NMR spectrum of the fragment 1ar in CD ₃ OD	·····S181-S183
96. ¹ H– ¹ H COSY 600 MHz) spectrum of the fragment 1ar in CD ₃ OD ······	·····S184
97. HR-ESIMS for fragment 1bs	····S185-S186
98. ¹ H (700 MHz) NMR spectrum of the fragment 1bs in CDCl ₃	·····S187-S189
99. ¹ H– ¹ H COSY (700 MHz) spectrum of the fragment 1bs in CDCl ₃	······S190
100.TOCSY (700 MHz) spectrum of the fragment 1bs in CDCl ₃	······S191
101.HSQC (700 MHz) spectrum of the fragment 1bs in CDCl ₃	······S192
102.HR-ESIMS for fragment 1br	·····S193-S194
103. ¹ H (700 MHz) NMR spectrum of the fragment 1br in CDCl ₃	·····S195-S197
104. ¹ H– ¹ H COSY (700 MHz) spectrum of the fragment 1br in CDCl ₃	······S198
105.TOCSY (700 MHz) spectrum of the fragment 1br in $CDCl_3$	······S199
106.HSQC (700 MHz) spectrum of the fragment 1br in CDCl ₃	······S200
107.HR-ESIMS for fragment 1cs	····S201-S202
108. ¹ H (400 MHz) NMR spectrum of the fragment 1cs in CD_3OD	·····S203-S205
109. ¹ H– ¹ H COSY (400 MHz) spectrum of the fragment 1cs in CD_3OD	······S206
110.HR-ESIMS for fragment 1cr	····S207-S208
111. ¹ H (400 MHz) NMR spectrum of the fragment 1cr in CD ₃ OD	·····S209-S211
112. ¹ H– ¹ H COSY (400 MHz) spectrum of the fragment 1cr in CD_3OD	······S212
113.LR-ESIMS for fragment 1es	·····S213
114. ¹ H (600 MHz) NMR spectrum of the fragment 1es in CD ₃ OD	·····S214-S216
115. ¹ H– ¹ H COSY (600 MHz) spectrum of the fragment 1es in CD ₃ OD	······S217
116.LR-ESIMS for fragment 1er	······S218
117. ¹ H (600 MHz) NMR spectrum of the fragment 1er in CD ₃ OD	·····S219-S221
118. ¹ H– ¹ H COSY (600 MHz) spectrum of the fragment 1er in CD ₃ OD ······	······S222

S7

Mass Spectrum SmartFormula Report											
Analysis Info						Acquisition Date 9/25/2015 2:55:50 AM				M	
Analysis Name D:\Data		،Data\MS\data\201509\jiangzhongping_AX_pos_13_01_476.d									
Method	LC_Dire	ct Infusion_pos_100⋅	-1000mz.m			Opera	tor	SCS	0		
Sample Name	jiangzho	ngping_AX_pos				Instrur	nent / Ser	# maX	is	29	
Comment											
Acquisition Para	ameter										
Source Type	ESI	lon	Polarity	I	Positive		Set Nebuliz	zer	0.4	Bar	
Focus	Active	e Set	Capillary	4	4500 V		Set Dry He	ater	er 180 °C		
Scan Begin	100 m	1/Z Set	End Plate Off	ISET -	-500 V		Set Dry Ga	S	4.0	i/min	
	2000	m/z Set	Collision Cell		300.0 Vpp		Set Divert	vaive	vva	ste	
Intens		73 							+	MS, 0.4n	nin #(23)
1.0-	~ (№ ОН ОН		HO,	¬ НО	он					
HO 1	2 A B		21 0 24 26	√ ″ D √''29 O			FR 4		7.		
0.8- 	HO	F	10 22		30 E 35 37 <u>-</u>	он	Me [IV]	+ Na .8234	J		
0.6-	0.11				ОН Н		4				
-		72 0	,,,'' 66 64 6	82 60 /		И СН					
0.4-		71	он о	ŌН М́е		/49					
		~¶ OH	ОП	15	°¶ OH	OH					
0.2-					15	524.8670			1	. –	
0.0	+	151	3.5455	ן. ייזיייייייייייייייייייייייייייייייייי	520.3346			երիկեր	ւկտար	15 	38.3156
1500	1505	1510	1515		1520	1525	15	530	15	35	m/z
Meas. m	√z #	Formula	Ş	Score	m/z	err	err	mSig	rdb	e [–]	N-R
						[ppm	[mDa	ma		Conf	ule
]]				
1529.82	34 1	C 83 H 118 N 4 Na C	21	2.66	1529.8181	-3.5	-5.3	16.2	26.5	even	OK
	2	C 82 H 118 N 6 Na C	20	1.00	1529.8293	3.9	5.9	19.4	26.5	even	OK
	3		24	0.24	1529.0107	-4.4	-0.7	20.3	21.5	even	OK
	4		v ∠ *i) 22	59.00	1529.0200	3.0	4.0	29.4 11.2	21.0	even	OK
	5	C 76 H 122 N 4 Na C) 26 1	100.00	1529.8240	0.4	0.5	54.2	17.5	even	ok
	7	C 73 H 114 N 14 Na	0 20	62.96	1529 8226	-0.5	-0.8	64.2	23.5	even	ok
	8	C 75 H 126 Na O 30		62.70	1529.8226	-0.5	-0.8	64.5	12.5	even	ok
	9	C 72 H 118 N 10 Na	0 24	22.38	1529.8213	-1.4	-2.1	68.5	18.5	even	ok
	10	C 71 H 122 N 6 Na C	28	4.43	1529.8199	-2.3	-3.5	78.3	13.5	even	ok
	11	C 70 H 126 N 2 Na C	32	0.57	1529.8186	-3.1	-4.8	88.3	8.5	even	ok

Figure S8. HR-ESIMS for compound 1

Figure S9. ¹H (700 MHz) NMR spectrum of compound **1** in CD_3OD

Figure S10. ¹H (700 MHz) NMR spectrum of compound **1** in CD_3OD

Figure S11. ¹H (700 MHz) NMR spectrum of compound **1** in CD_3OD

Figure S12. ¹H (700 MHz) NMR spectrum of compound **1** in CD₃OD

Figure S13. ¹H (700 MHz) NMR spectrum of compound **1** in CD₃OD

Figure S14. ¹H (700 MHz) NMR spectrum of compound **1** in CD₃OD

Figure S15. ¹H (700 MHz) NMR spectrum of compound **1** in CD_3OD S15

Figure S16. ¹³C (175 MHz) NMR spectrum of compound **1** in CD_3OD

Figure S17. ¹³C (175 MHz) NMR spectrum of compound **1** in CD₃OD

Figure S18. ¹³C (175 MHz) NMR spectrum of compound **1** in CD_3OD

Figure S19. ¹³C (175 MHz) NMR spectrum of compound **1** in CD₃OD

Figure S20. 13 C (175 MHz) NMR spectrum of compound **1** in CD₃OD

Figure S21. ¹³C (175 MHz) NMR spectrum of compound **1** in CD_3OD

Figure S22. ¹³C (175 MHz) NMR spectrum of compound **1** in CD₃OD

Figure S23. DEPT135 (175 MHz) spectrum of compound **1** in CD_3OD

Figure S24. DEPT135 (175 MHz) spectrum of compound **1** in CD₃OD S24

Figure S25. DEPT135 (175 MHz) spectrum of compound 1 in CD₃OD

Figure S26. DEPT135 (175 MHz) spectrum of compound **1** in CD₃OD S26

Figure S27. DEPT135 (175 MHz) spectrum of compound 1 in CD₃OD

Figure S28. HSQC (700 MHz) spectrum of compound **1** in CD_3OD

Figure S29. Selective-HSQC (700 MHz) spectrum of compound **1** in CD_3OD

Figure S30. Selective-HSQC (700 MHz) spectrum of compound **1** in CD_3OD

Figure S31. Selective-HSQC (700 MHz) spectrum of compound 1 in CD₃OD

Figure S32. Selective-HSQC (700 MHz) spectrum of compound **1** in CD_3OD S32

Figure S33. Selective-HSQC (700 MHz) spectrum of compound **1** in CD_3OD

Figure S34. 2D INADEQUATE (175 MHz) spectrum of compound **1** in CD_3OD

Figure S35. 2D INADEQUATE (175 MHz) spectrum of compound **1** in CD₃OD S35

Figure S36. 2D INADEQUATE (175 MHz) spectrum of compound **1** in CD_3OD

Figure S37. ¹H–¹H COSY (700 MHz) spectrum of compound **1** in CD_3OD

Figure S38. HMBC (700 MHz) spectrum of compound 1 in CD₃OD

Figure S39. H2BC (700 MHz) spectrum of compound 1 in CD₃OD

Figure S40. HSQC-TOCSY (700 MHz) spectrum of compound 1 in CD₃OD

Figure S41. NOESY (700 MHz) spectrum of compound 1 in CD₃OD

Figure S42. 13 C (100 MHz) NMR spectrum of compound **1** in CD₃OD

Figure S43. 13 C (100 MHz) NMR spectrum of compound **1** in CD₃OH

Figure S44. Comparison of ¹³C (100 MHz) NMR spectrum of compound **1** in CD₃OH with that in CD₃OD S44

Figure S45. Comparison of ¹³C (100 MHz) NMR spectrum of compound **1** in CD₃OH with that in CD₃OD S45

Figure S46. Comparison of ¹³C (100 MHz) NMR spectrum of compound **1** in CD₃OH with that in CD₃OD S46

Figure S47. HR-ESIMS for the fragment 1A

Figure S48. HR-ESIMS for the fragment **1A**

Figure S49. ¹H (700 MHz) NMR spectrum of the fragment **1A** in CD₃OD

Figure S50. ¹H (700 MHz) NMR spectrum of the fragment **1A** in CD₃OD

Figure S51. ¹H (700 MHz) NMR spectrum of the fragment **1A** in CD₃OD

Figure S52. ¹H (700 MHz) NMR spectrum of the fragment **1A** in CD₃OD

Figure S53. ¹H (700 MHz) NMR spectrum of the fragment **1A** in CD_3OD

Figure S54. ¹³C (175 MHz) NMR spectrum of the fragment **1A** in CD_3OD

Figure S56. ¹³C (175 MHz) NMR spectrum of the fragment **1A** in CD₃OD

Figure S57. ¹³C (175 MHz) NMR spectrum of the fragment **1A** in CD_3OD

Figure S58. DEPT135 (175 MHz) spectrum of the fragment 1A in CD_3OD

Figure S59. $^{1}H-^{1}H$ COSY (700 MHz) spectrum of the fragment **1A** in CD₃OD

Figure S60. HSQC (700 MHz) spectrum of the fragment 1A in CD_3OD

Figure S61. HMBC (700 MHz) spectrum of the fragment 1A in CD_3OD

Figure S62. H2BC (700 MHz) spectrum of the fragment 1A in CD_3OD

Figure S63. NOESY (700 MHz) spectrum of the fragment **1A** in CD_3OD

Figure S64. 2D JRES (700 MHz) spectrum of the fragment 1A in CD_3OD

Figure S65. HETLOC (700 MHz) spectrum of the fragment **1A** in CD_3OD

Figure S66. HR-ESIMS for the fragment 1B

Figure S67. HR-ESIMS for the fragment 1B

Figure S68. ¹H (400 MHz) NMR spectrum of the fragment **1B** in CD_3OD

Figure S69. ¹H (400 MHz) NMR spectrum of the fragment **1B** in CD₃OD

Figure S70. ¹H (400 MHz) NMR spectrum of the fragment **1B** in CD₃OD

Figure S71. ¹H (400 MHz) NMR spectrum of the fragment **1B** in CD₃OD

Figure S72. ¹³C (100 MHz) NMR spectrum of the fragment **1B** in CD₃OD

Figure S73. ¹³C (100 MHz) NMR spectrum of the fragment **1B** in CD_3OD

Figure S74. ¹³C (100 MHz) NMR spectrum of the fragment **1B** in CD_3OD

Figure S75. ¹³C (100 MHz) NMR spectrum of the fragment **1B** in CD₃OD

Figure S76. DEPT135 (100 MHz) spectrum of the fragment $\mathbf{1B}$ in CD_3OD

Figure S78. HSQC (400 MHz) spectrum of the fragment $\mathbf{1B}$ in CD_3OD

Figure S79. HMBC (400 MHz) spectrum of the fragment **1B** in CD_3OD

Figure S81. ¹H (700 MHz) NMR spectrum of the fragment **1B** in CD_3OD

Figure S82. 2D JRES (700 MHz) spectrum of the fragment **1B** in CD_3OD

Figure S83. HETLOC (700 MHz) spectrum of the fragment $\mathbf{1B}$ in CD_3OD

Figure S84. LR-ESIMS for the fragment 1a

Figure S85. ¹H (600 MHz) NMR spectrum of the fragment **1a** in CD₃OD

S87

Figure S88. ¹³C (150 MHz) NMR spectrum of the fragment 1a in CD₃OD

Figure S89. ¹³C (150 MHz) NMR spectrum of the fragment 1a in CD₃OD

Figure S90. DEPT 135 (150 MHz) spectrum of the fragment **1a** in CD₃OD

Figure S91. $^{1}H-^{1}H$ COSY (600 MHz) spectrum of the fragment **1a** in CD₃OD

Figure S92. HSQC (600 MHz) spectrum of the fragment 1a in CD₃OD

Figure S93. HMBC (600 MHz) spectrum of the fragment 1a in CD₃OD

Figure S94. NOESY (600 MHz) spectrum of the fragment 1a in CD₃OD

Figure S95. NOESY (600 MHz) spectrum of the fragment 1a in CD₃OD

Figure S96. NOESY (600 MHz) spectrum of the fragment 1a in CD₃OD

Figure S97. NOESY (600 MHz) spectrum of the fragment **1a** in CD₃OD

Figure S98. LR-ESIMS for the fragment 1b

Figure S99. ¹H (600 MHz) NMR spectrum of the fragment **1b** in CD₃OD

Figure S100. ¹H (600 MHz) NMR spectrum of the fragment **1b** in CD₃OD

Figure S101. ¹H (600 MHz) NMR spectrum of the fragment **1b** in CD₃OD

Figure S102. ¹³C (150 MHz) NMR spectrum of the fragment **1b** in CD_3OD

Figure S103. ¹³C (150 MHz) NMR spectrum of the fragment **1b** in CD₃OD

Figure S104. ¹³C (150 MHz) NMR spectrum of the fragment **1b** in CD_3OD

Figure S105. DEPT 135 (150 MHz) spectrum of the fragment 1b in CD_3OD

Figure S106. $^{1}H-^{1}H$ COSY (600 MHz) spectrum of the fragment **1b** in CD₃OD

S106

Figure S107. HSQC (600 MHz) spectrum of the fragment $\mathbf{1b}$ in CD_3OD

Figure S108. HMBC (600 MHz) spectrum of the fragment $\mathbf{1b}$ in CD_3OD

Figure S109. NOESY (600 MHz) spectrum of the fragment $\mathbf{1b}$ in CD_3OD

Figure S110. NOESY (600 MHz) spectrum of the fragment $\mathbf{1b}$ in CD_3OD

S111

Figure S112. NOESY (600 MHz) spectrum of the fragment 1b in CD_3OD

Figure S113. LR-ESIMS for the fragment 1c

Figure S114. ¹H (600 MHz) NMR spectrum of the fragment 1c in CD₃OD

Figure S115. ¹H (600 MHz) NMR spectrum of the fragment **1c** in CD₃OD S115

Figure S116. ¹H (600 MHz) NMR spectrum of the fragment **1c** in CD₃OD

Figure S117. ¹³C (150 MHz) NMR spectrum of the fragment **1c** in CD_3OD

Figure S119. DEPT 135 (150 MHz) spectrum of the fragment **1c** in CD_3OD

Figure S120. ¹H–¹H COSY (600 MHz) spectrum of the fragment 1c in CD₃OD

S120

Figure S121. HSQC (600 MHz) spectrum of the fragment 1c in CD_3OD

Figure S122. HMBC (600 MHz) spectrum of the fragment 1c in CD_3OD

Figure S124. NOESY (600 MHz) spectrum of the fragment $\mathbf{1c}$ in CD_3OD

Figure S125. NOESY (600 MHz) spectrum of the fragment 1c in CD_3OD

Figure S126. NOESY (600 MHz) spectrum of the fragment 1c in CD_3OD

Mass Spectrum SmartFormula Report										
Analysis Info			03-O_pos_15_01_9969.d)ate 2/5/2021	2/5/2021 5:02:58 PM				
Analysis Name	e D:\Data\MS\data\202102\y	uyi_AX-1-O3-O_pos_15_01_9969								
Method Sample Name Comment	LC_Direct Infusion_pos_70 yuyi_AX-1-O3-O_pos	LC_Direct Infusion_pos_70-500mz.m yuyi_AX-1-O3-O_pos			SCSIO maXis	255552.00029				
Acquisition Pa	arameter									
Source Type Focus Scan Begin Scan End	ESI Active 70 m/z 1500 m/z	lon Polarity Set Capillary Set End Plate Offset Set Charging Voltage Set Corona	Positive 4500 V -500 V 0 V 0 nA		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Set APCI Heater	0.4 Bar 180 °C 4.0 l/min Waste 0 °C				
Intens.						+MS, 0.4min #23				
1250 1000		НС	61 62 63 64 OH	[M	+ Na]+					
750			OH							
500	103.5648 109.8	724								
250	104.7747 ^{106.7921} 104.7747 ^{106.7921} 105	117.52 114.7558 1 المار الماريل	72 121.2480 18.6567 ¹ 21.2480 <u>Jul 14 4 14 14 14 14 14 14 14 14 14 14 14 1</u>	127.2 البرية المرابط المرابط المرابط 125	2288 13 	i3.0803 ^{135.0227} 138.5221 138.5221 138.5221 135 m/z				
Mea 12	s. m/z # Ion Formula Score 9.0525 1 C4H10NaO3 100.00 12	m/z err [ppm] err [mDa] 29.0522 -2.2 -0.3	mSigma rdb e [—] Co 160.7 -0.5 even	nf N-Rule ok						

yuyi_AX-1-O3-O_pos_15_01_9969.d					
Bruker Compass DataAnalysis 4.1	printed:	2/5/2021 5:06:41 PM	by:	SCSIO	Page 1 of 1

Figure S127. HR-ESIMS for the fragment 1d

Figure S128. ¹H (600 MHz) NMR spectrum of the fragment 1d in CD₃OD

Figure S129. ¹H (600 MHz) NMR spectrum of the fragment **1d** in CD₃OD

Figure S130. ¹³C (150 MHz) NMR spectrum of the fragment **1d** in CD_3OD

Figure S132. HSQC (600 MHz) spectrum of the fragment 1d in CD₃OD

Figure S133. LR-ESIMS for the fragment 1e

Figure S134. ¹H (600 MHz) NMR spectrum of the fragment **1e** in CD₃OD

Figure S135. ¹H (600 MHz) NMR spectrum of the fragment **1e** in CD₃OD

Figure S136. ¹³C (150 MHz) NMR spectrum of the fragment 1e in CD₃OD

Figure S137. DEPT 135 (150 MHz) NMR spectrum of the fragment 1e in CD_3OD

Figure S138. $^{1}H-^{1}H$ COSY (600 MHz) spectrum of the fragment **1e** in CD₃OD

S138

Figure S139. HSQC (600 MHz) spectrum of the fragment 1e in CD₃OD

Figure S140. HMBC (600 MHz) spectrum of the fragment 1e in CD_3OD

Figure S141. NOESY (600 MHz) spectrum of the fragment 1e in CD₃OD

Figure S143. NOESY (600 MHz) spectrum of the fragment 1e in CD₃OD

Figure S144. NOESY (600 MHz) spectrum of the fragment 1e in CD₃OD

Figure S145. HR-ESIMS for the fragment 1As

Figure S146. HR-ESIMS for the fragment 1As

Figure S147. ¹H (700 MHz) NMR spectrum of the fragment **1As** in CDCl₃

Figure S148. ¹H (700 MHz) NMR spectrum of the fragment **1As** in CDCl₃

Figure S149. ¹H (700 MHz) NMR spectrum of the fragment **1As** in CDCl₃

Figure S150. $^{1}H-^{1}H$ COSY (700 MHz) spectrum of the fragment **1As** in CDCl₃

Figure S151. HSQC (700 MHz) spectrum of the fragment **1As** in $CDCI_3$

Figure S152. HR-ESIMS for the fragment 1Ar

Figure S153. HR-ESIMS for the fragment 1Ar

Figure S154. ¹H (700 MHz) NMR spectrum of the fragment **1Ar** in CDCl₃

Figure S155. ¹H (700 MHz) NMR spectrum of the fragment **1Ar** in CDCl₃

Figure S156. ¹H (700 MHz) NMR spectrum of the fragment **1Ar** in CDCl₃ S156

Figure S157. ¹H–¹H COSY (700 MHz) spectrum of the fragment **1Ar** in CDCl₃

Figure S158. HSQC (700 MHz) spectrum of the fragment **1Ar** in CDCl₃

Figure S159. HR-ESIMS for the fragment 1Bs

Figure S160. HR-ESIMS for the fragment 1Bs

Figure S162. ¹H (700 MHz) NMR spectrum of the fragment **1Bs** in CDCl₃

Figure S163. ¹H (700 MHz) NMR spectrum of the fragment **1Bs** in CDCl₃

Figure S164. ¹H–¹H COSY (700 MHz) spectrum of the fragment **1Bs** in CDCl₃

S164

Figure S165. HSQC (700 MHz) spectrum of the fragment **1Bs** in $CDCI_3$

Figure S166. HR-ESIMS for the fragment 1Br

S166

Figure S167. HR–ESIMS for the fragment 1Br

Figure S168. ¹H (700 MHz) NMR spectrum of the fragment **1Br** in $CDCl_3$

Figure S169. ¹H (700 MHz) NMR spectrum of the fragment **1Br** in CDCl₃

Figure S170. ¹H (700 MHz) NMR spectrum of the fragment **1Br** in CDCl₃

Figure S171. ¹H–¹H COSY (700 MHz) spectrum of the fragment **1Br** in CDCl₃

S171

Figure S172. HSQC (700 MHz) spectrum of the fragment $\mathbf{1Br}$ in $CDCl_3$

Figure S173. HR-ESIMS for the fragment 1as

Figure S174. HR-ESIMS for the fragment 1as

Figure S175. ¹H (600 MHz) NMR spectrum of the fragment **1as** in CD₃OD

Figure S176. ¹H (600 MHz) NMR spectrum of the fragment **1as** in CD₃OD

Figure S177. ¹H (600 MHz) NMR spectrum of the fragment **1as** in CD_3OD

Figure S178. ¹H–¹H COSY (600 MHz) spectrum of the fragment **1as** in CD_3OD

Figure S179. HR-ESIMS for the fragment 1ar

Figure S180. HR-ESIMS for the fragment 1ar

Figure S181. ¹H (600 MHz) NMR spectrum of the fragment **1ar** in CD₃OD

Figure S182. ¹H (600 MHz) NMR spectrum of the fragment **1ar** in CD₃OD

Figure S183. ¹H (600 MHz) NMR spectrum of the fragment **1ar** in CD₃OD

Figure S184. $^{1}H-^{1}H$ COSY (600 MHz) spectrum of the fragment **1ar** in CD₃OD

Analysis Info Analysis Name D:DataMSVdataV202102/yuj2,XX:1-03-7:R_pos_14_01_9967.d Method LC_Direct Infusion_pos_100-3000mz.m Sample Name yuj2,AX:1-03-7:R_pos Comment Acquisition Parameter Scale Bagin Store P State End Plate Offset State Store P State End Plate Offset Store P State End Plate Offset Store Store Store Store State Store P State			Mass Spectrum S	SmartFormula	Report			
Analysis Name Wethod LC_Direct Infusion_pos_100-3000mz.m Sample Name Comment Acquisition Parameter Source Type Scal Eegin Scal Ee	Analysis Info					Acquisition Date 2/5/2021 4:49:57 PM		
Requisition Parameter Source Type Sean End Sean End	Analysis Name Method Sample Name Comment	D:\Data\MS\data\202102\yuyi_AX-1-O3-7-R_pos_14_01_9967.d LC_Direct Infusion_pos_100-3000mz.m yuyi_AX-1-O3-7-R_pos			Operator Instrument	SCSIO maXis	255552.00029	
$ \frac{1}{15} + \frac{1}{15} + \frac{1}{15} + \frac{1}{2558,7307} + \frac{1}{2558,7307} + \frac{1}{2558,7307} + \frac{1}{2552,7263} + \frac{1}{2559,7310} + \frac{1}{2560,7352} + \frac{1}{2562,7392} + \frac{1}{2552,5262} + \frac{1}{2552,52$	cquisition Parameter ource Type ocus can Begin can End	ESI Active 100 m/z 3500 m/z	lon Polarity Set Capillary Set End Plate Offset Set Charging Voltage Set Corona	Positive 4500 V 0 V 0 V 0 N 0 nA		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Set APCI Heater	0.4 Bar 180 °C 4.0 l/min Waste 0 °C	
$\frac{15}{10} - \frac{1}{10} - \frac{1}{10}$	Intens. x10 ⁴						+MS, 0.2	2min #
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0 0.5 0.0 2550 0	[M + H] 2555.72 2554.6929	2558.7307 + 2557.7263 2559.7310 16 2557.5 2559.7310	2562.7392	A A A	267 5	2569.7054	,,/ r
$RO_{17} = OR_{17} = OR_{$	Meas. m/z 2555.7216 2577.7161	# Ion Formula Scor 1 C119H118F27O31 100.0 1 C119H117F27NaO31 0.0	e m/z err [ppm] err 0 2555.7220 -0.2 0 2577.7040 4.7	[mDa] mSigma rdb -0.5 467.1 47.5 12.1 379.1 47.5	e ⁻ Conf N-Ru even o even o	le ok ok	2010.0	
			RO 17 I7	H O H = 26 $21 C 24$ RO $R = 100$		RO 2 H H 34 35 E 38 	OH Me	
uyi_AX-1-O3-7-R_pos_14_01_9967.d	uyi_AX-1-O3-7-R_pos 14	_01_9967.d		R=				

Figure S185. HR-ESIMS for the fragment **1bs**

Figure S187. ¹H (700 MHz) NMR spectrum of the fragment **1bs** in CDCl₃

Figure S188. ¹H (700 MHz) NMR spectrum of the fragment **1bs** in CDCl₃

S188

Figure S189. ¹H (700 MHz) NMR spectrum of the fragment **1bs** in CDCl₃

Figure S190. ¹H–¹H COSY (700 MHz) spectrum of the fragment **1bs** in CDCl₃

Figure S191. TOCSY (700 MHz) spectrum of the fragment **1bs** in CDCl₃

Figure S192. HSQC (700 MHz) spectrum of the fragment **1bs** in $CDCI_3$

Figure S193. HR-ESIMS for the fragment 1br

Figure S195. ¹H (700 MHz) NMR spectrum of the fragment **1br** in CDCl₃

Figure S196. ¹H (700 MHz) NMR spectrum of the fragment **1br** in CDCl₃

Figure S197. ¹H (700 MHz) NMR spectrum of the fragment **1br** in CDCl₃

Figure S198. ¹H–¹H COSY (700 MHz) spectrum of the fragment **1br** in CDCl₃

S198

Figure S199. TOCSY (700 MHz) spectrum of the fragment 1br in $CDCl_3$

Figure S200. HSQC (700 MHz) spectrum of the fragment **1br** in CDCl₃

Figure S201. HR-ESIMS for the fragment 1cs

Figure S202. HR-ESIMS for the fragment 1cs

Figure S203. ¹H (400 MHz) NMR spectrum of the fragment **1cs** in CD₃OD

Figure S204. ¹H (400 MHz) NMR spectrum of the fragment **1cs** in CD₃OD

Figure S205. ¹H (400 MHz) NMR spectrum of the fragment **1cs** in CD₃OD

Figure S206. ¹H–¹H COSY (400 MHz) spectrum of the fragment **1cs** in CD_3OD

Figure S207. HR-ESIMS for the fragment 1cr

Figure S208. HR-ESIMS for the fragment 1cr

Figure S209. ¹H (400 MHz) NMR spectrum of the fragment 1cr in CD₃OD

Figure S210. ¹H (400 MHz) NMR spectrum of the fragment **1cr** in CD₃OD

Figure S211. ¹H (400 MHz) NMR spectrum of the fragment **1cr** in CD₃OD

S212

Figure S214. ¹H (600 MHz) NMR spectrum of the fragment **1es** in CD₃OD

Figure S215. ¹H (600 MHz) NMR spectrum of the fragment **1es** in CD₃OD

Figure S216. ¹H (600 MHz) NMR spectrum of the fragment **1es** in CD_3OD

Figure S217. ¹H–¹H COSY (600 MHz) spectrum of the fragment **1es** in CD_3OD

Figure S218. LR-ESIMS for the fragment 1er

Figure S219. ¹H (600 MHz) NMR spectrum of the fragment **1er** in CD₃OD

Figure S220. ¹H (600 MHz) NMR spectrum of the fragment **1er** in CD₃OD

Figure S221. ¹H (600 MHz) NMR spectrum of the fragment **1er** in CD_3OD

Figure S222. $^{1}H-^{1}H$ COSY (600 MHz) spectrum of the fragment **1er** in CD₃OD

S222