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MOTIVATION Taking advantage of the rapid progress in deep-learning technologies, residue-residue con-
tact-map prediction recently achieved impressive breakthroughs. However, how to efficiently convert the
binary contact maps into atomic-level structure models remains an important unsolved problem in ab initio

protein structure prediction. In this work, we integrated the deep-learning contact-map predictions with
cutting-edge threading assembly simulations and found that the inherent force field of the structural folding
simulations is essential to maximize the potential of contact-assisted protein structure prediction, espe-
cially for the targets and regions that lack spatial restraints and sufficient evolutionary data.
SUMMARY
Structure prediction for proteins lacking homologous templates in the Protein Data Bank (PDB) remains a sig-
nificant unsolved problem. We developed a protocol, C-I-TASSER, to integrate interresidue contact maps
from deep neural-network learning with the cutting-edge I-TASSER fragment assembly simulations.
Large-scale benchmark tests showed that C-I-TASSER can fold more than twice the number of non-homol-
ogous proteins than the I-TASSER, which does not use contacts. When applied to a folding experiment on
8,266 unsolved Pfam families, C-I-TASSER successfully folded 4,162 domain families, including 504 folds
that are not found in the PDB. Furthermore, it created correct folds for 85% of proteins in the SARS-CoV-2
genome, despite the quickmutation rate of the virus and sparse sequence profiles. The results demonstrated
the critical importance of coupling whole-genome and metagenome-based evolutionary information
with optimal structure assembly simulations for solving the problem of non-homologous protein structure
prediction.
INTRODUCTION

Template-basedmodeling (TBM), which is designed to construct

protein structure models by using known homologous structures

as templates, has dominated the field of protein structure predic-

tion for more than half a century (Browne et al., 1969; Sali and

Blundell, 1993). Despite its simplicity and efficiency, TBM does

not work for proteins that lack close homology to structures in

the Protein Data Bank (PDB) (Sali and Blundell, 1993; Zhang,

2008).

Because of their power in dictating protein folds, residue-res-

idue contacts were employed to address the problem of tem-

plate-free structure modeling several decades ago (Gobel

et al., 1994; Vendruscolo et al., 1997). Early efforts in using con-

tactmaps to fold proteins, however, enjoyedmodest to little suc-
Cell
This is an open access article under the CC BY-N
cess (Kinch et al., 2011;Wu et al., 2011),mainly due to the lowac-

curacy of contact-map predictions, which had typically less than

30% of the top L/5 long-range contacts, where L is the protein

length and long range represents a sequence separation with at

least 24 residues, correctly predicted (Monastyrskyy et al.,

2014). Most recently, with the development of advanced algo-

rithms in co-evolutionary decoupling (Jones et al., 2012; Marks

et al., 2011; Weigt et al., 2009) and deep machine learning (Li

et al., 2019a; Wang et al., 2017), contact prediction accuracy

has dramatically increased. For example, in the community-

wide 13th CASP experiment (CASP13), the state-of-the-art

methods based on deep learning from whole-genome sequence

databases achieved average precisions of up to 70% for the

top L/5 long-range predicted contacts (Shrestha et al., 2019).

Nevertheless, how to efficiently convert the contact maps into
Reports Methods 1, 100014, July 26, 2021 ª 2021 The Author(s). 1
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Figure 1. The C-I-TASSER pipeline for protein structure prediction

It starts with contact-map prediction from whole-genome and metagenome sequences based on deep residual convolutional neural networks (top) and LO-

METS-based threading template identification (bottom). Full-length structure models are then constructed by iterative REMC fragment assembly simulations

under the guidance of the deep-learning contact maps and template-based restraints. Abbreviations are as follows: MSA, multiple sequence alignment; REMC,

replica-exchange Monte Carlo.
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high-resolution atomic structure models remains a challenging

problem. State-of-the-art approaches (Greener et al., 2019;

Lamb et al., 2019; Marks et al., 2011; Xu, 2019) often utilize tradi-

tional distance geometry-based structure reconstruction tools

such as the Crystallography & NMR System (CNS) (Brunger

et al., 1998). BecauseCNSwas originally designed for construct-

ing structures from a high number of experimental contacts, it

might not be as effectivewhen a limited number of noisy contacts

from computational predictions are provided.

In this work, we present a different protocol, named C-I-

TASSER (Figure 1), which integrates contact-map prediction

with the cutting-edge threading and fragment assembly method

I-TASSER (Wu et al., 2007; Yang et al., 2015) to carefully examine

the capacity of using contact maps to fold distantly homologous

(or non-homologous) protein targets. Here, we use ‘‘non- or

distantly homologous targets’’ to refer to the proteins for which

no good templates could be detected by the start-of-the-art

threading programs (also called ‘‘hard’’ targets in this study).

Although good templates might still exist in the PDB for some

of the targets, this does not reduce the difficulty of structure

modeling for them, given that modeling starts only from the tem-
2 Cell Reports Methods 1, 100014, July 26, 2021
plates detected by threading. As an independent structure as-

sembly pipeline, I-TASSER was tested in former CASPs and

consistently ranked as one of the most accurate methods in

the past decade (Battey et al., 2007; Kryshtafovych et al.,

2018). Accordingly, the online I-TASSER server (https://

zhanglab.ccmb.med.umich.edu/I-TASSER/) has been widely

used in the community and has served more than 130,000 users

from 149 countries (see Figure S1). Thus, an essential advantage

of the C-I-TASSER pipeline over traditional protocols, such as

CNS, is that the inherent and highly optimized I-TASSER force

field is capable of handling structural regions that lack accurate

spatial restraints and therefore has the potential to maximize the

benefit of contact-map predictions with false-positive noise.

It is noted that because the work was completed, the field has

witnessed considerable progress in deep-learning-based inter-

residue distance and torsion angle predictions (Xu, 2019; Yang

et al., 2020), as well as the most recent end-to-end model

training (Jumper et al., 2020), which demonstrated significant

usefulness for improving 3D structure modeling accuracy.

Nevertheless, given the dominantly important role of contact

predictions (Shrestha et al., 2019) and the fact that the most

https://zhanglab.ccmb.med.umich.edu/I-TASSER/
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Figure 2. C-I-TASSER modeling results on the 342 hard targets in the benchmark dataset

(A) Comparison between TM scores of the first models built by C-I-TASSER and I-TASSER.

(B) TM score of LOMETS templates versus accuracy of the contact map utilized by C-I-TASSER. The red circles denote the targets that can be folded by both C-I-

TASSER and I-TASSER with a TM scoreR 0.5; the black points are the targets that can be folded only by C-I-TASSER and not I-TASSER; the yellow crosses are

the targets that can be folded only by I-TASSER and not C-I-TASSER; the blue crosses indicate the targets that cannot be folded by either C-I-TASSER or I-

TASSER.

(C) An illustrative example from 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase IspF (SCOPe: d3fpia_). The upper left shows the structure superpositions

of the best LOMETS template (yellow), I-TASSER first model (pink), and C-I-TASSER first model (cyan) with the target structure (gray), and the lower right displays

an overlay of predicted contacts (red) with the contacts of the target structure (gray), as well as the contacts from the C-I-TASSER model (cyan).
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reliable distance predictions are for short distances (Li et al.,

2021), we believe it is still of significant importance to examine

separately the impact of contact maps on ab initio structure pre-

diction, especially in conjunction with the most advanced struc-

ture folding simulations that can help explore the maximum

potential of contact-map predictions. Our study showed that

optimized coupling of deep-learning-based spatial information

with efficient structure assembly simulations is the key to

improving the capability of distantly homologous protein folding.

RESULTS

Benchmark and blind test results
To examine the ability of C-I-TASSER to fold non-homologous

proteins, we first tested the pipeline on 342 non-redundant pro-

tein domains collected from the SCOPe 2.06 database; these

proteins were regarded as hard targets by LOMETS (Zheng

et al., 2019c), given that there were no significant templates de-

tected after excluding structures with a sequence identity >30%

to the query (see ‘‘benchmark dataset collection’’ under STAR

Methods). Overall, C-I-TASSER’s top-ranked models attained

an average TM score of 0.573, which was 46.2% higher than

that of the state-of-the-art TBM approach I-TASSER (0.392);

this corresponded to a p = 5.1 3 10�50 by Student’s t test,
showing that the difference was highly statistically significant

(Table S1). Here, TM score is a metric for measuring the struc-

tural similarity between predicted models and the native and

has values ranging from 0 to 1, with a TM score of 1 indicating

a perfect model (Zhang and Skolnick, 2004a) (see Equation

S22 in the STAR Methods). Figure 2A presents a head-to-head

TM-score comparison between C-I-TASSER and I-TASSER,

where C-I-TASSER outperformed I-TASSER in 313 of the 342

cases (92%), whereas the reverse occurred in only 29 cases. If

we define a successful fold as a model with a TM R 0.5 (Xu

and Zhang, 2010), C-I-TASSER correctly folded 65% (= 224

out of 342) of the hard targets, which was 2.55 times more

than I-TASSER (26%, or 88 out of 342). In Figure S2A, we present

the running time of C-I-TASSER simulations, which increases

with the length of the protein but is largely comparable to I-

TASSER, and the average running time was 5.0 h for the test

proteins.

Contact map dominates the success rate of C-I-TASSER

folding

The significant improvement demonstrated by C-I-TASSER can

be mainly attributed to accurately predicted contact maps and

the effective integration of the threading-based restraints and

contact-map potential with the structural assembly simulations.

In Figure 2B, we split the datum samples into four quadrants,
Cell Reports Methods 1, 100014, July 26, 2021 3
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depending on whether the LOMETS (see details of LOMETS in

‘‘LOMETS2 pipeline for meta-server threading’’ under STAR

Methods) threading templates were good (TMR 0.5) or the pre-

dicted contacts were accurate (precision of top L long-range

contacts R0.5). We found that when LOMETS could detect

good templates (i.e., the points in quadrants I and II, which ac-

counted for only 21 of the 342 cases because of the nature of

hard targets), both I-TASSER and C-I-TASSER could build the

correct global fold, with a TMR 0.5. However, if LOMETS failed

to detect good templates (points in quadrants III and IV), there

were still 204 cases for which C-I-TASSER was able to construct

the correct fold; the majority of these cases (84%) were located

in quadrant IV, indicating the dominant contribution from the

contact-map predictions for folding hard targets.

In Figure 2C, we present a representative example from 2-C-

methyl-D-erythritol 2,4-cyclodiphosphate synthase IspF (SCOPe:

d3fpia_), for which LOMETS failed to detect any reasonable tem-

plateswhere the best template had a TMscore of 0.172. Although

I-TASSER considerably refined the template quality by multiple

fragment assembly simulations, the global fold was still incorrect;

TM=0.461 and root-mean-squaredeviation (RMSD)= 11.9Å. The

six contactprograms fromC-I-TASSER (TripletRes, Li et al., 2021;

ResTriplet, Li et al., 2019b; ResPre, Li et al., 2019a; ResPLM, Li

et al., 2019b; Zheng et al., 2019a; and NeBconA and NeBconB,

He et al., 2017) generated reasonable contact-map predictions,

with a top L precision of 92.5%, 93.2%, 93.2%, 91.9%, 79.5%,

and 85.1%, respectively, which resulted in an overall contact pre-

cision of 96.9% for the top L-ranked contacts after combining the

maps. With the aid of this combined contact map, C-I-TASSER

constructed a significantly improved model with TM = 0.746 and

RMSD = 3.23Å. In this example, although the precision increase

of the combined contact map was quite modest compared with

the best individual predictors (96.9 versus 93.2 for the top L con-

tacts), the C-I-TASSER force field accounts for the frequency of

the occurrence of top-ranked predictions from different predic-

tors (see Equation S11 in ‘‘residue-residue contact prediction’’

under STARMethods), which executed an additional contribution

to the contact-map guided folding simulations (see Equation S20

in ‘‘replica-exchange Monte Carlo in C-I-TASSER’’ under STAR

Methods and Figure S2B). In fact, if we used only the best con-

tact-map predictor, ResTriplet, to guide the C-I-TASSER simula-

tions in this case, the TMscoreof thefinalmodelwas0.721,which

was 3.4% worse than that attained by combining all six contact

maps.

Impact of the deepness of MSAs on contact and final

model prediction

Given that our contact predictors are trained with multiple

sequence alignments (MSAs), a sufficient number of homolo-

gous sequences in the MSAs is essential for both contact-map

prediction and the subsequent contact-guided structural as-

sembly simulations. In C-I-TASSER, DeepMSA (Zhang et al.,

2019) is employed to generate MSAs from multiple whole-

genome and metagenome databases to collect more diverse

sequence homologs in the MSAs. In Figure S2C, we present

the contact accuracy results of the six contact predictors versus

the number of effective sequences in the MSAs (or Neff, defined

in Equation S12 in ‘‘DeepMSA for MSA generation’’ under STAR

Methods). The precision of contact prediction increases almost
4 Cell Reports Methods 1, 100014, July 26, 2021
linearly as the Neff value of the MSA grows, indicating that

providing more homologous sequences in the MSAs indeed

helps improve the accuracy of contact prediction.

In Figure S2D, we further examine the dependence of the final

model quality on the Neff of the MSA used. We found that as the

Neff values increased, the TM scores of the final models also

increased for most targets. Particularly, when the Neff reached

23 (= 8), most targets were foldable with TM R 0.5; this require-

ment is around 2-fold lower than the Neff value of 16 (= 24) re-

ported previously (Ovchinnikov et al., 2017).

Folding proteins with poor templates and contact

prediction

Although both correct threading alignments and accurate con-

tact prediction are key to C-I-TASSER modeling, as demon-

strated by Figure 2B, C-I-TASSER generated correct folds (TM

R 0.5) for 26.4% of the proteins that had neither good templates

nor accurately predicted contacts (quadrant III). The successful

folding of these targets can be mainly attributed to the effective

coupling of the inherent C-I-TASSER force field with sparse

external threading and contact restraints. To illustrate this point,

in Figure 3A we analyze in detail an example from the platypus

lactating protein (PDB: 4v00), which had a poor template quality

(TM score of the first template 0.26) and contact prediction accu-

racy (top L long-range precision 0.30), yet C-I-TASSER success-

fully built the first model with a TM = 0.708, which was 194%

higher than that of the I-TASSER model (0.241). In this case, of

the 628 long-range contacts used to guide the replica-exchange

Monte Carlo (REMC) simulations (see details of the REMC simu-

lations in ‘‘replica-exchange Monte Carlo in C-I-TASSER’’ under

STAR Methods and Figures S2E–S2G), 501 (80%) were false

positives (Figure 3A). Despite the high amount of noise from

the predicted contacts, the C-I-TASSER folding engine was

able to select the correctly predicted contacts.

In Figure 3B, we display two decoy trajectories of the contact

satisfaction rate (CSR) collected from 500 REMC simulation

steps. Three CSRs were calculated from each trajectory,

including CSRa = na=Na, CSRp = np=Np, and CSRn = nn=Nn,

where na (or np or nn) is the number of overlaps between the con-

tacts of the decoy structure and all (or positively or negatively)

predicted contacts, and Na (or Np or Nn) is the total number of

all (or positively or negatively) predicted contacts. From the

figure, it can be seen that CSRa;p;n all increased as the Monte

Carlo simulation progressed, but the CSRp increased much

faster than the CSRn. After around 100–200 steps, all CSRs

became stable at the states where CSRp (>0.55) was much

higher than CSRn (<0.25), suggesting that C-I-TASSER folding

simulations tend to select more positively predicted contacts

over incorrectly predicted contacts.

Interestingly, one trajectory (labeled as ‘‘1’’) had a clearly

higher CSRp (75% versus 58%) and lower CSRn (19% versus

22%) than the other trajectory (labeled as ‘‘2’’), despite their

CSRa (29.9% versus 30.0%) being nearly identical at the stable

state. As shown in Figure 3C, the energy of the decoys in trajec-

tory 1 was consistently lower than that in trajectory 2 at the stable

state, suggesting that the C-I-TASSER force field was able to

pick up correct contacts by integrating them with the inherent

knowledge-based force field. As indicated by its lower energy,

the final decoy pool from multiple REMC simulations was



Figure 3. Case study of C-I-TASSER folding on the platypus lactating protein (PDB: 4v00)

(A) The upper left shows the structure superpositions of the template (yellow) and the C-I-TASSERmodel (cyan) with the target structure (gray), and the lower right

shows the overlay of the contact maps from contact predictors (red), the native structure (gray), and C-I-TASSER model (cyan).

(B) Comparison of contact satisfaction rates of the REMC trajectories of C-I-TASSER on two decoys.

(C) Comparison of the energy during the REMC cycles for two decoys.

(D) Comparison of the model TM scores during the REMC cycles. The structures are the decoy models for different simulation states.
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dominated by conformations similar to those in trajectory 1,

which had much higher TM scores (�0.69) than those in trajec-

tory 2 (�0.31) (Figure 3D). This eventually helped SPICKER in se-

lecting a correctly folded model by clustering the structure de-

coys (Zhang and Skolnick, 2004b). In addition, we noticed that

there were 25 long-range contacts that were correctly extracted

from the initial LOMETS templates despite the fact that these

templates had low TM scores; these contacts were all retained

in the final models of the largest cluster from SPICKER, indi-

cating the effect of these threading-based restraints in guiding

the C-I-TASSER folding. As a result, as shown in Figure 3A, the

contact map of the final C-I-TASSER model satisfied 45%

(149/334) of the long-range contacts from the native structure,

which was considerably higher than that from deep-learning-

based contact predictors (34%) and LOMETS threading (7.5%)

given the same number of total contacts. Hence, the effective

coupling of the inherent I-TASSER force field with sparse thread-

ing and contact restraints is critical for folding such hard targets

lacking quality contact prediction (see details of C-I-TASSER

force fields in ‘‘replica-exchange Monte Carlo in C-I-TASSER’’

under STAR Methods).

As a comparison, we plot the CSR trajectories for the I-TA

SSER simulations in Figure S3A on the same target of 4v00. As

expected, because of the lack of contact restraints, the

CSRa;p;n values do not change much along with the REMC simu-

lation. In Figure S3B–D, we also present a comparison of the

CSRs in the final models by C-I-TASSER and I-TASSER for all

342 hard targets, where C-I-TASSER has higher CSRs than I-TA
SSER for nearly all targets, which demonstrates again the domi-

nant role of deep-learning contacts on folding the hard protein

targets in C-I-TASSER.

Structure folding of hard membrane proteins

Although the C-I-TASSER force field was mainly optimized on

globular proteins, we list in Table S2 a summary of the structure

folding results of C-I-TASSER on 80 non-redundant membrane

domain proteins collected from the GPCR-EXP (Chan and

Zhang, 2020) and PDBTM (Kozma et al., 2013) databases (see

‘‘collection of membrane protein dataset’’ under STAR

Methods). Here, all homologous templates with a sequence

identity >30% of the query or being membrane proteins were

excluded from the LOMETS library. Therefore, all targets were

categorized as hard targets by LOMETS.

It is seen from Table S2 that C-I-TASSER achieves an

average TM score of 0.688, which is 55.7% higher than that

of the I-TASSER models (0.429). This TM-score improvement

is considerably larger than that obtained for the general bench-

mark dataset (46.2%). Despite the more stringent template fil-

ter, the average TM score (0.688) on the membrane proteins is

also higher than that on the general hard proteins (0.573).

These differences are probably due to the better conservation

of membrane proteins in the sequence databases, which re-

sulted in a higher accuracy of contact predictions. In fact, the

average Neff of MSAs collected by DeepMSA is 659.1 for the

membrane proteins, which is 6.2 times that for the general

benchmark dataset (105.7). As a result, the precision of the

top L/5 long-range contacts of the membrane proteins is
Cell Reports Methods 1, 100014, July 26, 2021 5
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�9% higher than that of general hard proteins (0.85 versus

0.78). Consequently, the higher-accuracy contact maps re-

sulted in a larger impact on the C-I-TASSER structure modeling

for folding membrane proteins.

Deep-learning contact maps improve TBM accuracy

To further examine the impact of contact maps on TBM, we

tested C-I-TASSER on 455 non-redundant protein domains

collected from SCOPe that were regarded by LOMETS as

‘‘easy’’ targets, given that significant templates with normalized

Z scores >1 were detected after excluding templates with a

sequence identity >30% of the query for all these domains (see

definition of Z score in ‘‘replica-exchange Monte Carlo in C-I-TA

SSER’’ under STAR Methods).

In Figure S3E, we present a head-to-head comparison of the

TM scores obtained by C-I-TASSER and I-TASSER for these

easy targets. First, compared with the hard targets, the TM

scores of the final models for the easy targets were dramatically

higher for both C-I-TASSER and I-TASSER (Table S1), high-

lighting the importance of template quality in the final models.

Second, despite the use of the same set of templates, C-I-TA

SSER outperformed I-TASSER in 343 of the 455 cases, whereas

the converse was true for 112 cases. The average TM score by

C-I-TASSER (0.765) was 3.2% higher than that by I-TASSER

(0.741), which corresponded to p = 2.5 3 10�28 in Student’s t

test, indicating that the difference was highly statistically

significant.

It is important to note that sequence-based contact-map pre-

dictions have been of little to no use for TBMuntil themost recent

CASP experiments (Kryshtafovych et al., 2018; Zhang et al.,

2018). The data in Table S1 and Figure S3E suggest that the

deep-learning-based approaches increased the accuracy of

contact-map prediction and brought it to a level compatible

with threading templates for TBM. In Figure S3F, we also plot

the data with the LOMETS TM score against contact precision

for the 455 easy targets. It was found that C-I-TASSER success-

fully folded a much higher number of cases (by 29%) than I-TA

SSER for targets with LOMETS TM < 0.5, demonstrating again

the power of contact maps in refining incorrectly predicted

templates.

Comparison with the state of the art

To further investigate the effectiveness of C-I-TASSER, we list in

Table S1 themodeling results of C-I-TASSER in comparison with

those by CNS (Brunger et al., 1998) and trRosetta (Yang et al.,

2020). For CNS, we input the same sets of predicted contacts

and secondary structure used in C-I-TASSER. Given that trRo-

setta generates spatial restraints (distances and orientations)

on its own, we provided the same MSAs but used only the con-

tact restraints (i.e., distances with the peak of predicted distance

distribution lower than 8 Å or when the sumof probabilities below

8 Å is greater than 0.5), to have a fair comparison with C-I-

TASSER. The significant improvement of C-I-TASSER over

CNS/trRosetta on easy targets (TM = 0.765 versus 0.408/

0.534) is largely due to the use of LOMETS templates, which

by themselves had a higher TM-score (0.657) than the CNS/trRo-

setta models. For the hard targets, the TM score of C-I-TASSER

(0.573) was also significantly higher than those of CNS (0.498)

and trRosetta (0.500) with p = 7.43 10�28 and 5.53 10�7. Given

that both CNS and trRosetta create models by optimally satis-
6 Cell Reports Methods 1, 100014, July 26, 2021
fying spatial constraints, these data highlight the effectiveness

of C-I-TASSER in integrating the optimized knowledge-based

force field with deep-learning-based contact maps.

To examine C-I-TASSER in comparison with the state of the

art, an early version of C-I-TASSER was tested in the CASP13

experiment, for which Table S3 lists a summary of the 3D

structure modeling results of the best 20 groups in the Server

Section, in which models were automatically created in a blind

fashion, i.e., without knowledge of the experimental structures

(Kryshtafovych et al., 2019). It was shown that the C-I-TA

SSER method (named ‘‘Zhang-Server’’) outperformed all other

groups based on both TM and global distance test score (GDT

score); here GDT score is calculated by GDT = (GDT_P1 +

GDT_P2 + GDT_P4 + GDT_P8)/4, where GDT_Pn indicates

the percent of residues under the distance cut-off % n Å . In

Figure S4, we list the structural models created by C-I-

TASSER for 32 of the 50 FM and FM/TBM targets, which

lacked homologous templates, for which C-I-TASSER was

able to generate correct folds with TM R 0.5. These data

demonstrate the superiority of C-I-TASSER over state-of-

the-art structure prediction approaches.

Structure modeling for unsolved Pfam families
Pfam is a database of protein families (El-Gebali et al., 2018),

each represented as a sequence profile of structurally and/or

functionally related protein domains. There are 17,929 protein

single-domain-level families in the Pfam database (version

32.0), of which 9,229 have at least one member with an experi-

mentally determined structure in the PDB. For the proteins in

the Pfam families with known structures, reliable models could

be built through comparative modeling with the members with

known structure. For the remaining 8,700 families, however, no

structural information is available for any members; these fam-

ilies are named ‘‘unsolved Pfam families’’ for simplicity in this pa-

per. Here, we used C-I-TASSER to predict structure models for

the 8,266 unsolved Pfam families that were at least 40 amino

acids long, and the details of the data collection are described

in ‘‘Pfam dataset’’ under STAR Methods.

Overall results

Given that the experimental structures are unknown for these un-

solved Pfam families’ domains, we designed a confidence score

(C score) to quantitatively estimate the quality of the C-I-TASSER

models. As shown in Equation S23 in ‘‘model quality estimation

of C-I-TASSER’’ under STAR Methods, the C score is a linear

combination of three components: significance of the LOMETS

threading alignments, satisfaction rate of the predicted contact

maps, and the decoy convergence degree of the C-I-TASSER

simulations. Based on the 797 test targets (342 hard and 455

easy) in the benchmark dataset, the C score had a Pearson cor-

relation coefficient of 0.80 with TM score (see Figures S5A and

S5B and ‘‘model quality estimation of C-I-TASSER’’ under

STARMethods). If we select a C-score cutoff of�2.5, which cor-

responds to an estimated TM= 0.5, theMatthews correlation co-

efficient on the benchmark dataset reached amaximum of 0.623

and the false discovery rate (FDR) only 6.88%.

In Figure 4A, we present the C-score histogram distribution of

the C-I-TASSER models on the 8,266 unsolved Pfam families,

where the C score from the benchmark targets is listed as a



Figure 4. Structural modeling results for unsolved Pfam families

(A) The distribution of Pfam families and benchmark targets in different C-score bins. The black circles represent the number of Pfam targets in a specific C-score

bin, and histograms are from benchmark proteins; the gray bars indicate the number of foldable targets with TM R 0.5 and the white bars being the number of

non-foldable targets.

(B) Number of Pfam families at each stage of the analysis, where each set is a subset of the previous set.

(C) Venn diagram for the number of foldable models for the Pfam families constructed by C-I-TASSER, Rosetta, DMPfold, and PconsFam.

(D) Venn diagram for the number of novel folds for the Pfam families produced by C-I-TASSER, Rosetta, and DMPfold.

(E) Comparison of the TM scores for the first models produced by C-I-TASSER versus those by DMPfold (red crosses) and PconsFam (blue circles) for 96 Pfam

families that have at least one member newly solved after modeling.

(F) Case study of 20 Pfam families regarded as hard by LOMETS. In each case, the model is shown in rainbow color and the solved experimental structure of a

member from the same Pfam family, if available, is shown in gray.
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control. If we assume that the C-I-TASSER models have a

similar FDR between the benchmark and the Pfam families,

there should be around 3,876 (=4,162 * (100% – 6.88%)) of

the 4,162 high-confidence Pfam families that are foldable with

an estimated TM R 0.5. We further searched the 4,162 Pfam

models against the PDB by TM-align (Zhang and Skolnick,

2005) and found that 504 Pfam models predicted by C-I-

TASSER did not have any structure in the PDB that had a TM

R 0.5 in relation to the predicted model. Therefore, these
Pfam families might assume novel folds; the construction of

these new fold models is mainly due to the employment of

the deep-learning contact maps. A summary of the Pfam

modeling results is listed in Figure 4B.

Comparison with other methods of Pfam family

modeling

Three recent studies (Greener et al., 2019; Lamb et al., 2019; Ov-

chinnikov et al., 2017) performed structure prediction for the un-

solved Pfam families. Among them, Rosetta (Ovchinnikov et al.,
Cell Reports Methods 1, 100014, July 26, 2021 7
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2017) generated models for 592 unsolved Pfam families, of which

138 were novel folds. DMPfold (Greener et al., 2019) attempted to

fold 5,214 families for which HHsearch (Söding, 2005) was unable

to detect homologous templates and reported 1,475 foldable

models and 231 novel folds. Finally, PconsFam (Lamb et al.,

2019) folded all 13,617 Pfam families from Pfam v.29.0 and re-

ported only 418 foldablemodels (with no novel fold information re-

ported). Although DMPfold produced a relatively high number of

foldable models (1,475), the FDR reported in the DMPfold bench-

mark analysiswas 17.5%,whichwas considerably higher than the

C-I-TASSER FDR of 6.88% at a C-score cutoff of�2.5. Based on

the FDR value, the number of trustable cases by DMPfold should

be1,217 (=1,475 * (100%–17.5%)),which isalsosignificantly lower

than the reliably folded models (1,892 = 2,032 * (100%–6.88%))

produced by C-I-TASSER, where 2,032 is the number of the fold-

able cases byC-I-TASSERon the same set of 5,214 Pfam families

that DMPfold used.

In Figure 4C, we present a Venn diagram of modeling results

by C-I-TASSER, Rosetta, DMPfold, and PconsFam on the un-

solved Pfam families. There were overall 2,699 families that

were foldable by C-I-TASSER but not by any other method;

this number was 55 for Rosetta, 198 for DMPfold, and 111 for

PconsFam. Furthermore, the number of novel folds discovered

by C-I-TASSER (504) was considerably higher than that of either

Rosetta or DMPfold (Figure 4D). Considering that different

methods havemodeled different sets of Pfam families, in Figures

S5C–S5Ewe present the Venn diagrams on the same set of Pfam

families folded by C-I-TASSER and the control methods. More

specifically, we restricted the C-I-TASSER results to the Pfam

families modeled by the Rosetta, DMPfold, and PconsFam

studies to make a fairer comparison. We found that C-I-TASSER

still created considerably more foldable families and novel folds

than the control methods in this common dataset.

Blind test of the Pfam family models

The C-I-TASSER modeling was performed on the Pfam data-

base version 32.0 (released in September 2018), and the

modeling data are summarized in Table S4 for all 8,266 unsolved

Pfam families. Pfam v.33.0 (released in March 2020) reported

305 new families with solved structures for at least one member,

which provides an opportunity to assess the performance of the

prediction effort. Because 192 of the structures in the 305 fam-

ilies were released before the C-I-TASSER threading was

completed in June 2019 and the target structures were included

in the template library, these families should be excluded from

our assessment.

The comparison between the C-I-TASSER models and the

solved experimental structures is listed in Table S4, where an

average TM score of 0.532 was achieved for the 113 domains

whose structures were released after June 2019, for which 63

had correctly folded models with TM > 0.5. Here, given that

only one member from each Pfam family was modeled by C-I-

TASSER, the modeled sequence might be different from that

of the solved structure. For these cases, we superposed the

structure of the solved protein to theC-I-TASSERmodel by using

TM-align and calculated the TM score between the C-I-TASSER

model and the mapped experimental structure.

Figure 4Eshowsacomparisonof TMscores for the firstmodels

generated by C-I-TASSER, DMPfold, and PconsFam on the 96
8 Cell Reports Methods 1, 100014, July 26, 2021
Pfam families for which DMPfold or PconsFam also published

their predicted models. DMPfold generated models for only 50

of the 96 Pfam families, whereas PconsFam produced models

for 91 of the 96 Pfam families. We did not include the comparison

withRosetta here becauseRosetta producedmodels for only 2of

the 96 Pfam families, whichwas insufficient formeaningful statis-

tical analysis. Compared with the experimental structures, the

TM scores of the C-I-TASSER models were higher than those

of PconsFam for 93.4% (85 of 91) of the common Pfam families.

Moreover, C-I-TASSER generated models with TM R 0.5 for 50

of the 91 Pfam families, which was 194% higher than the number

(17) by PconsFam, demonstrating the advantage of coupling

contact maps with template-based restraints in C-I-TASSER

compared with the CNS-based pipeline used by PconsFam,

which relies only on contact prediction. Although DMPfold uti-

lized deep-learning distance prediction in addition to contact

restraints, C-I-TASSER also outperformed DMPfold on 74%

(37/50) of the Pfam families. For the 50 Pfam families for which

DMPfold generated models, C-I-TASSER generated models

with TM R 0.5 for 26 Pfam families, which was 37% higher

than that by DMPfold (19).

Figure 4F lists C-I-TASSER models for 20 successfully folded

Pfam families that lack homologous templates in the PDB and

were regarded as hard targets by LOMETS; the structures for

another 43 successfully folded families, including 38 regarded as

easy and 5 regarded as hard, but with a naive fold composed of

a single helix, are shown in Figure S6. Taken together, these

data show that C-I-TASSER modeling guided by contact-based

constraints generates useful models for unsolved Pfam families.

The structural models for all 8,266 unsolved Pfam families are

available at https://zhanglab.ccmb.med.umich.edu/C-I-TASSER/

pfam/.

Lessons on improving C-I-TASSER for other Pfam

families

Despite the fact that �50% of the unsolved Pfam families could

be folded by C-I-TASSER with high confidence, it is important to

examine why C-I-TASSER could not generate foldable models

for the remaining Pfam families. In Figure 5A, we compare the

benchmark targets and Pfam families in terms of template quality

(measured by normalized Z score of LOMETS templates) and

contact-map accuracy (indicated by the MSA Neff values),

where two interesting points can be observed. First, the TM-

score heatmap for the benchmark targets is highly consistent

with the regions of Pfam families with low (gray) or high (black)

C scores, showing that C score can indeed be used as a reliable

measure for estimating the quality of unsolved Pfam family

models. Second, we found that for the 4,162 Pfam models with

C > �2.5, 95.5% (= 3,974/4,162) had either a high Neff value

(R 23) or a high template Z score (R 1), suggesting that success-

ful C-I-TASSERmodeling requires either good templates or rela-

tively accurate contact prediction for most targets.

To further examine the impact of the contact maps, we list the

Neff distribution for different Pfam families in Figure 5B. We

observed that the average Neff (=208.3) for the 4,162 foldable

Pfam families was 7.4 times higher than that for the non-foldable

Pfam families (=28.1). Among the foldable families, the easy tar-

gets (ZR 1) generally had a slightly higher Neff than the hard tar-

gets (Z < 1); this is understandable because easy families are

https://zhanglab.ccmb.med.umich.edu/C-I-TASSER/pfam/
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Figure 5. Comparison of the C-I-TASSER re-

sults for the Pfam families and benchmark da-

taset for different C scores,Z scores, andNeff

values

(A) Normalized Z score of the first LOMETS template

versus the Neff of DeepMSA for the Pfam families

(points) and benchmark dataset (background). The

black crosses represent the Pfam targets with C R

�2.5, and the gray dots are Pfam targets with C <

�2.5. The heatmap in the background depicts the

TM scores for benchmark targets, where white re-

gions indicate no data.

(B) The box-and-whisker chart for the logarithm Neff

values ofMSAs for easy and hard targets in the Pfam

families and benchmark dataset. The left corre-

sponds to the results of the benchmark dataset, and

the right contains the results for the Pfam families.

The yellow boxes indicate the hard targets, and the

blue boxes are the easy targets.
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often more well studied by the community and therefore tend to

have more homologous sequences in both structure and

sequence databases. As a control, we also listed the Neff distri-

bution of the 797 benchmark proteins, where a similar trend was

seen (i.e., easy targets tend to have higher Neffs). Here it is worth

noting that although both Pfam and benchmark proteins contain

easy and hard targets, Pfam families seem more difficult to fold

because by design we selected tomodel only the unsolved Pfam

families containing no solved structures in the homologous

members, whereas easy benchmark proteins do not have such

constraints. On average, the Neff of Pfam families (118.8) is

also considerably lower than that of the benchmark proteins

(236.1); these data partly explain the results of Figure 4A in which

the overall C-score distribution of Pfam families was shifted to

the lower values compared with the benchmark proteins.

Thus, given that themajority of the Pfam families with C <�2.5

(93.8% = 3,848/4,104) were hard targets that lacked homolo-

gous templates in the PDB, it will be critically important to

develop effective MSA collection and contact-map prediction

methods to model the structures of these hard Pfam families.

In addition, given that many newly developed LOMETS pro-

grams (Zheng et al., 2019c) utilize MSAs and deep-learning con-

tact maps, better MSAs and contact maps will help LOMETS to

reliably detect distant-homologous templates, which can

convert the Pfam families from the hard to the easy category

and help improve the quality of final models from the TBMaspect

as well.

Application to COVID-19 structure modeling
SARS-CoV-2 is a new coronavirus responsible for the ongoing

COVID-19 pandemic, which has resulted in more than 80 million

infections with 1.8 million deaths. To help understand the mech-

anism of the new virus, we applied C-I-TASSER to generate a

genome-wide structure modeling study on SARS-CoV-2 (see

‘‘SARS-CoV-2 dataset’’ under STARMethods). The C-I-TASSER

models for all SARS-CoV-2 proteins, including 4 structural pro-

teins (spike protein, envelope small membrane protein, mem-

brane protein, and nucleocapsid protein) and 20 non-structural

proteins, are displayed in Figure 6A; all structures are download-

able at https://zhanglab.ccmb.med.umich.edu/COVID-19/. A
summary of the modeling details is also listed in Table S5. It is

noted that the SARS-CoV-2 proteins have generally few homol-

ogous sequences in the sequence database, where the average

Neff (=21.0) is much lower than those of the benchmark dataset

(236.1) and the unsolved Pfam families (118.8), probably due to

the relatively new species and the quick mutation rate of the

virus.

After the C-I-TASSER models were released in January 2020,

20 protein structures from the SARS-CoV-2 genomewere exper-

imentally solved. Compared with these experimental structures,

the C-I-TASSER models have a correct fold for 17 proteins,

whose structure superposition with the experimental structure

and TM scores are shown in Figure 6B. For another 3 targets,

including ORF3a protein (ORF3a), envelope small membrane

protein (E), and ORF8 protein (ORF8), however, C-I-TASSER

failed to generate correct folds because of the poor quality of

template recognition and contact-map predictions. The poor

quality of contact-map prediction is mainly due to the low multi-

plicity of the MSAs, where the Neff values are 0.4, 4.5, and 0.4,

respectively, even though the metagenome database was

utilized.

Overall, despite the relatively lower Neff values for the SARS-

CoV-2 proteins, the average TM score of the C-I-TASSER is

0.820, which is even higher than that of the easy benchmark pro-

teins (0.765), probably because of the better template quality

identified by LOMETS for the SARS-CoV-2 proteins (TM =

0.748). These data confirm the ability of C-I-TASSER to create

high-resolution models for the unknown SAR-CoV-2 genome.

In Table S5, we also list the estimated TM score for each model

of the SARS-CoV-2 genome proteins, which were calculated on

the basis of the C score of C-I-TASSER simulations (see Equa-

tion S24 in ‘‘model quality estimation of C-I-TASSER’’ under

STAR Methods). The estimated TM score values can be used

as references for the model quality for the proteins currently

without experimentally solved structures.

DISCUSSION

We developed a pipeline, C-I-TASSER, for contact-guided pro-

tein-structure prediction. Compared with its predecessor, the
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Figure 6. Application of C-I-TASSER to COVID-19 structure modeling

(A) C-I-TASSER models for all 24 proteins in the SARS-CoV-2 genome, including 4 structural proteins and 20 non-structural proteins.

(B) The structure superpositions of the C-I-TASSERmodels (red) with the experimental structures (cyan) for 17 solved SARS-CoV-2 proteins/domains, for which

C-I-TASSER created models with correct fold (TM >0.5).
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I-TASSER protocol, C-I-TASSER shows a significantly improved

ability to model structures of non-homologous sequences.

Based on a benchmark test of 342 hard proteins lacking homol-

ogous templates in the PDB, the average TM score of C-I-

TASSER was 46% higher than those of I-TASSER, and the num-

ber of foldable domains with TM > 0.5 increased by 2.55 times in

relation to I-TASSER. Compared with the modest TM-score in-

crease (4.6%) witnessed previously by contact-map-guided

template-based structure prediction (Wu et al., 2011), the signif-
10 Cell Reports Methods 1, 100014, July 26, 2021
icant improvement of the model quality achieved in this study

can be mainly attributed to the substantial increase in contact-

map accuracy brought by advanced deep neural network

learning techniques in combination with deep MSA collection

from whole-genome and metagenome databases. Although C-

I-TASSER was primarily optimized on globular proteins, it

showed a stronger ability to fold hard membrane proteins with

an average TM score 20% higher than those for the globular pro-

teins, which is probably because of the more conserved
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sequence profiles and therefore more accurate contact-map

predictions for the member proteins. The 3D structure modeling

accuracy of C-I-TASSER is also significantly higher than the

pipelines based purely on contact-map satisfaction (e.g., CNS)

(Brunger et al., 1998, and trRosetta, Yang et al., 2020), demon-

strating the importance of the effective coupling of contact

maps with threading-template restraints and knowledge-based

force fields by using cutting-edge structural assembly simula-

tions. Here, it is worth noting that although the average TM score

(0.573) is quite close to the baseline of correct fold (TM score =

0.5), there are 15% (= 50 out of 342) of the hard cases whose

TM score is above the average TM score of easy targets

(0.765), or 41% (= 140 out of 342) of hard cases whose TM score

is above 0.652, which is one standard deviation away from the

average TM score of easy targets; this indicates that C-I-

TASSER builds models for a considerable fraction of hard tar-

gets whose quality is comparable to that obtained by traditional

homology modeling approaches and shown useful in various

biological applications (Zhang, 2009).

The C-I-TASSER pipeline was applied to predict models for

8,266 unsolved Pfam families. Reliable models were generated

for nearly half of the domains with a low FDR of 6.88%. Among

them, we found 504 novel folds that do not exist in the PDB li-

brary, demonstrating the power of the sequence-based contact

map for assisting ab initio structural folding. Both numbers of reli-

ably predicted models and novel folds were considerably higher

than the recent modeling studies built on contact and distance

maps. Compared with the 96 families with experimental struc-

tures recently released, it was found that the number of foldable

cases by C-I-TASSER was 53, which is 66% higher than that of a

combination of the best models by DMPfold and PconsFam. As

a real-world application, we also applied C-I-TASSER to

generate genome-wide structure models for the SARS-CoV-2

coronavirus, where a comparison with 20 newly solved experi-

mental structures showed that 85% of the models have correct

folds with an average TM = 0.820, confirming the usefulness of

C-I-TASSER for modeling new genomes.

Overall, because of the advancement of new deep machine

learning techniques, structure folding of distantly homologous

proteins has shifted largely from fold recognition in the PDB

to evolutionary pattern detection from homologous sequences,

as the latter can result in high-quality contact maps to assist

structural assembly. Despite the success of the C-I-TASSER

pipeline, considerable challenges still exist in folding distantly

homologous proteins that have little sequence homology in

the sequence databases (i.e., quadrant III in Figure 2B). There-

fore, development of sensitive MSA algorithms from the rapidly

increasing whole-genome and metagenome sequence data-

bases is key to addressing this problem. Meanwhile, deep-

learning-based interresidue distance and torsion-angle maps

along with hydrogen bond network predictions have been

recently found to further assist modeling quality improvement

(Li et al., 2020; Senior et al., 2020; Xu, 2019; Yang et al.,

2020). In particular, the end-to-end training powered with

attention networks demonstrated an unprecedented ability for

folding nearly all single-domain proteins in the CASP14 exper-

iment (Jumper et al., 2020). Studies along these lines are in

progress.
Limitations of the study
To reliably fold a protein by C-I-TASSER with a high success

rate, either a set of good structure templates or a highly accurate

residue-residue contact-map prediction is required. Given that

the contact maps are deduced from MSAs through deep

learningmodels, anMSAwith a sufficient number of effective se-

quences (Neff >8) is one of the essential conditions for correct

folding of a non-homologous protein by C-I-TASSER.
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https://github.com/jlspzw/C-I-TASSER

R The R Project for Statistical Computing https://www.r-project.org/

LOMETS (Wu and Zhang, 2007; Zheng et al., 2019c) https://zhanglab.ccmb.med.umich.edu/

LOMETS/

HMMER (Eddy, 1998) http://hmmer.org/

ResTriplet (Li et al., 2019b) https://zhanglab.ccmb.med.umich.edu/

ResTriplet/

TripletRes (Li et al., 2021) https://zhanglab.ccmb.med.umich.edu/
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ResPLM (Li et al., 2019b; Zheng et al., 2019a) N/A
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Pytorch (Paszke et al., 2017) https://pytorch.org

DeepMSA (Zhang et al., 2019) https://zhanglab.ccmb.med.umich.edu/
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PSSpred (Yan et al., 2013) https://zhanglab.ccmb.med.umich.edu/

PSSpred/

STRIDE (Frishman and Argos, 1995) http://webclu.bio.wzw.tum.de/stride/

SPICKER (Zhang and Skolnick, 2004b) https://zhanglab.ccmb.med.umich.edu/

SPICKER/

TM-score (Zhang and Skolnick, 2004a) https://zhanglab.ccmb.med.umich.edu/

TM-score/

TM-align (Zhang and Skolnick, 2005) https://zhanglab.ccmb.med.umich.edu/

TM-align/

REMO (Li and Zhang, 2009) https://zhanglab.ccmb.med.umich.edu/

REMO/

FASPR (Huang et al., 2020) https://zhanglab.ccmb.med.umich.edu/

FASPR/

FG-MD (Zhang et al., 2011) https://zhanglab.ccmb.med.umich.edu/

FG-MD/

ThreaDom (Xue et al., 2013) https://zhanglab.ccmb.med.umich.edu/

ThreaDom/

DEMO (Zhou et al., 2019) https://zhanglab.ccmb.med.umich.edu/

DEMO/

I-TASSER (Wu et al., 2007; Yang et al., 2015) https://zhanglab.ccmb.med.umich.edu/

I-TASSER/

CNS (Brunger et al., 1998) https://www.mrc-lmb.cam.ac.uk/public/

xtal/doc/cns/cns_1.3/tutorial/text.html

trRosetta (Yang et al., 2020) https://github.com/gjoni/trRosetta
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Yang

Zhang (zhng@umich.edu)

Materials availability
This study did not generate new unique reagents.

Data and code availability
TheC-I-TASSER server is available at Zhang Lab (https://zhanglab.ccmb.med.umich.edu/C-I-TASSER/). The standalone package of

C-I-TASSER can be downloaded at https://zhanglab.ccmb.med.umich.edu/C-I-TASSER/download.html or https://github.com/

jlspzw/C-I-TASSER. The datasets supporting the current study have been deposited in Zhang Lab for public use, where the bench-

mark and membrane datasets are available at https://zhanglab.ccmb.med.umich.edu/C-I-TASSER/dataset.tar.bz2, the structure

models for Pfam domain families are available at https://zhanglab.ccmb.med.umich.edu/C-I-TASSER/pfam/, and the structural

models for SARS-CoV-2 genome are available at https://zhanglab.ccmb.med.umich.edu/COVID-19/.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study did not use experimental models typical in the life sciences.

METHOD DETAILS

Benchmark dataset collection
The benchmark dataset consists of single-domain proteins collected from the SCOPe 2.06 database (Chandonia et al., 2018) and the

FM and FM/TBM targets from CASP 8–12 (Moult et al., 2009, 2011, 2014, 2016, 2018). Redundant proteins were removed using a

pairwise sequence identity cutoff <30% and only sequences with lengths between 50 and 450 amino acids were kept in the bench-

mark dataset. Furthermore, we removed targets that had break positions where the residue indices were not consecutive or the Ca

distance between two consecutive residues was greater than 5Å in the middle of the protein chain, which resulted in 797 targets with

179 a proteins, 101 b proteins, and 517 a/b or a+b proteins. Based on LOMETS (Wu and Zhang, 2007; Zheng et al., 2019c), this set

contained 200 Trivial, 255 Easy, 239 Hard, and 103 Very Hard targets (see below: ‘‘LOMETS2 pipeline for meta-server threading’’). In

our benchmark analysis, the ‘‘Trivial’’ and ‘‘Easy’’ targets were combined into one group called ‘‘Easy targets’’ (455), while the ‘‘Hard’’

and ‘‘Very Hard’’ targets were integrated into one group called ‘‘Hard targets’’ (342). When LOMETS is performed, all homologous

templates with a sequence identity >30% to the target were excluded.

Collection of membrane protein dataset
The membrane protein dataset contains 80 single domain proteins collected from GPCR-EXP (Chan and Zhang, 2020) and PDBTM

(Kozma et al., 2013) databases. Similar with the benchmark dataset, redundant proteins were removed using a pairwise sequence

identity cutoff <30%, and only the sequences with lengths between 50 and 450 amino acids were kept. The single-helix transmem-

brane proteins with a trivial topology have been removed as well. Finally, this dataset contains 73 a-helix proteins and 7 b-sheet pro-

teins, where 30 G protein-coupled receptors (GPCRs) are included.

When LOMETS is performed on the proteins, all homologous templates either with a sequence identity >30% to the target or

belonging to membrane proteins were excluded. Here, the GPCR-EXP, PDBTM, and MPstruct databases are used for determining

whether a template belongs to the membrane protein. We added the additional filter in order to make the test more stringent for the

membrane proteins, as we found that two proteins can share similar structures even with a low sequence identity. For example, C-C

chemokine receptor type 2 (CCR2) and C5a anaphylatoxin chemotactic receptor 1 (C5AR1) share a sequence identity of 23% but

have TM-score of 0.80 between their structures. Thus, to check the influence of predicted contacts to C-I-TASSER folding, we re-

move not only homologous templates by sequence identity cutoff, but also all membrane proteins. After excluding the templates by

LOMETS, we found all 80 proteins are classified as ‘‘Hard’’ targets by LOMETS.

Pfam dataset
Pfam is a database of protein families (El-Gebali et al., 2018), each represented by hidden Markov models (HMMs). Typically, each

Pfam entry is comprised of a seed alignment, which forms the basis to build a profile hidden Markov model using the HMMER soft-

ware (http://hmmer.org/) (Eddy, 1998). The profile HMM is then queried against a sequence database, and all matches scoring above

the curated threshold are aligned back to the profile HMM to generate the full alignment.

The Pfam dataset was collected from the Pfam version 32.0 database, which includes 17,929 protein families. We removed 9,229

protein families that had structural annotations concerning experimentally determined X-ray crystal, nuclear magnetic resonance

(NMR), or Cryo-electron microscopy (Cryo-EM) structures. For the remaining 8,700 families, there was no structural information
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available for any member. We further removed Pfam families with less than 40 amino acids of sequence length, resulting in a dataset

of 8,266 Pfam families.

Note that there are multiple sequences available for each Pfam family. We only picked up one representative sequence from each

Pfam family, and then used C-I-TASSER to predict a structure model for the representative sequence. The representative sequence

for each Pfam family was selected using the following steps. First, we ran ‘hmmsearch’ to search a specific Pfam family against uni-

ref100 (May 2019) database (Suzek et al., 2014). Then, we ranked all of the sequences hit from uniref100 by their E-values. Finally, we

selected the first sequence that satisfied the formula:

Cov1+Cov2

2
>0:95 (Equation S1)
Cov1 =
lenðalignedÞ
lenðhmmÞ (Equation S2)
Cov2 =
lenðhmmÞ

lenðalignedÞ+ lenðinsertionÞ (Equation S3)

where len(hmm) is the length of the HMM for a specific Pfam family, len(aligned) is the length of the alignment between the hit

sequence and the Pfam HMM, and len(insertion) is the length of the hit sequence aligned to the gaps in the middle of the Pfam

HMM. This criterion guaranteed that the selected representative sequences did not contain too many inserted residues compared

to the Pfam HMMs, and that the selected sequences should have high coverage with respect to the HMMs.

Pfam 32.0 modeling timeline
September 2018, Pfam 32.0 database was released.

June 2019, LOMETS threading was completed for 8,266 unsolved Pfam (32.0) families, followed by C-I-TASSER folding simulation

and structure refinement.

March 2020, Pfam 33.0 database was released. 305 unsolved families in Pfam 32.0 have been solved and reported in Pfam 33.0.

The structures for 113 of those 305 families have been released after June 2019, and thus selected as a blind test set for C-I-TASSER

(Figure 4F in main text and Figure S6) since none of the solved structure information was used during the C-I-TASSER modeling.

SARS-CoV-2 dataset
Webuilt C-I-TASSER three-dimensional (3D)models for the proteins from the genome of the SARS-CoV-2 virus, also known as 2019-

nCoV, which is the novel coronavirus that caused the COVID-19 pandemic. First, all protein sequenceswere translated from the com-

plete genome of SARS-CoV-2 available at https://www.ncbi.nlm.nih.gov/nuccore/MN908947.3. For each sequence, ThreaDom (Xue

et al., 2013) was used to split the target into several domains according to threading template alignment. Then, the C-I-TASSER pipe-

line was used to generate structure models for each domain. For multi-domain targets, the C-I-TASSER structures of individual

domains were assembled by DEMO (Zhou et al., 2019) into full-length structures.

In total, we predicted 24 structures from the above SARS-CoV-2 genome, including host translation inhibitor nsp1 (NSP1), non-

structural protein 2 (NSP2), papain-like proteinase (NSP3), non-structural protein 4 (NSP4), 3C-like proteinase or non-structural pro-

tein 5 (3CL-PRO), non-structural protein 6 (NSP6), non-structural protein 7 (NSP7), non-structural protein 8 (NSP8), non-structural

protein 9 (NSP9), non-structural protein 10 (NSP10), RNA-directed RNA polymerase (RdRp), helicase (Hel), Guanine-N7methyltrans-

ferase (ExoN), uridylate-specific endoribonuclease (NendoU), 2’-O-methyltransferase (2’-O-MT), spike glycoprotein (S), ORF3a

protein (ORF3a), envelope small membrane protein (E), membrane protein (M), ORF6 protein (ORF6), ORF7a protein (ORF7a),

ORF8 protein (ORF8), nucleocapsid protein (N), ORF10 protein (ORF10).

Methods summary
C-I-TASSER integrates contact-map prediction with the cutting-edge threading and fragment assembly method I-TASSER to make

protein structure prediction. As an independent structure assembly pipeline, I-TASSER was tested in former CASPs and consistently

ranked as one of the most accurate methods in the last decade. Accordingly, the online I-TASSER server (https://zhanglab.ccmb.

med.umich.edu/I-TASSER/) has been widely used in the community and serving for more than 130,000 users from 149 countries

(Figure S1). With the newly added features, C-I-TASSER pipeline was tested in the Server Section of the CASP13 experiment, where

C-I-TASSER method (named ‘‘Zhang-Server’’) outperformed all other groups based on both TM and GDT scores.

The C-I-TASSER pipeline includes five steps: deep multiple sequence alignment generation, structural template identification and

residue-residue contact prediction, iterative structure assembly, atomic-level structure refinement, andmodel quality estimation. We

describe the steps as following.
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LOMETS2 pipeline for meta-server threading

LOMETS2 (Wu and Zhang, 2007; Zheng et al., 2019c) is a meta-threading server for quick template-based fold recognition and pro-

tein structure prediction. It integrates 11 state-of-the-art threading programs: one contact-based threading program CEthreader

(Zheng et al., 2019b), three profile HMM-based threading programs HHpred (Meier and Söding, 2015), HHsearch (Söding, 2005),

and PRC (Madera, 2008), and seven profile-based threading programs FFAS3D (Xu et al., 2013), MUSTER (Wu and Zhang, 2008),

Neff-MUSTER(Zheng et al., 2019c), PPAS (Yang et al., 2015), PROSPECT2 (Xu and Xu, 2000), SP3 (Zhou and Zhou, 2005), and

SparksX (Yang et al., 2011), to help improve the quality of the meta-threading results. Particularly, CEthreader (https://zhanglab.

ccmb.med.umich.edu/CEthreader/) (Zheng et al., 2019b) is a fold-recognition algorithm to identify similar-fold structures from the

PDB guided by predicted contact-maps. The core part of the algorithm consists of contact-map prediction, eigen-decomposition

of the contact matrix, and contact-guided template search and selection.

All individual threadingmethods are locally installed and run on our computer cluster to ensure the quick generation of initial thread-

ing alignments. Also, template libraries are updated everyweek. Due to its speed and accuracy, LOMETS2 is used as the initial step of

C-I-TASSER to identify structural templates and generate query-template alignments. The LOMETS2 pipeline consists of three

consecutive steps: generation of sequence profiles, fold recognition through its component threading programs, and template

ranking and selection.

Generation of sequence profiles. Starting from a target protein sequence, the DeepMSA (Zhang et al., 2019) method (see below:

‘‘DeepMSA for MSA generation’’) is used to generate deep MSAs and further calculate deep profiles in the form of sequence profiles

or profile Hidden Markov Models (HMMs), which are prerequisite to different individual threading programs.

Fold recognition through the component threading programs. The profiles generated in the first step are used by the 11 LOMETS2

threading programs to identify template structures from the template library, where profiles are pre-built for each template.

Template ranking and selection. For a given target, the top 20 templates, ranked by the Z-scores (Wu and Zhang, 2007; Zheng et al.,

2019c) of their query-template alignments, are first selected for each program, resulting in a preliminary set of 220 candidate tem-

plates. The Z-scores can be calculated as follows:

Z� scoreði; jÞ=Sði; jÞ � SðjÞ
sðjÞ (Equation S4)

whereSði; jÞ is the alignment score of the i-th template for the j-th program, andSðjÞ and sðjÞ are the average and standard deviation of

the alignment scores across all templates for the j-th program, respectively.

Then, the topN templates are selected from the 220 templates based on a scoring function that integrates Z-score, the confidence

score of eachmethod, and sequence identity between the identified templates and query sequence. TheseN selected templates are

further used as initial constraints in the C-I-TASSER pipeline. The number of final selected templates, N, is varied with regard to

different targets. The scoring function used to re-rank the templates can be calculated as follows:

scoreði; jÞ = confðjÞ � Z � scoreði; jÞ
Z0ðjÞ + seqidði; jÞ (Equation S5)

where seqidði; jÞ is the sequence identity between the query and the i-th template for the j-th program, confðjÞ is the confidence score
for the j-th program, which was calculated by determining the average TM-scores over the first templates to the native structures on a

training set of 243 non-redundant target proteins (Wu and Zhang, 2007), and Z0ðjÞ is the Z-score cut-off for defining good/bad tem-

plates for the j-th program, which was determined by maximizing the Matthews correlation coefficient (MCC) for distinguishing a

good template (with a TM-score R0.5) from a bad template (TM-score <0.5) on the same training set. As a result, the parameters

Z0ðjÞ (and confðjÞ) are 83.0 (0.589), 6.9 (0.587), 33.0 (0.574), 8.7 (0.570), 6.1 (0.569), 10.0 (0.567), 7.0 (0.566), 7.6 (0.562), 3.2

(0.558), 21.0 (0.536), and 5.6 (0.617) for HHpred, SparksX, FFAS3D, Neff-MUSTER, MUSTER, HHsearch, SP3, PPAS, PROSPEC

T2, PRC, and CEthreader, respectively. The normalized Z-score (ZNðiÞ) for template i of threading program j is defined as the Z-score

(Z� scoreði; jÞ) of the template divided by the Z-score cutoff (Z0ðjÞ) for each threading method, which can be used as a measure to

judge if a template is good (i.e., ZNðiÞ>1:0) or not.
Since Z-score is a measure used to evaluate the quality of templates selected by LOMETS2. We found that the Z-score has a

strong correlation with the real TM-score, with a Pearson Correlation Coefficient (PCC) of 0.7794 on the 797 benchmark proteins.

Based on the quality and number of threading alignments from LOMETS2, protein targets can be classified as ‘‘Trivial’’, ‘‘Easy’’,

‘‘Hard’’ or ‘‘Very Hard’’. The classification of targets was utilized in the contact prediction and replica-exchange Monte Carlo (REMC)

simulation sections of C-I-TASSER in order to train the parameters and weights with regard to different target types. The detailed

procedure of target classification is shown as follows:

For each protein target, we first select the top template for each of the 11 threading methods in LOMETS2. Based on the selected

templates, Za, the average normalized Z-score (divided by Z0), is calculated for the 11 threading methods. We further calculate the

pairwise TM-scores among the 11 templates selected by the 11 threading methods. There is a total of 55 ( = C2
11 = 113 10= 2)

distinct template-template pairs and corresponding TM-scores. We define TM1, TM2, TM3, and TM4 as the average TM-scores

over the top 1/4, 2/4, 3/4 and 4/4 template-template pairs ranked by their TM-scores. Thus, we get a set of 9 measuring scores,

i.e., S = {Za, TM1, TM2, TM3, TM4, Za*TM1, Za*TM2, Za*TM3, Za*TM4}. Based on the set S, the target can be classified by the

following rule,
e4 Cell Reports Methods 1, 100014, July 26, 2021
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Target is classified as

8>><
>>:

Trivial; if jfs˛Sjs>1:83cut2ðsÞgjR8
Easy; else if jfs˛Sjs>1:03cut2ðsÞgjR7
Very hard; else if jfs˛Sjs<1:03 cut1ðsÞgjR6
Hard; otherwise

(Equation S6)

where cut1(S)={0.620, 0.273, 0.250, 0.216, 0.185, 0.151, 0.137, 0.096, 0.093} and cut2(S)={1.052, 0.508, 0.396, 0.350, 0.339, 0.353,

0.279, 0.239, 0.209}. Here, jf.gj means the number of items in the set f.g.
In order to simplify the logic of the benchmark analysis and Pfam analysis in the manuscript, we re-defined target classification as

two groups of targets: easy targets and hard targets, where easy targets here include both ‘‘Trivial’’ and ‘‘Easy’’ types, while hard

targets are a combination of both the ‘‘Hard’’ and ‘‘Very Hard’’ groups. On the other hand, for the parameter determination in the

‘‘Methods summary’’ section, we still keep the four classification groups.

Residue-residue contact prediction

C-I-TASSER utilizes contact-mapmodels from six different contact predictors: TripletRes (Li et al., 2021), ResTriplet (Li et al., 2019b) ,

ResPRE (Li et al., 2019a), ResPLM (Li et al., 2019b; Zheng et al., 2019a), and NeBconA/NeBconB (He et al., 2017). Below we give an

overview of the contact prediction programs.

TripletRes and ResTriplet. TripletRes (Li et al., 2021) and ResTriplet (Li et al., 2019b) starts with multiple sequence alignments

created by DeepMSA (see below: ‘‘DeepMSA for MSA generation’’), from which three co-evolutionary features are extracted. The

first feature, COV, is the covariance matrix as proposed by DeepCov (Jones and Kandathil, 2018). Considering an MSA with N rows

and L columns, we can compute a 21∙L by 21∙L sample covariance matrix as follows:

Sab
ij = fi;jða;bÞ � fiðaÞfjðbÞ (Equation S7)

where fi;jða;bÞ is the observed relative frequency of residue pair a and b at position i and j. fiðaÞ is the frequency of occurrence of res-

idue type a at position i. There are 21 residue types in total (20 standard amino acid types plus a gap type).

The second feature, the precision matrix (PRE) was formulated by ResPRE, and can be obtained by minimizing the objective

function:

L= trðSQÞ � logjQj+ rjjQjj22 (Equation S8)

where the first two terms can be interpreted as the negative log-likelihood of the inverse covariance matrix, i.e., the precision matrix

Q, under the assumption that the data are under amultivariate Gaussian distribution. Here, trðSQÞ is the trace ofmatrixSQ and logjQj
is the log determinant of Q. The last term is the L2 regularization of the precision matrix with r set to e�6.

The third feature is the coupling parameters of the inverse Pottsmodel obtained through pseudolikelihoodmaximization (PLM). The

starting point is approximating the probability of the sequence by the conditional probability of observing one variable conditioned on

all other variables. We use CCMpred (Seemayer et al., 2014) to efficiently calculate the PLM coupling parameters.

The covariance matrix, the precisionmatrix, and the coupling parameters from the Potts model are all in the form of a 21∙L by 21∙L
matrix, representing relationships between specific residue types at any two positions. After a reshaping procedure, three input fea-

tures of size L by L by 441 are collected for each sequence.

Given the training features, two architectures were proposed based on deep residual neural networks (ResNets) (He et al., 2016),

where the first version of ResNet is used as the basic residual block, defined as:

y = fðFðx;W1;W2Þ+ x Þ (Equation S9)

where x and y are the input and output vectors of the residual block considered. f denotes the activation function (ReLU is used in this

work). Specifically, there are two convolutional layers in a residual block. Thus, the residual function is Fðx;W1;W2Þ=W2fðW1xÞwhere

W1 and W2 are the learnable weights in the first and second convolutional layers, respectively.

For the architecture of TripletRes, the three co-evolutionary features are ensembled directly by residual neural networks. Each

input feature is fed into a set of residual blocks and transformed into the output feature with 64 channels. The three output features

are concatenated along the channel dimension as the input of the last layers. The last set of layers try to learn patterns from the three

transformed features by another 12 residual blocks. All residual blocks have a channel size of 64, and the kernel size of convolutional

layers is set to 33 3 with a padding size equal to one. Such padding parameter set-up can keep the spatial information fixed through

different layers. Here, we use a convolutional layer with a 13 1 kernel size to transform each co-evolutionary input feature and the

concatenated features into 64 channels. The final contact-map prediction is obtained by a sigmoid activation function.

ResTriplet is a two-stage ensemble model that uses a stacking strategy. In Stage I, three individual base models are trained sepa-

rately based on the three different sets of co-evolutionary features, PRE, PLM and COV, respectively as described above. The base

models have the same training data and the same neural network structure consisting of 22 residual basic blocks. In Stage II, we use a

shallow neural network structure to combine the predictions of the basemodels fromStage I. Thus, the predicted contact-maps from

the base models are considered as the input features in Stage II. To reduce the risk of over-fitting, predicted contact-maps produced

by each base model are generated by 10-fold cross-validation as the input features of Stage II. The predicted secondary structures,

denoted as PSS, by PSIPRED (Jones, 1999) are also adopted as an extra feature for the neural network model in Stage II. For shallow
Cell Reports Methods 1, 100014, July 26, 2021 e5
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convolutional neural networks, the size of the receptive fields is usually limited. Hence, a dilated convolutional neural network struc-

ture with dilation equal to 2 is employed in order to enlarge the size of the receptive fields.

The neural networks in both TripletRes and ResTriplet are implemented in Pytorch (Paszke et al., 2017) and were trained by an

Adam optimizer (Kingma and Ba, 2014) for 50 epochs.

ResPRE (Li et al., 2019a) is a novel in-house contact-map predictor, which consists of two consecutive steps of precision matrix-

based feature generation and deep residual neural network-based contact inference, which are similar to those described above in

‘‘ResTriplet and TripletRes for contact prediction’’. ResPRE is the average ensemble of ten base models trained by different subsets

of the whole training data.

ResPLM (Li et al., 2019b; Zheng et al., 2019a) is also an in-house contact-map predictor similar to ResPRE. The only difference is

that ResPLM was trained using the PLM feature.

NeBcon (He et al., 2017) is a meta-approach designed for contact-map prediction. In this study, we retrained NeBcon to improve

its long-range contact prediction precision by using the naı̈ve Bayes classifier (NBC) theorem to integrate eight state-of-the-art con-

tact prediction methods, including four deep-learning-based methods: DeepPLM (Zheng et al., 2019a), DeepCov (Jones and Kan-

dathil, 2018), Deepcontact (Liu et al., 2018), and DNCON2 (Adhikari et al., 2017), three co-evolution-based methods: GREMLIN

(Kamisetty et al., 2013), CCMpred (Seemayer et al., 2014), and FreeContact (Kaján et al., 2014), and onemeta-server-basedmethods

MetaPSICOV2 (Buchan and Jones, 2018). A set of posterior probability scores for the NBC model are then calculated from the eight

predictors. Finally, six inherent structural features are extracted from the query sequence, which are trained together with the NBC

probabilities using neural networks to generate a final contact-map. Six types of intrinsic features are extracted from the query

sequence, including (1) The sequence terminal information where a residue belongs to the five residues of the N- or C-terminal of

the sequence; (2) The secondary structure; (3) The normalized solvent accessibile area; (4) The Shannon entropy; (5) The residue sep-

aration; (6) The residue composition generated by PSI-BLAST MSAs. NeBcon has two variants, NeBconA and NeBconB, which are

designed for Ca and Cb atoms, respectively.

It has been demonstrated that the deep-learning-based predictors typically have higher prediction accuracies than the other pre-

dictors, and hence the contacts from these predictors have a higher likelihood to be the native contacts. Based on the testing on the

797 proteins in the benchmark dataset, on average, deep-learning-based methods, especially our in-house ResTriplet and Tri-

pletRes, had significantly higher precisions than other methods on both easy and hard targets. It is noteworthy that the TripletRes

method was ranked as the top contact predictor in the recent CASP13 experiment (Shrestha et al., 2019).

After obtaining the contact predictions from the six methods, C-I-TASSER integrates them by selection and re-ranking.

Due to the variation of scoring schemes used by different contact predictors, we chose different confidence score cutoffs for

different predictors that correspond to a contact accuracy of at least 0.5 for different ranges, including long-, medium- and short-

range contacts with sequence separation ji � jjR24, 23Rji � jjR12, and ji � jj%11, respectively. For each individual contact

predictor p, we first rank all of the residue-residue pairs in descending order of confidence scores predicted by the predictor. A res-

idue-residue pair (i, j) is selected as the predicted contact if confpði; jÞ>confpcut ðrÞwhere confpði; jÞ is the confidence score of the res-

idue-residue pair ði; jÞ predicted by predictor p, and confpcut ðrÞ is the confidence score cutoff for the predictor p at range type r˛
{short-, medium-, and long-range}, or LcðpÞ<LcutðpÞ where LcðpÞ is the currently selected number of contacts by predictor p and

LcutðpÞ is the cutoff for theminimum number of selected contacts by predictor p. It is important to note that all the confidence cutoffs

and parameter sets were determined on a separate set of 243 training proteins: LcutðpÞ= L for all predictor p;

confpcut ðshort�rangeÞ= 0.647, 0.809, 0.607, 0.604, 0.483, and 0.512; confpcut ðmedium�rangeÞ= 0.622, 0.789, 0.581, 0.598,

0.626, and 0.652; confpcut ðlong�rangeÞ= 0.678, 0.806, 0.654, 0.652, 0.849, and 0.906 for TripletRes, ResTriplet, ResPRE, ResPLM,

NeBconB, and NeBconA, respectively.

After the contacts have been selected from each individual contact predictor, we normalize the contact prediction results from

different predictors. For each of the predicted contacts ði;jÞ, the new normalized confidence scores over different contact predictors

is calculated as follows:

Ui;j =
1

N
,
XN
p= 1

wpði; jÞ (Equation S10)
wpði; jÞ =
(
2:5,

�
1+ confpði; jÞ � confpcut ðrÞ

�
,Fw; if predictor p selects out ði; jÞ

0 else
(Equation S11)

whereN is the number of predictors. confpði; jÞ is the contact confidence score of the residue-residue pair ði; jÞ predicted by predictor

p, and confpcut ðrÞ is the contact confidence score cutoff for predictor p at range type r˛ {short-, medium-, and long-range}, which is

given above. Fw = 0.62, 1.25, 6.25, and 5 for Trivial, Easy, Hard, and Very hard target type, respectively, when Neff > 50; while Fw =

0.62, 1.5, 3, and 3.75 accordingly, when Neff < 50.
e6 Cell Reports Methods 1, 100014, July 26, 2021



Article
ll

OPEN ACCESS
DeepMSA for MSA generation

Rather than generating multiple sequence alignments (MSA) by some general tools, such as PSI-BLAST (Altschul et al., 1997),

HHblits (Remmert et al., 2012), or HMMsearch (Eddy, 1998), which may result in an insufficient number of homologs in an MSA,

we adopted a novel MSA generation method (Zhang et al., 2019), called DeepMSA, to collect ‘‘deep’’ MSAs from multiple whole-

genome and metagenome databases through complementary hidden Markov model (HMM) algorithms. The practical usefulness

of the pipeline was examined on 614 non-redundant proteins, where DeepMSA was utilized to generate MSAs for residue-level con-

tact prediction, which increased the accuracy of long-range contact prediction up to 24.4% compared to other MSA generation

programs.

Starting from a query protein sequence, the DeepMSA approach iteratively searches for sequence homologs from multiple

sequence databases in order to create deepMSAs, which in turn are utilized to build the deep sequence profiles used by the contact

prediction algorithms in C-I-TASSER. In order to quantify the quality of anMSA, we define the number of effective sequences (Neff) as

follows, which has been regarded as the stop criterion of the DeepMSA method:

Neff =
1ffiffiffi
L

p
XN

n=1

1

1+
PN

m= 1;msnI½Sm;nR0:8� (Equation S12)

where L is the length of a query protein,N is the number of sequences in theMSA, Sm;n is the sequence identity between them-th and

n-th sequences, and I[ ] represents the Iverson bracket, which means I½Sm;n R0:8�= 1 if Sm;nR0:8, and 0 otherwise.

A brief outline of the DeepMSA methodology is provided below, which consists of three stages.

Stage 1: Starting from the input query sequence, HHblits (Remmert et al., 2012) from the HH-suite package (Steinegger

et al., 2019) is used to search against the UniClust30 database (Mirdita et al., 2016) with the same parameters used by Meta-

PSICOV2 (Buchan and Jones, 2018) to generate the first-level MSA. If there are not enough homologous sequences in the first-

level MSA, i.e., the number of effective sequences (Neff) of the first-level MSA generated by Stage 1 is <128, Stage 2 will be

performed.

Stage 2: Jump-starting from the first-level MSA, HHblits is again applied to search against a custom HHblits-formatted database

to generate the second-level MSA. The custom database is constructed as follows: Jackhmmer from the HMMER package (Eddy,

1998) is used to search the query sequence against the UniRef90 database (Suzek et al., 2014) to generate a list of sequences (hits).

Then esl-sfetch from theHMMERpackage is used to extract full-length hits from the list. These hits are finally converted into a custom

HHblits-formatted database by the ‘‘hhblitdb.pl’’ script from HH-suite. If the Neff of the second-level MSA is still <128, Stage 3 will be

performed.

Stage 3: Similar to Stage 2, the second-level MSA is used to jump-start an HHblits search against a new customHHblits-formatted

database to get the third-level MSA. The new custom database is built as follows: The second-level MSA is converted into a profile

Hidden Markov Model (HMM) by HMMbuild from the HMMER package. This HMM is then searched against the Metaclust (Steineg-

ger and Söding, 2018) metagenome sequence database by HMMsearch from HMMER to extract full-length hits. Finally, these hits

from HMMsearch are built into the new custom database.

Replica-exchange Monte Carlo in C-I-TASSER

To reduce the conformational search space, only the alpha carbon (Ca) atom of each residue is treated explicitly, and the Ca trace is

restricted to a three-dimensional underlying cubic lattice system with a lattice grid of 0.87 Å (Figure S2E). To preserve sufficient flex-

ibility for the conformational movements and geometric fidelity of the structure representation, the backbone length of the structural

model is allowed to fluctuate from 3.26 Å to 4.35 Å (i.e., the actual distance from Ca(i) to Ca(i+1) is required to be in the range [3.26 Å,

4.35 Å] in Figure S2E). As a result, there are 312 basic vectors representing the virtual and reasonable Ca-Ca bonds. The average

vector length is about 3.8 Å, which is consistent with the value from real proteins. Additionally, to reduce the configurational entropy,

the reasonable Ca-Ca bond angle is restricted to the experimental range [65�, 165�]. Note that all the allowable Ca-Ca bond combi-

nations are pre-calculated.

The positions of three consecutive Ca atoms define the local coordinate system used for the determination of the remaining two

interaction units: the beta carbon (Cb) (except glycine), and the center of side-group heavy atoms (SG) (except glycine and alanine).

The approximation is shown in Figure S2F. Let Vi-1 be the vector from Ca(i-1) to Ca(i), andUi-1 be the unit vector for Vi-1. Thus, the local

Cartesian coordinate system can be given in the form of:

Pi

*
= exi

*
=

Ui�1

*
+ Ui

*���Ui�1

*
+ Ui

*
��� (Equation S13)
Hi

*
= eyi

*
=

Ui�1

*
3 Ui

*���Ui�1

*
3 Ui

*
��� (Equation S14)
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Mi

*
= ezi

*
=

Ui�1

* � Ui

*���Ui�1

* � Ui

*
��� (Equation S15)

Note that Hi

*
is also the direction of the hydrogen bond (HB). Let Cb(i) be the position of the i-th Cb atom, and SG(i) be the position of

the i-th center of the side-group heavy atoms. Therefore, the corresponding vectors relative to Ca(i) can be represented as:

VCb
i ðAAiÞ

*
= xCbðAAiÞ � exi

*
+ yCbðAAiÞ � eyi

*
+ zCb½AAi� � ezi

*
(Equation S16)
VSG
i ðAAiÞ

*
= xSGðAAiÞ � exi

*
+ ySGðAAiÞ � eyi

*
+ zSGðAAiÞ � ezi

*
(Equation S17)

where the parameters xCbðAAiÞ, yCbðAAiÞ, zCbðAAiÞ, xSGðAAiÞ, ySGðAAiÞ, zSGðAAiÞ are amino acid type-dependent statistical values

that were extracted from the PDB.

The structure reassembly in C-I-TASSER is conducted by replica-exchange Monte Carlo (REMC) simulations. There are 6 types of

conformational movements used during the C-I-TASSER simulations (Figure S2G): (1) 2-bond vector walk; (2) 3-bond vector walk; (3)

4-bond vector walk; (4) 5-bond vector walk; (5) 6-bond vector walk; (6) N- or C-terminal randomwalk. To speed up the simulations, all

of the 2-bond and 3-bond conformations for any given distance vector spanning the moving window are pre-calculated, so that

movements (1) and (2) can be quickly conducted by a look-up table. Movements (3)-(5) can also be performed rapidly by recursively

conducting combinations of movements (1) and (2).

Following the standard REMC protocol, there areN simulation replicas that are implemented in parallel, with the temperature of the

i-th replica being:

Ti = Tmin

�
Tmax

Tmin

� i�1
N�1

(Equation S18)

where Tmin and Tmax are the temperatures of the first and the last replicas, respectively. N˛½40; 80�, Tmin˛½1:6 k�1
B ; 1:98 k�1

B �, and
Tmin˛½66 k�1

B ; 106 k�1
B �, depend on the protein size with larger proteins having more replicas and higher temperatures. These param-

eter settings can result in an acceptance rate of �3% for the lowest-temperature replica and �65% for the highest- temperature

replica for different size proteins.

After every 200*L local conformational movements, where L represents the protein length, a global swapmovement between each

pair of neighboring replicas is attempted following the standard Metropolis criterion with a probability of min

0
B@1; e

�
Ei�EjÞ

�
1
kTi

� 1
kTj

�1
CA,

where k is a constant and the temperature distribution is shown in Equation S18. This parameter setting results in an approximate

40% acceptance rate for the swap movement between each neighboring replica.

The C-I-TASSER simulations are governed by different energy terms that achieve various effects on the generation of nativelike

states. The overall force field used in C-I-TASSER is as follows:

E = w1E
Ca
Scon + w2E

Cb
Scon + w3E

Short
dist + w4E

Long
dist + w5E

Ca
Tcon + w6E

SG
Tcon

+ w7E
SG
burial + w8E

Ca
sec + w9Ecrumpling + w10E

frag
sec

+ w11E
Ca�SG
pair + w12E

SG
pair + w13E

Ca
P + w14E

Ca
NP + w15EHB

+ w16E
Ca
corr + w17E

SG
vol + w18E

SG
mvol + w19E

Ca
Spair1�5 + w20Ecprof + w21ENcon

(Equation S19)

There are a total of 21 energy terms in the C-I-TASSER force field, which can be categorized into seven energy groups (or E-

Groups). Those seven energy groups are (i) sequence-based contact restraints (ECa
Scon and ECb

Scon), (ii) template-based restraints

(EShort
dist , ELong

dist , ECa
Tcon and ESG

Tcon), (iii) burial interaction restraints (ESG
burial), (iv) secondary structure-based restraints (ECa

sec, Ecrumpling, and

Efrag
sec ), (v) pairwise potentials (ECa�SG

pair , ESG
pair , E

Ca
P , and ECa

NP), (vi) hydrogen bond restraints (EHB), and (vii) statistical restraints from the

PDB library (ECa
corr , E

SG
vol , E

SG
mvol, E

Ca
Spair1�5, Ecprof , and ENcon). The last six energy groups are classic I-TASSER force fields (Yang et al.,

2015; Zhang et al., 2003) and the first energy group is the newly added deep learning-based contact energy potentials.

Energy terms in the first group was developed for C-I-TASSER to account for the restraints from the predicted contacts. We define

it as the 3-gradient (3G) contact potential, as shown in Figure S2B, which has the following form for both Ca and Cb atoms:

E
Ca=Cb
Scon =

XL�1

i = 1

XL
j>i

E
Ca=Cb
Scon ðdijÞ (Equation S20)
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E
Ca=Cb
Scon ðdijÞ =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

�Uij; dij<dcut

�1

2
Uij

2
641� sin

0
B@dij �

�
dcut +D

2

�
D� dcut

p

1
CA
3
75; dcut%dij<D

1

2
Uij

2
641+ sin

0
B@dij �

�
D+ 80

2

�
ð80� DÞ p

1
CA
3
75; D%dij<80�A

Uij; dijR80�A

(Equation S21)

where dij is the Ca or Cb distance between the i-th and j-th residues of themodel andUij is calculated by Equation S10. dcut = 8�A andD

is a constant that depends on the protein length.

SPICKER for structural model selection

SPICKER (Zhang and Skolnick, 2004b) is a clustering algorithm to identify the near-native models from a pool of protein structure

decoys. The conformations generated in the ten lowest-temperature replicas during the refinement simulation are clustered by

SPICKER, with the purpose of identifying low free energy states. Cluster centroids are then obtained by averaging the 3D coordinates

of all the clustered structural decoys. Since the centroid models often contain steric clashes, a second round of assembly simulations

are conducted by C-I-TASSER to remove the local clashes and to further refine the global topology. Starting from the cluster centroid

conformations, the REMC simulations are performed again. The distance and contact restraints in the second-round of the C-I-

TASSER simulations are taken from the combination of the centroid structures and the PDB structures searched by the structure

alignment program TM-align (Zhang and Skolnick, 2005) based on the cluster centroids. The conformation with the lowest energy

in the second round is selected. Finally, REMO (Li and Zhang, 2009) is used to add backbone atoms (N, C, O) and FASPR (Huang

et al., 2020) is used to build side-chain rotamers.

FG-MD for protein structure refinement

The FG-MD (Zhang et al., 2011) protocol is a molecular dynamics (MD) based algorithm for atomic-level protein structure refinement.

Starting from a target protein structure, the sequence is split into separate secondary structure elements (SSEs). The substructures of

every three consecutive SSEs, together with the full-length structure, are used as probes to search through a non-redundant PDB

library by TM-align (Zhang and Skolnick, 2005) for structure fragments closest to the target. The top 20 template structures with

the highest TM-scores (Zhang and Skolnick, 2004a) are used to collect spatial restraints. Simulated annealing molecular dynamics

simulations are then carried out using a modified version of LAMMPS (Plimpton, 1993), which is guided by the distance map re-

straints, a knowledge-based hydrogen-bonding potential and AMBER99 force field (Ponder and Case, 2003). The final refined

models are selected on the basis of the sum of the Z-score of the hydrogen bonds, Z-score of the number of steric clashes, and

Z-score of the FG-MD energy.

Model quality estimation of C-I-TASSER

The global quality of a structural model is usually assessed by the TM-score between the model and the experimental structure:

TM� score =
1

L

XLali
i = 1

1

1+

�
di
d0

�2
(Equation S22)

where L is the number of residues, di is the distance between the i-th aligned residue, and d0 = 1:24,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L� 153

p � 1:8 is a scaling factor.

The TM-score ranges between 0 and 1, with TM-scores R0.5 indicating that the structure models have correct global topologies.

Stringent statistics showed that TM-score >0.5 corresponds to a similarity with two structures having the same fold defined in

SCOP/CATH (Xu and Zhang, 2010).

It should be noted that TM-score can be discrepant with the widely used root-mean-square deviation (RMSD) for some protein

structure pairs. This is mainly because by definition, RMSD (=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i = 1

d2
i

s
) is calculated as an average of distance error (di) with equal

weight over all residue pairs. Therefore, a large local error on a few residue pairs can result in a quite large RMSD. On the other hand,

by putting di in the denominator of Equation S22, TM-score naturally weights smaller distance errors more strongly than larger dis-

tance errors. Therefore, TM-score value is more sensitive to the global structural similarity rather than to the local structural errors,

compared to RMSD. Another advantage of TM-score is the introduction of the scale d0 = 1:24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L� 153

p � 1:8 whichmakes the magni-

tude of TM-score length-independent for random structure pairs, while RMSD is a length-dependent metric (Zhang and Skolnick,

2004a). Due to these reasons, our discussion of modeling results is mainly based on TM-score. Since RMSD is intuitively more

familiar to most readers, however, we also list RMSD values when necessary in the manuscript.

In the process of real-world protein structure prediction experiment, we often do not have the experimental structure to calculate

the TM-score relative to the native. Therefore, an estimation of the modeling accuracy is essential to decide how the users should
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utilize the models in their own research. In this study, the accuracy of the C-I-TASSER structure models is estimated through calcu-

lation of the confidence score (C-score) and the estimated TM-score (eTM-score) of the structure assembly simulations:

C� score=w1ln

�
M

Mtotal

,
1

CRMSDD

�
+w2 ln

 Y
m

ZðmÞ
Z0ðmÞ

!
+w3ln

 
O
�
CMmodel;CMpred

	
N
�
CMpred

	
!

(Equation S23)
eTM� score= a,ðC� scoreÞ2 +b,ðC� scoreÞ+ c (Equation S24)

where Mtotal is the total number of decoy conformations used for clustering, M is the number of decoys in the top cluster, and

<RMSD> is the average RMSD among decoys in the same cluster. These three terms describe the extent of convergence of the

structure assembly simulations. Z(m) is the score of the top template by threading method,m, and Z0(m) is a cutoff above which tem-

plates are considered reliable/good. These Z-score related measures describe the significance of the LOMETS threading templates

and alignments. NðCMpredÞ is the number of predicted contacts used to guide the REMC simulation, and OðCMmodel;CMpredÞ is the

number of overlapped contacts between the final model and the predicted contacts. These three terms account for the contact satis-

faction rate. w1 = 0:77, w2 = 1:36 and w3 = 0:67 are free parameters. As for the estimated TM-score, three free parameters,

a=0.00098, b=0.10770, and c=0.79, were obtained by linear regression.

There were three parameters, w1, w2 and w3, that were trained in the definition of C-score in Equation S23. We trained the three

parameters based on the 797 proteins in the benchmark dataset. First, we equally split the 797 benchmark proteins into a training and

test set. We defined the binary classification problem as follows: the positives in the true condition were the targets in the training set

where the TM-score between the predicted model and the experimental structure was greater than or equal to 0.5, while the nega-

tives in the true condition were the targets in the training set with TM-scores <0.5; the positives in the predicted condition were the

targets with C-scoresR cutoff, while the negatives in the predicted condition were the targets with C-scores < cutoff. We varied each

parameter from 0 to 3 using an interval size of 0.01. When the three parametersw1,w2 andw3were fixed, the C-score for each target

in the training set could be calculated, and then the best C-score cutoff could be obtained by optimizing the Matthews correlation

coefficient (MCC) on the training set. Finally, we selected the parameter values that corresponded to the highest MCC. The optimal

parameters were w1 = 0:77, w2 = 1:36 and w3 = 0:67, and the corresponding C-score cutoff = -2.5 produced an MCC = 0.6735. We

also calculated the performance on the test set, which produced an MCC=0.6231, indicating the parameter selection was

reasonable.

We also analyzed the effect of C-score and estimated TM-score on evaluating the model quality as shown in Figures S5A and S5B.

We calculated the true TM-scores between the models and experimental structures, the C-scores for the predicted models, and the

estimated TM-scores for the predicted models on the benchmark dataset. We found that both the C-score and estimated TM-score

had a strong correlation with the real TM-score, with a Pearson Correlation Coefficient (PCC) of 0.7973 and 0.7961, respectively, on

the 797 benchmark proteins.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were analyzed using R (4.0.3) and are presented as the average values of different datasets. Details of specific statistical an-

alyses are included in themain text. For differences between distributions, we used the single-tailed Student’s t test of the hypothesis

that both individual distributions are drawn from the same underlying distribution, as indicated in the different parts of this study. Sta-

tistical significance was defined as p < 0.05.
e10 Cell Reports Methods 1, 100014, July 26, 2021
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Supplementary Figures 
 

 
Figure S1. Geographical distribution of I-TASSER server users, Related to the STAR Methods section 

“Methods Summary”. Overall, the I-TASSER server has completed predictions for 575,183 proteins submitted by 

137,497 users from 149 countries or regions until Octobor, 2020. (A) Geographical distribution of I-TASSER server 

usage. In the world map, different countries are colored from dark to light gray in descending order of the number of 

sequences submitted to the I-TASSER server. Different cities are marked by orange points, whose size is 

proportional to the number of registered I-TASSER users in these cities. (B) The pie chart for the percentage of the 

number of sequences submitted to I-TASSER by different countries among all submitted sequences. (C) The pie 

chart for the percentage of the number of registered I-TASSER users in different countries among all registered 

users. 
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Figure S2. The Running time, MSA analysis and simulation illustration for C-I-TASSER, Related to the 

STAR Methods section “Replica-exchange Monte Carlo in C-I-TASSER”. (A) The time complexity comparison 

between C-I-TASSER and I-TASSER. (B) Illustration of the sequence-based contact restraint. (C) The top L 

precision of long-range contact prediction for the 6 methods used in C-I-TASSER for MSAs with different 

logarithm Neff values at a base of 2. The 4 contact predictors colored in red utilize deep learning; and the 2 colored 

in cyan are meta-approaches.  (D) TM-scores of the C-I-TASSER models for MSAs with different logarithm Neff 

values using a base of 2. The black line represents the average TM-scores under each logarithm Neff bin with a bin 

width of 2.  Illustration of modeling and simulation setting in C-I-TASSER. (E) Reduced representation of an amino 

acid by a three-dimensional underlying cubic lattice system with a lattice grid of 0.87 Å. Only the alpha carbon (C) 

atom of each residue is treated explicitly. Considering the C of the i-th residue, C(i), the lattice cube is from (-5,-

5,-5) to (5,5,5). The C(i) is located at (0,0,0). The C of the previous (i-1)-th residue, C(i-1) is located at (3,-3,0) 

and the C-C bond length between C(i-1) and C(i) is 3.69 Å. The C of the next (i+1)-th residue, C(i+1), is 

located at (3,4,0) and the C-C bond length between C(i+1) and C(i) is 4.35 Å. Additionally, the C-C bond 

angle is 98º. (F) Determination of the positions for the C and center of side-group heavy atoms. The positions of 

three consecutive Cα atoms are used to define a local coordinate system for the determination of the beta carbon (C) 

(except glycine), and the center of side-group heavy atoms (SG) (except glycine and alanine). 𝑉𝑖−1
⃑⃑ ⃑⃑ ⃑⃑  ⃑ is the vector from 

C(i-1) to C(i), and 𝑈𝑖−1
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   is the unit vector for 𝑉𝑖−1

⃑⃑ ⃑⃑ ⃑⃑  ⃑. The cross product of 𝑈𝑖−1
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   and 𝑈𝑖

⃑⃑  ⃑, 𝑈𝑖−1
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  × 𝑈𝑖

⃑⃑  ⃑, is the direction of 

the hydrogen bond (HB). (G) Conformational movements in the C-I-TASSER Monte Carlo simulations. The cyan 

and red lines are the Cα traces before and after the movements, respectively. There are 6 types of conformational 

movements in the C-I-TASSER simulations: (1) 2-bond vector walk; (2) 3-bond vector walk; (3) 4- bond vector 

walk; (4) 5-bond vector walk; (5) 6-bond vector walk; (6) N- or C-terminal random walk.  
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Figure S3. The simulation analysis and the performance on Easy targets for C-I-TASSER, Related to Figure 

2 and Figure 3. (A) The trajectories of contact satisfaction rate (CSR) of the I-TASSER folding simulations on 

4v00. The same scale as Figure 3B is used here. The comparison of contact satisfaction rate (CSR) in the final 

models by I-TASSER and C-I-TASSER. (B) CSRa; (C) CSRp; (D) CSRn. C-I-TASSER modeling results on the 455 

Easy targets in the benchmark dataset. (E) Comparison between TM-scores of the first models built by C-I-TASSER 

and I-TASSER for different target types on the 455 Easy target proteins. The blue circles represent Easy targets. (F) 

Impact of threading alignments and contact-map predictions on fold results for 455 Easy targets. Four regions are 

depicted based on whether or not the threading templates were good (TM-score 0.5) or the predicted contacts were 

accurate (Precision 0.5). The red circles denote the targets that can be folded by both C-I-TASSER and I-TASSER 

with a TM-score 0.5; the black points are the targets that can only be folded by C-I-TASSER and not I-TASSER; 

the yellow crosses are the targets that can only be folded by I-TASSER and not C-I-TASSER; the blue crosses 

indicate the targets that cannot be folded by either C-I-TASSER or I-TASSER.  
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Figure S4. The 32 representative targets in CASP13 for which C-I-TASSER generated high-quality models, 

Related to the STAR Methods section “Methods Summary”.  The C-I-TASSER models are colored in red, while 

the experimental structures are in cyan.   

  



 

 

5 

 

 
Figure S5. The model quality estimation and comparison with the state of the art for C-I-TASSER, Related to 

the STAR Methods section “Model quality estimation of C-I-TASSER” and Figure 4. The relationship between 

the TM-score of the first model generated by C-I-TASSER and two measures, (A) C-score, and (B) Estimated TM-

score, for estimating the model quality. Venn diagrams for the number of successful models or novel folds for Pfam 

families modeled by C-I-TASSER and the three other selected methods: (C) Rosetta, (D) DMPfold and (E) 

PconsFam. Since our Pfam dataset includes the greatest number of Pfam families, we restricted the successful 

models and novel folds detected by C-I-TASSER to the Pfam datasets used by either Rosetta, DMPfold, or 

PconsFam in this comparison.   
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Figure S6. Case study on Pfam families, Related to Figure 4. 5 naïve folds that were regarded as Hard, i.e., only a 

single helix (red), and the other 38 families that were regarded as Easy (black) by LOMETS. In each case, the model 

is shown in rainbow color and the solved experimental structure of the member from the same Pfam family, if 

available, is shown in gray.  
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Supplementary Tables 
 

Table S1. Comparison between the results of C-I-TASSER, I-TASSER, CNS, trRosetta models and LOMETS 

templates for different target types on the benchmark dataset, Related to Figure 2. P-values were calculated 

between the TM-scores for the C-I-TASSER models and others using paired one-sided Student’s t-tests. #{TM-

score 0.5} is the number of targets with a TM-score 0.5.  

 

Target Method TM-score P-value #{TM-score 0.5} 

Hard (342) 

 

C-I-TASSER 0.573 * 224 
I-TASSER 0.392 5.07E-50 88 
LOMETS 0.289 1.20E-55 21 
CNS 0.498 7.35E-28 173 
trRosetta 0.500 5.51E-7 155 

Easy (455)  C-I-TASSER 0.765 * 441 

I-TASSER 0.741 2.49E-28 429 

LOMETS 0.657 1.85E-68 382 

CNS 0.408 1.62E-76 113 

trRosetta 0.534 1.99E-53 221 

All (797)  C-I-TASSER 0.683 * 665 

I-TASSER 0.591 1.32E-80 517 

LOMETS 0.499 1.55E-121 403 

CNS 0.446 8.15E-115 286 

trRosetta 0.519 1.17E-53 376 

 

 
Table S2. Comparison between the results of C-I-TASSER, I-TASSER and LOMETS templates for targets 

on the membrane protein dataset, Related to the STAR Methods section “Collection of membrane protein 

dataset”. Note that all targets are LOMETS Hard targets. P-values were calculated between the TM-scores for the 

C-I-TASSER models and others using paired one-sided Student’s t-tests. #{TM-score 0.5} is the number of targets 

with a TM-score 0.5.  

 

Target Method TM-score P-value #{TM-score 0.5} 

All (80) 

LOMETS 0.311 9.86E-15 10 

I-TASSER 0.429 3.74E-13 24 

C-I-TASSER 0.668 * 68 
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Table S3. Summary of the modeling results of the top-20 server groups in the CASP13 experiment, Related to 

the STAR Methods section “Methods Summary”. Here, C-I-TASSER is registered as ‘Zhang-Server’. QUARK 

from the Yang Zhang Lab was not listed because it utilized the C-I-TASSER models for some of the TBM domains. 

Data were taken from the official CASP13 webpage at https://predictioncenter.org/casp13/.  

 

# Groups Ndomains TM-score Z-score(TM) GDT Z-score(GDT) 

1 Zhang-Server 112 0.685 1.143 0.625 1.180 

2 RaptorX-DeepModeller 112 0.670 1.026 0.613 1.065 

3 RaptorX-TBM 112 0.644 0.813 0.587 0.835 

4 BAKER-ROSETTASERVER 111 0.606 0.692 0.553 0.750 

5 RaptorX-Contact 112 0.603 0.700 0.533 0.675 

6 MULTICOM-CONSTRUCT 112 0.597 0.534 0.547 0.565 

7 MULTICOM_CLUSTER 112 0.590 0.516 0.539 0.550 

8 MULTICOM-NOVEL 112 0.588 0.492 0.538 0.528 

9 Yang-Server 109 0.593 0.489 0.535 0.493 

10 Zhou-SPOT-3D 112 0.578 0.481 0.523 0.486 

11 FALCON 112 0.565 0.387 0.516 0.387 

12 IntFOLD5 112 0.566 0.378 0.514 0.385 

13 Zhang-CEthreader 112 0.567 0.393 0.507 0.373 

14 MESHI-server 57 0.683 0.342 0.615 0.361 

15 Seok-server 112 0.575 0.330 0.526 0.355 

16 CMA-align 107 0.564 0.346 0.505 0.321 

17 AWSEM-Suite 111 0.527 0.210 0.459 0.147 

18 slbio_server 99 0.524 0.071 0.480 0.117 

19 Seok-assembly 81 0.476 -0.019 0.433 0.008 

20 FALCON-TBM 112 0.478 -0.063 0.431 -0.058 
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Table S5. Summary of C-I-TASSER models for all 24 SARS-CoV-2 proteins, Related to Figure 6. 

 

SARS-Cov-2 
Length 

(AA) 

Experimental 

(PDB ID) 
Range 

Neff of 

MSA 

TM-score 

of Model 

Estimated 

TM-score 

of Model 

TM-score 

of 

LOMETS 

Host translation inhibitor. (nsp1) 180 7K3N_A 1-180 2.1 0.85 0.87 0.81 

Non-structural protein 2. (nsp2) 638   2.8  0.40  

Papain-like proteinase. (PL-PRO, nsp3) 1945 

7KAG_A 1-111 1.8 0.74 

0.90 

0.73 

6W6Y_A 207-379 203.3 0.95 0.91 

6W9C_A 748-1060 5.9 0.97 0.96 

 

1260-1945 

(d1:1260-1410;) 

(d2:1411-1576;) 

(d3:1577-1945;) 

   

Non-structural protein 4. (nsp4) 500   2.5  0.53  

Proteinase 3CL-PRO. (nsp5) 306 6LU7_A 1-306 2.4 0.98 0.96 0.90 

Non-structural protein 6. (nsp6) 290   6.8  0.37  

Non-structural protein 7. (nsp7) 83 7BTF_C 1-83 2.5 0.67 0.63 0.38 

Non-structural protein 8. (nsp8) 198 

7CYQ_D 1-198 1.9 0.57 

0.88 

0.54 

7CYQ_D (d1:1-83;) 2.4 0.82 0.78 

7BTF_D (d2:84-132;) 3.0 0.95 0.94 

Non-structural protein 9. (nsp9) 113 6W9Q_A 1-113 2.7 0.95 0.93 0.88 

Non-structural protein 10. (nsp10) 139 6W75_B 1-139 2.1 0.92 0.90 0.88 

RNA-directed RNA polymerase (RdRp). (nsp12) 932 6M71_A 1-932 2.0 0.96 0.80 0.91 

Helicase (Hel). 601 5RL9_A 1-601 166.7 0.94 0.99 0.91 

Guanine-N7 methyltransferase (ExoN). 527   1.1  0.99  

Uridylate-specific endoribonuclease (NendoU). 

(nsp15) 
346 6VWW_A 1-346 3.5 0.99 0.99 0.94 

2'-O-methyltransferase (2'-O-MT). (nsp16) 298 6W75_A 1-298 6.1 0.97 0.99 0.93 

Surface glycoprotein (S). 1273 
6VXX_A 

(closed state) 
27-1146 2.3 0.97 0.98 0.86 

ORF3a. 275 6XDC_A 1-275 0.4 0.30 0.28 0.20 

E. 75 7K3G_A 8-39 4.5 0.46 0.60 0.40 

M. 222   2.9  0.37  

ORF6. 61   0.4  0.54  

ORF7a. 121 6W37_A 16-82 0.2 0.97 0.72 0.90 

ORF8. (ns8) 121 7JTL_A 1-121 0.4 0.27 0.45 0.19 

N. 419 
6M3M_A 50-174 4.2 0.95 

0.67 
0.75 

6YUN_A 249-364 4.9 0.88 0.77 

ORF10. 38   0.2  0.49  
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