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1 Supplementary Figures and Tables

(a) Exon skipping

(c) Alternative donor

(b) Intron retention

(d) Alternative acceptor
 

Figure S1: Four types of simple alternative splicing events. Blue rectangles represent constitutive exon
or exonic segments. Orange rectangles represent alternatively spliced ones. (a) The usage of the marked
acceptor site defines the relative abundance of the inclusion of the skipped exon. (b) For intron retentions,
the usage of the marked splice site defines the relative abundance of the inclusion of the intron. For
alternative donors (c) and alternative acceptors (d), the usage of the marked donor and acceptor sites
determine the relative abundance of the two alternative events.
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{1} 16
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{1−2−4} 0
{1−3−4} 0
{2} 4
{2−4} 1
{3} 4
{3−4} 4
{4} 15

Figure S2: An illustrative example showing signatures with their corresponding read counts. McSplicer
estimates exon start and end site usages from these signagture counts rather than from individual read
alignments. In this example, three transcripts imply a partitioning into 6 segments, 4 of which are part
of exons and contain reads. Read colors indicate the originating transcript.
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Figure S3: (a) An example of an exon skipping event involving comparable splice sites, see their def-
inition in Section 2.6.2. The splice sites s4 and s5 are used exclusively by t1, but splice sites s3 and s6
are common donor and acceptor sites to all three transcripts t1, t2, and t3. (b) An example of an exon
skipping event with non-comparable splice sites. The splice sites s4 and s5 are used exclusively by t1.
The splice sites s3 and s6 denote the common donor and acceptor sites of t1 and t2, Transcript t3, however,
is inconsistent with both t1 and t2 in its use of splice sites s3 . . .s6.
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Figure S4: Examples of complex patterns of alternative splicing [2]. Green and grey arrows highlight
the corresponding varying donor and acceptor splice sites, respectively. These are illustrative examples
of the varying non-redundant splice sites which we consider in our benchmark.
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Figure S5: MAJIQ computes the percent selected index (ψ) for each junction involved in a local splicing
variation (LSV) which denotes its fractional usage. An exon skipping event can be inferred either from
the estimated ψ value of edge e1 connecting source LSV (sLSV) to the cassette exon, or edge e3 con-
necting the cassette exon to the target LSV (tLSV). We notice that the estimated usage E[PSI(e3)] tends
to be slightly more accurate than E[PSI(e1)].
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Figure S6: Accuracy of McSplicer and competing methods in quantifying the usage of variable splice
sites from 50 million simulated RNA-seq reads. For MAJIQ, here we consider the estimated ψ value of
the edge incident to the source LSV. See Fig. S5 for an illustration.
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Figure S7: Accuracy of McSplicer and competing methods in quantifying the usage of variable splice
sites from 50 million simulated RNA-seq reads. Events that McSplicer and competing methods have
pairwise in common are considered. SplAdder is limited to the quantification of simple AS events.
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Figure S8: Accuracy of McSplicer and competing methods in quantifying the usage of variable splice
sites from 20 million simulated RNA-seq reads. For each method, only splice sites in events that the
method reports and quantifies are considered. SplAdder is limited to the quantification of simple events.
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Figure S9: Accuracy of McSplicer and competing methods in quantifying the usage of variable splice
sites from 75 million simulated RNA-seq reads. For each method, only splice sites in events that the
method reports and quantifies are considered. SplAdder is limited to the quantification of simple events.
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Figure S10: Accuracy of McSplicer and competing methods in quantifying the usage of comparable vs.
non-comparable splice sites from 50 million simulated RNA-seq reads. For each method we report KL
divergences on comparable splice sites over all types of events. For McSplicer we additionally show KL
divergences for all non-comparable splice sites. Note that KL divergences reported for SplAdder do not
include complex events, on which MAJIQ and PSGInfer obtained substantially less accurate estimates,
see Figure 4 and Table S2. In contrast to comparable splice sites that are included or excluded in only
one unique way across all expressed transcripts, non-comparable splice sites may be overlapped by an
arbitrary number of transcripts with varying exon-intron structure.
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20M 50M 75M
PSGInfer 147.37 423.17 639.72
McSplicer 51.47 62.11 66.63

MAJIQ 55.62 58.02 60.87
SplAdder 10.77 13.50 20.14
StringTie 1.93 2.77 4.06

Figure S11: Running times in minutes of PSGInfer, McSplicer, MAJIQ, SplAdder and StringTie on the
20, 50, and 75 million simulated RNA-seq reads data sets. The running time reported for McSplicer
includes the time needed to partition genes into non-overlapping segments and to count reads that map
to the same sequence of segments (signature counts, see Methods) The running times were measured on
an Intel Xeon CPU @2.30GHz with 320 GB memory. McSplicer, MAJIQ, and SplAdder were run in
single-thread mode, while PSGInfer was run with 72 threads to speed up computation.
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Figure S12: Peak memory usage measured for all methods on the largest simulated RNA-seq data set with
75 million reads. Peak memory usages were 34.69 GB for PSGInfer, 2.90 GB for McSplicer, 2.43 GB
for SplAdder, 1.14 GB for MAJIQ, and 0.33 GB for StringTie. Note that memory usage of PSGInfer
includes the read mapping step using Bowtie [3] which could not be separated from PSGInfer’s inference
algorithm called by a single command psg infer frequencies. All other methods exclude read mapping.
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(a) Donor 1.
Spearman’s ρ = 0.774.
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(b) Donor 2.
Spearman’s ρ = 0.769.
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(c) Donor 3.
Spearman’s ρ = 0.774.
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(d) Donor 4.
Spearman’s ρ = 0.782.
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Spearman’s ρ = 0.798.

Figure S13: McSplicer results on spike-in RNA variants (SIRV) on 5 different SIRV samples. Ground
truth splice site usages computed from known mixing ratios of SIRV isoforms are compared to usages
estimated by McSplicer. Out of 38 variable splice sites, 26 belong to simple events and 12 belong to
complex events. All these variable splice sites were correctly identified by StringTie and hence their
usage estimated by McSplicer. Across the five samples, StringTie reported between 1 and 6 false splice
sites within SIRV genes, which corresponds to a precision in splice site detection of approximately 99%.
ES: exon skipping; A5SS: alternative 5’ splice site; A3SS: alternative 3’ splice site; CMPLX: complex
event; IR: intron retention. 6



0.0 0.2 0.4 0.6 0.8 1.0
Ground truth usage

0.0

0.2

0.4

0.6

0.8

1.0

Sp
lA

dd
er

P
SI

ES
A3SS

A5SS
IR

CMPLX

(a) Donor 1.
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Figure S14: SplAdder results on spike-in RNA variants (SIRV) on 5 different SIRV samples. Ground
truth splice site usages computed from known mixing ratios of SIRV isoforms are compared to usages
estimated by SplAdder. Out of 38 variable splice sites, 26 belong to simple events and 12 belong to
complex events. ES: exon skipping; A5SS: alternative 5’ splice site; A3SS: alternative 3’ splice site;
CMPLX: complex event; IR: intron retention.
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(d) Donor 4.
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Figure S15: MAJIQ results on spike-in RNA variants (SIRV) on 5 different SIRV samples. Ground
truth splice site usages computed from known mixing ratios of SIRV isoforms are compared to usages
estimated by MAJIQ. Out of 38 variable splice sites, 26 belong to simple events and 12 belong to complex
events. ES: exon skipping; A5SS: alternative 5’ splice site; A3SS: alternative 3’ splice site; CMPLX:
complex event; IR: intron retention.
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transcript t Z = (Z1, . . . ,Z8) w(t) = P(Z1, . . . ,Z8)

t1 z[1:8](1,1,0,1,0,0,1,1) π×1×q1× p2×q2× (1− p3)× p4× (1−q3)

t2 z[1:8](0,1,0,0,0,1,1,1) (1−π)× p1×q1× (1− p2)×1× p3×1× (1−q3)

t3 z[1:8](1,1,0,0,0,0,1,0) π×1×q1× (1− p2)×1× (1− p3)× p4×q3

Table S1: The relative abundances defined by the McSplicer model for the three transcripts presented in
Fig. 3 and Fig. S16.

Exon skipping Alt. acceptor Alt. donor Intron retention Complex Total
AStalavista (all) 1740 544 295 318 1206 4103

AStalavista (comparable) 475 229 129 134 508 1475
MAJIQ (comparable) 371 106 81 89 429 1076

SplAdder (comparable) 366 150 87 25 - 628
PSGInfer (comparable) 330 127 56 128 88 729
StringTie (comparable) 455 209 120 127 487 1398
McSplicer (comparable) 455 209 120 127 487 1398
McSplicer (non-comp.) 1070 292 153 180 502 2197

Table S2: The first row shows the total number of variable splice sites (i.e., comparable and non-
comparable), while the second row provides the number of comparable splice sites among them. The
values in the first two rows are obtained from ground truth transcript expressions and classified by type
as labeled by AStalavista. Each simple event contains by definition one variable splice site whose usage
uniquely quantifies the event (see Figure S1), while for complex events we consider one or two variable
splice sites that are comparable (see Figure S4). The following rows show the number of variable splice
sites classified by event type as quantified by each of the five methods in the simulated RNA-seq data
set with 50 million reads. For McSplicer we additionally provide the number of non-comparable sites
quantified. Note that McSplicer estimates the usage of all splice sites reported by StringTie. StringTie
correctly identifies approximately 96% of all splice sites in our benchmark (computed from the values
above) and reports few false splice sites (precision ≈ 96%).
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Gene name chr Splice Site Mutated Control Effect size Event type
BCL7B 7 72966572 0.786 (0.784,0.792) 0.956 (0.953,0.960) -1.06 ES

ENOPH1 4 83378068 0.624 (0.622, 0.628) 0.991 (0.991,0.993) -0.20 ES
YME1L1 10 27431414 0.353 (0.349,0.356) 0.81 (0.810,0.813) -0.36 ES
PPP4R2 3 73112824 0.463 (0.459,0.466) 0.951 (0.950,0.955) -0.32 ES

TMBIM6 12 50153004 0.887 (0.887,0.889) 0.945 (0.948,0.949) -0.05 ES
IDUA 4 997837 0.209 (0.208,0.211) 0.0 ∞ Novel A5SS

CORO1B 11 67208804 0.054 (0.051,0.055) 0.0 ∞ Novel A5SS
SHPRH 6 146266702 0.546 (0.529,0.582) 0.0 ∞ Novel IR
PCSK7 11 117098932 0.67 (0.631,0.776) 0.969 (0.967,0.971) -0.16 Novel IR

ELOVL1 1 43829994 0.200 (0.200,0.215) 0.0 ∞ Novel IR

Table S3: McSplicer splice site usage estimates on mutated and control Autism samples with 95% boot-
strapping confidence intervals shown in parentheses. We compute the effect size using the difference in
the estimated splice site usages between mutated and control samples in log scale. There is no RNA-
seq read evidence supporting the novel splice sites for the control samples in genes IDUA, CORO1B,
SHPRH, and ELOVL1, hence we report the usage estimate as 0 and the effect size for these genes as ∞.
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2 Methods

After introducing necessary notation in Section 2.1, we will introduce the inhomogeneous Markov chain
model of McSplicer in Section 2.2, present the likelihood of the model parameters in Section 2.3, describe
the EM algorithm for estimating the parameters in Section 2.4, and provide a detailed description of
algorithms to compute quantities used by the EM algorithm in Section 2.5.

2.1 Notations

In this section we introduce the notation used to describe our method McSplicer. As described in the
main part of this work, we assume that exon start and end sites for a gene are given. This information
can be obtained from known gene annotations or inferred from RNA-seq data using methods such as
StringTie. Suppose we have Ms exon start sites s1, . . . ,sMs , and Me exon end sites e1, . . . ,eMe , excluding
the start site of the first exon and the end site of the last exon. All exon start and end sites partition the
gene into M segments, X1, . . . ,XM, where M =Ms+Me+1. We introduce a sequence of hidden variables,
Z = (Z1, . . . ,ZM), where Zi is an indicator for whether segment Xi is part of a transcript 1 (Zi = 1) or not
(Zi = 0).

We define a subpath s by a sequence of states for (Za, . . . ,Zb), 1≤ a≤ b≤M. Specifically, a subpath
s = z[a:b](oa, . . . ,ob), where oi ∈ {0,1} for i = a, . . . ,b, is defined by Za = oa,Za+1 = oa+1, . . . ,Zb = ob.
In other words, a subpath s = z[a:b](oa, . . . ,ob) describes whether each of the segments from Xa to Xb
belongs to a transcript or not. Then, the probability of a subpath s is:

P(z[a:b](oa, . . . ,ob)) = P(Za = oa,Za+1 = oa+1, . . . ,Zb = ob), (1)

which is given by our inhomogeneous Markov chain model. A path t is a subpath with a = 1 and b = M.
A transcript can be represented by a path t, i.e., a sequence of states for Z = (Z1, . . . ,ZM). Figure S16
shows an illustrative example of a gene with three transcripts which have four exon start sites and three
exon end sites. These exon start and end sites divide the gene into eight segments (Ms = 4, Me = 3,
and M = 8). For example, a path t = z[1:8](1,1,0,1,0,0,1,1) (i.e., Z = (1,1,0,1,0,0,1,1)) indicates
transcript t1, and a subpath s = z[3:5](0,1,0) indicates a subpath obtained from the same transcript t1.

We define the length of a subpath s = z[a:b](oa, . . . ,ob), denoted by l(s), by the number of bases
included as part of a transcript:

l(s) = l(z[a:b](oa, . . . ,ob)) = ∑
a≤i≤b:oi=1

l(Xi), (2)

where l(X j) is the number of bases in segment X j. In the example of Figure S16, let us consider a subpath
of the transcript t1, s = z[3:5](0,1,0). Then, l(s) = l(z[3:5](0,1,0)) = l(X4). Similarly, we can define the
length of a transcript (or a path), denoted by l(t), by the number of bases included in the exonic regions
of that transcript:

l(t) = l(z[1:M](o1, . . . ,oM)) = ∑
1≤i≤M:oi=1

l(Xi). (3)

In the example shown in Figure S16, transcript t1 has length l(t1) = l(z[1:8](1,1,0,1,0,0,1,1)) = l(X1)+
l(X2)+ l(X4)+ l(X7)+ l(X8).

1We use terms transcript and isoform interchangeably to refer to a splice variant of a gene.
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Figure S16: Hidden variables for segments defined by 3 different transcripts. The three sequences
(1,1,0,1,0,0,1,1),(0,1,0,0,0,1,1,1), and (1,1,0,0,0,0,1,0) represent the three transcripts t1, t2, and
t3, respectively.

We use F(s) to denote the index of the first segment in a subpath s which is part of a transcript,
and use L(s) to denote the index of the last segment in a subpath s which is part of a transcript. In the
example shown in Figure S16, let us consider a subpath of t1, s = z[3:5](0,1,0). Then, F(s) = 4 and
L(s) = 4. For transcript t1 path t1 = z[1:8](1,1,0,1,0,0,1,1), F(t1) = 1 and L(t1) = 8. For transcript
t2, path t2 = z[1:8](0,1,0,0,0,1,1,1), F(t2) = 2 and L(t2) = 8. Similarly, for transcript t3 path t3 =
z[1:8](1,1,0,0,0,0,1,0), F(t3) = 1 and L(t3) = 7.

2.2 An inhomogeneous Markov chain model

In this section, we describe an inhomogeneous Markov chain to model the relative abundance of tran-
scripts. We assume that Z = (Z1, . . . ,ZM) follows an inhomogeneous Markov chain. Specifically, for the
first segment X1,

P(Z1 = 1) = π. (4)

For two consecutive segments Xi and Xi+1 for i = 1, . . . ,M−1 that are separated by exon start site sm for
m = 1, . . . ,Ms (i.e., i = I(sm), where I(sm) is the index of the segment which appears on the left side of
exon start site sm),

P(Zi+1 = 1|Zi = 0) = pm, (5)

P(Zi+1 = 1|Zi = 1) = 1. (6)

If they are separated by exon end site em for m = 1, . . . ,Me (i.e., i = I(em), where I(em) is the index of
the segment which appears on the left side of exon end site em),

P(Zi+1 = 0|Zi = 0) = 1, (7)

P(Zi+1 = 0|Zi = 1) = qm. (8)

12



t3

t2

t1

X1 X3 X4 X5 X6 X7 X8
s1 s2 s3 s4e1 e2 e3

X2

exon end site

rn

rm

exon start site

Figure S17: An example of a gene with three transcripts, the same as the one shown in Figure S16. Here,
read rn was derived from the first transcript (Tn = t1) and is compatible with our model. In contrast, rm is
not compatible with our model since the two segments X1 and X2 are separated by exon start site s1 and
thus our model does not allow Sm = z[1:4](1,0,0,1).

With this transition probability, we do not allow transcripts where Zi = 1 and Zi+1 = 0 for i = I(sm),
or Zi = 0 and Zi+1 = 1 for i = I(em). The parameters p = (p1, . . . , pMs) and q = (q1, . . . ,qMe) indicate
probabilities of using exon start sites and exon end sites, respectively. Precisely, these are conditional
probabilities given that each site is considered for potential use. For example, with the current segment
being part of a transcript (i.e., Zi = 1), the splicing process ignores an exon start site (i.e., P(Zi+1 = 1|Zi =
1) = 1 if i = I(sm)) while it considers an exon end site for potential use (i.e., P(Zi+1 = 0|Zi = 1) = qm if
i = I(em)). Table S1 lists probabilities for the three transcripts (or paths) in Figure S16 under our Markov
model. Furthermore, to handle different transcript start and end sites within a gene, we introduce artificial
starting and end points (i.e., reference points) in the implementation of this model.

2.3 Likelihood of the parameters Θ = (π, p1, . . . , pMs,q1, . . . ,qMe)

In this section we present the likelihood of the model parameters. Suppose we have RNA-seq reads
mapped to a particular gene. The reads are derived from one end of each of the N fragments and each
read has length L. We assume that each fragment is independently generated from one of the possible
transcripts allowed by our model. We denote the sequence of the n-th read as rn. Tn represents the
transcript from which rn was generated. Sn denotes the shortest subpath of Tn from which rn is derived.
Bn denotes the start position of rn in Tn. For example, Figure S17 shows that rn was derived from the first
transcript (i.e., Tn = t1), thus Tn = z[1:8](1,1,0,1,0,0,1,1). The shortest subpath of Tn from which read n
was derived is Sn = z[2:4](1,0,1).

Assuming all rn are derived from transcripts that are allowed in our model (i.e., P(rn)> 0 for all rn),
we remove reads that are not compatible with our model (see Figure S17). The likelihood of Θ can be
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written as:

P(r|Θ) =
N

∏
n=1

P(rn|Θ)

=
N

∏
n=1

[
∑

t
P(rn,Tn = t|Θ)

]
=

N

∏
n=1

[
∑

t

[
∑

(s,b):s⊂t
P(rn,Sn = s,Bn = b,Tn = t|Θ)

]]
where s⊂ t means s is a subpath of t,

=
N

∏
n=1

[
∑

t

[
∑

(s,b):s⊂t
P(rn|Sn = s,Bn = b)P(Sn = s,Bn = b|Tn = t)P(Tn = t|Θ)

]]
=

N

∏
n=1

[
∑

t

[
∑

(s,b):s⊂t,(s,b)→rn

1
1

l(t)
l(t)wΘ(t)

D(Θ)

]]
where (s,b)→ rn denotes that rn is the length L sequence starting at position b

in the concatenation of segments in s,

=
N

∏
n=1

[
∑

t

[
∑

(s,b):s⊂t,(s,b)→rn

wΘ(t)
D(Θ)

]]
,

(9)

where D(Θ) = ∑t l(t)wΘ(t). l(t) represents the (effective) length [9] of transcript t, and wΘ(t) represents
the relative frequency (probability) of transcript t.

2.4 Parameter estimation using the EM algorithm

We use an EM algorithm to compute the maximum likelihood estimate for the model parameters Θ =
{π, p,q}, that is, Θ̂ := argmaxΘP(r|Θ). In this section we describe the EM-steps to obtain the MLE for
our model parameters. Let Zn = (Zn

1 , . . . ,Z
n
M) represent the isoform Tn, that is, the path from which read

14



n was derived. Then, the complete data likelihood, P(r,Z|Θ) = ∏N
n=1P(rn,Zn|Θ), can be written as

N

∏
n=1

[
∑

(s,b):s⊂Zn

P(rn,sn = s,bn = b,Zn|Θ)
]

where s⊂ Zn means s is a subpath of the path Zn,

=
N

∏
n=1

[
∑

(s,b):s⊂Zn

P(rn|sn = s,bn = b)P(sn = s,bn = b|Zn)P(Zn|Θ)
]

=
N

∏
n=1

[
∑

(s,b):s⊂Zn,(s,b)→rn

1
1

l(Zn)

l(Zn)wΘ(Zn)

D(Θ)

]
=

N

∏
n=1

[
∑

(s,b):s⊂Zn,(s,b)→rn

wΘ(Zn)

D(Θ)

]
=

N

∏
n=1

[C(rn,Zn)wΘ(Zn)

D(Θ)

]

(10)

where C(rn,Zn) indicates the number of (s,b) in the isoform Tn (defined by Zn) which are matched to rn.
Then, we can rewrite it as

1
D(Θ)N

N

∏
n=1

[
C(rn,Zn)

[
π

Zn
1 (1−π)1−Zn

1
]

×
[ Ms

∏
m=1

p
(1−Zn

I(sm))(Z
n
I(sm)+1)

m (1− pm)
(1−Zn

I(sm))(1−Zn
I(sm)+1)

]
×
[ Me

∏
m=1

q
(Zn

I(em))(1−Zn
I(em)+1)

m (1−qm)
(Zn

I(em))(Z
n
I(em)+1)

]]
.

(11)

And we can write a log likelihood logP(r,Z|Θ) as

−N logD(Θ)+
N

∑
n=1

logC(rn,Zn)+
N

∑
n=1

Zn
1 logπ +

N

∑
n=1

(1−Zn
1) log(1−π)

+
N

∑
n=1

Ms

∑
m=1

[
(1−Zn

I(sm)
)(Zn

I(sm)+1) log pm

]
+

N

∑
n=1

Ms

∑
m=1

[
(1−Zn

I(sm)
)(1−Zn

I(sm)+1) log(1− pm)
]

+
N

∑
n=1

Me

∑
m=1

[
(Zn

I(em)
)(1−Zn

I(em)+1) logqm

]
+

N

∑
n=1

Me

∑
m=1

[
(Zn

I(em)
)(Zn

I(em)+1) log(1−qm)
]
.

(12)

Note that the transition probabilities in our model do not allow isoforms where ZI(sm) = 1 and ZI(sm)+1 = 0
at any exon start site and ZI(em) = 0 and ZI(em)+1 = 1 at any exon end site, and C(rn,Zn) does not depend
on Θ.

2.4.1 M-step

Let Θl = (π l, pl
1, . . . , pl

Ms
,ql

1, . . . ,q
l
Me
) represent the model parameter values at the l-th iteration of the EM

algorithm. Then, new parameter estimates at the (l +1)-th iteration are the values of Θ which maximize

15



Q(Θ |Θl) := EZ|r,Θl [logP(r,Z|Θ)]. Let Θl+1 = (π l+1, pl+1
1 , . . . , pl+1

Ms
,ql+1

1 , . . . ,ql+1
Me

) denote the parameter
estimates at the (l +1)-th iteration, then

Θl+1 = argmax
Θ

Q(Θ |Θl),

= argmax
Θ

EZ|r,Θl [logP(r,Z |Θ)].
(13)

We will describe how to compute Θl+1 in Section 2.4.1.1 (for pl+1
1 , . . . , pl+1

Ms
), Section 2.4.1.2 (for

ql+1
1 , . . . ,ql+1

Me
), and Section 2.4.1.3 (for π l+1).

2.4.1.1 pl+1
m for m = 1, . . . ,Ms

Let p′m = 1− pm for m = 1, . . . ,Ms, q′m = 1−qm for m = 1, . . . ,Me, and π ′ = 1−π . Then, the Lagrangian
function for maximizing Q(Θ |Θl) is proportional to

Λ =−N logD(Θ)+
N

∑
n=1

P(Zn
1 = 1|rn,Θl) logπ +

N

∑
n=1

P(Zn
1 = 0|rn,Θl) logπ

′

+
N

∑
n=1

Ms

∑
m=1

[
P((1−Zn

I(sm)
)(Zn

I(sm)+1) = 1|rn,Θl) log pm

]
+

N

∑
n=1

Ms

∑
m=1

[
P((1−Zn

I(sm)
)(1−Zn

I(sm)+1) = 1|rn,Θl) log p′m
]

+
N

∑
n=1

Me

∑
m=1

[
P((Zn

I(em)
)(1−Zn

I(em)+1) = 1|rn,Θl) logqm

]
+

N

∑
n=1

Me

∑
m=1

[
P((Zn

I(em)
)(Zn

I(em)+1) = 1|rn,Θl) logq′m
]

−λ
π(π +π

′−1)−
Ms

∑
m=1

λ
s
m(pm + p′m−1)−

Me

∑
m=1

λ
e
m(qm +q′m−1).

(14)

We take derivatives with respect to pm and p′m for m = 1, . . . ,Ms and set them to zero, leading to

∂

∂ pm
Λ =−N

1
D(Θ)

∂D(Θ)

∂ pm
+

1
pm

N

∑
n=1

P((1−Zn
I(sm)

)(Zn
I(sm)+1) = 1|rn,Θl)−λ

s
m = 0,

∂

∂ p′m
Λ =−N

1
D(Θ)

∂D(Θ)

∂ p′m
+

1
p′m

N

∑
n=1

P((1−Zn
I(sm)

)(1−Zn
I(sm)+1) = 1|rn,Θl)−λ

s
m = 0.

(15)

As D(Θ) = ∑t l(t)wΘ(t) = E(l(T )) = E(l(Z)) depends on Θ, it is difficult to find solutions for these
equations. Borrowing an idea from [4], we use the fixed point iteration to solve for Θ. Thus, λ s

m = 0 for
m = 1, . . . ,Ms and the fixed point iteration uses the equation

pl+1
m = pm =

Am

Am +Bm
, (16)
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where

Am =
∑N

n=1P((1−Zn
I(sm)

)(Zn
I(sm)+1) = 1|rn,Θl)

E(l(Z[1:I(sm)])|ZI(sm) = 0)+E(l(Z[I(sm)+1:M])|ZI(sm)+1 = 1)
,

Bm =
∑N

n=1P((1−Zn
I(sm)

)(1−Zn
I(sm)+1) = 1|rn,Θl)

E(l(Z[1:I(sm)])|ZI(sm) = 0)+E(l(Z[I(sm)+1:M])|ZI(sm)+1 = 0)
,

(17)

and Z[i: j] for i≤ j denote a subpath (Zi, . . . ,Z j).

Remark 1: pl+1
m can be computed using only signature counts instead of individual reads. Let c=(c j)

J
j=1

represent the signature counts over J signatures. Reads mapping to the same signature have the same
subpath for Sn (i.e., the shortest subpath of Tn from which read n is derived). Suppose rn and rn′ are
reads mapping to the same j-th signature and s j represents a subpath corresponding to the j-th signature.
Then,

P((1−Zn
I(sm)

)(Zn
I(sm)+1) = 1|rn,Θl) = P((1−Zn

I(sm)
)(Zn

I(sm)+1) = 1|Sn = s j,Θl)

= P((1−Zn′
I(sm)

)(Zn′
I(sm)+1) = 1|Sn′ = s j,Θl)

= P((1−Zn′
I(sm)

)(Zn′
I(sm)+1) = 1|rn′ ,Θl).

(18)

Instead of computing P((1−Zn
I(sm)

)(Zn
I(sm)+1) = 1|rn,Θl) for all reads rn, we can compute them using s j

for j = 1, . . . ,J. Therefore, Am (and analogously Bm) can be computed using only signature counts.

Remark 2: In the E-step (Section 2.4.2) we compute P((1−Zn
I(sm)

)(Zn
I(sm)+1)= 1|Sn = s j,Θl) and P((1−

Zn
I(sm)

)(1−Zn
I(sm)+1) = 1|Sn = s j,Θl) for j = 1, . . . ,J.

Remark 3: Sections 2.5.1 and 2.5.2 provide more detailed explanations of quantities E(l(Z[1:I(sm)])|ZI(sm)=
0), E(l(Z[I(sm)+1:M])|ZI(sm)+1 = 1), E(l(Z[1:I(sm)])|ZI(sm) = 0), and E(l(Z[I(sm)+1:M])|ZI(sm)+1 = 0), and de-
scribe how to compute them using dynamic programming.

2.4.1.2 ql+1
m for m = 1, . . . ,Me

Using a derivation similar to one for pl+1
m above, we can obtain the following result. Let

Cm =
∑N

n=1P((Z
n
I(em)

)(1−Zn
I(em)+1) = 1|rn,Θl)

E(l(Z[1:I(em)])|ZI(em) = 1)+E(l(Z[I(em)+1:M])|ZI(em)+1 = 0)
, (19)

Dm =
∑N

n=1P((Z
n
I(em)

)(Zn
I(em)+1) = 1|rn,Θl)

E(l(Z[1:I(em)])|ZI(em) = 1)+E(l(Z[I(em)+1:M])|ZI(em)+1 = 1)
. (20)

Then

ql+1
m =

Cm

Cm +Dm
. (21)
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Remark 1: Using a derivation similar to the one for pl+1
m above, we can show that ql+1

m can be computed
using only signature counts.

Remark 2: In the E-step (Section 2.4.2) we compute P((Zn
I(em)

)(1− Zn
I(em)+1) = 1|Sn = s j,Θl) and

P((Zn
I(em)

)(Zn
I(em)+1) = 1|Sn = s j,Θl).

Remark 3: Sections 2.5.1 and 2.5.2 provide more detailed explanations of quantities E(l(Z[1:I(em)])|ZI(em)=
1), E(l(Z[I(em)+1:M])|ZI(em)+1 = 0), E(l(Z[1:I(em)])|ZI(em) = 1), and E(l(Z[I(em)+1:M])|ZI(em)+1 = 1), and de-
scribe how to compute them using dynamic programming.

2.4.1.3 π l+1

Using a derivation similar to one for pl+1
m above, we can obtain the following result. Let

E =
∑N

n=1P(Z
n
1 = 1|rn,Θl)

E(l(Z[1:M])|Z1 = 1)
, (22)

F =
∑N

n=1P(Z
n
1 = 0|rn,Θl)

E(l(Z[1:M])|Z1 = 0)
. (23)

Then

π
l+1 =

E
E +F

. (24)

Remark 1: Using a derivation similar to the one for pl+1
m above, we can show that π l+1 can be computed

using only signature counts.

Remark 2: In the E-step (Section 2.4.2) we compute P(Zn
1 = 1|Sn = s j,Θl) and P(Zn

1 = 0|Sn = s j,Θl).

Remark 3: Section 2.5.2 provides more detailed explanations of quantities E(l(Z[1:M])|Z1 = 1) and
E(l(Z[1:M])|Z1 = 0), and describes how to compute them using dynamic programming.

2.4.2 E-step

Let c=(c j)
J
j=1 represent the signature counts over J signatures and s j represents a subpath corresponding

to the j-th signature.

P((1−Zn
I(sm)

)(Zn
I(sm)+1) = 1|Sn = s j,Θl) =

P((1−Zn
I(sm)

)(Zn
I(sm)+1) = 1,Sn = s j|Θl)

P(Sn = s j|Θl)
,

=
P(Zn

I(sm)
= 0,Zn

I(sm)+1 = 1,Sn = s j|Θl)

P(Sn = s j|Θl)
,

(25)
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P((1−Zn
I(sm)

)(1−Zn
I(sm)+1) = 1|Sn = s j,Θl) =

P((1−Zn
I(sm)

)(1−Zn
I(sm)+1) = 1,Sn = s j|Θl)

P(Sn = s j|Θl)
,

=
P(Zn

I(sm)
= 0,Zn

I(sm)+1 = 0,Sn = s j|Θl)

P(Sn = s j|Θl)
,

(26)

P((Zn
I(em)

)(Zn
I(em)+1) = 1|Sn = s j,Θl) =

P((Zn
I(em)

)(Zn
I(em)+1) = 1,Sn = s j|Θl)

P(Sn = s j|Θl)
,

=
P(Zn

I(em)
= 1,Zn

I(em)+1 = 1,Sn = s j|Θl)

P(Sn = s j|Θl)
,

(27)

P((Zn
I(em)

)(1−Zn
I(em)+1) = 1|Sn = s j,Θl) =

P((Zn
I(em)

)(1−Zn
I(em)+1) = 1,Sn = s j|Θl)

P(Sn = s j|Θl)
,

=
P(Zn

I(em)
= 1,Zn

I(em)+1 = 0,Sn = s j|Θl)

P(Sn = s j|Θl)
,

(28)

P(Zn
1 = 1|Sn = s j,Θl) =

P(Zn
1 = 1,Sn = s j|Θl)

P(Sn = s j|Θl)
, (29)

P(Zn
1 = 0|Sn = s j,Θl) =

P(Zn
1 = 0,Sn = s j|Θl)

P(Sn = s j|Θl)
, (30)

where

P(Sn = s j|Θl) = P(Zn
1 = 0,Sn = s j|Θl)+P(Zn

1 = 1,Sn = s j|Θl)

= P(Zn
1 = 0)P(Zn

F(s j)
= 1|Zn

1 = 0)P(Sn = s j|Zn
F(s j)

= 1)+P(Zn
1 = 1)P(Zn

F(s j)
= 1|Zn

1 = 1)P(Sn = s j|Zn
F(s j)

= 1)

= (1−π)P(Zn
F(s j)

= 1|Zn
1 = 0)P(Sn = s j|Zn

F(s j)
= 1)+πP(Zn

F(s j)
= 1|Zn

1 = 1)P(Sn = s j|Zn
F(s j)

= 1).
(31)

Remark 1: We describe how to compute P(Sn = s j|Zn
F(s j)

= 1) in Section 2.5.5, P(Zn
I(sm)

= 0,Zn
I(sm)+1 =

1,Sn = s j|Θl) in Section 2.5.6, P(Zn
I(sm)

= 0,Zn
I(sm)+1 = 0,Sn = s j|Θl) in Section 2.5.7, P(Zn

I(em)
= 1,Zn

I(em)+1 =

1,Sn = s j|Θl) in Section 2.5.8, P(Zn
I(em)

= 1,Zn
I(em)+1 = 0,Sn = s j|Θl) in Section 2.5.9, and P(Zn

1 = 1,Sn =

s j|Θl) and P(Zn
1 = 0,Sn = s j|Θl) in Section 2.5.10.

Remark 2: In Section 2.5.4 we describe the dynamic programming algorithm to compute P(Zn
F(s j)

=

1|Zn
1 = 0) and P(Zn

F(s j)
= 1|Zn

1 = 1).

Remark 3: P(Zn
1 = 0|Sn = s j,Θl) can also be computed as 1−P(Zn

1 = 1|Sn = s j,Θl).
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2.5 Computation of quantities used by the EM algorithm

In this section we provide a detailed description of algorithms to compute quantities used by the EM
algorithm introduced in Section 2.4. Some quantities can be computed efficiently using dynamic pro-
gramming (DP).

2.5.1 Expected prefix lengths: lp(i, in) := E(l(Z[1:i])|Zi = 1) and lp(i,out) := E(l(Z[1:i])|Zi = 0) for
the i-th segment

The expected prefix lengths have been used in the M-step of the EM algorithm (see Section 2.4.1). In
this section we formally define them and describe how to compute them using dynamic programming.

2.5.1.1 Definition

We define two types of the expected prefix length for the i-th segment, lp(i, in) and lp(i,out), as follows.
Let Z[1:i] denote a subpath which describes a sequence of states for (Z1, . . . ,Zi). Then, the length of the
subpath Z[1:i] is given by

l(Z[1:i]) = ∑
1≤ j≤i:Z j=1

l(X j), (32)

where l(X j) indicates the number of exonic bases in the segment X j. lp(i, in) is defined by the expected
length of the subpath Z[1:i] given that Xi is a part of a transcript (i.e., Zi = 1) and lp(i,out) is defined by the
expected length of the subpath Z[1:i] given that Xi is not a part of a transcript (i.e., Zi = 0). Specifically,

lp(i, in) = E(l(Z[1:i])|Zi = 1) (33)

lp(i,out) = E(l(Z[1:i])|Zi = 0). (34)

2.5.1.2 Computing expected prefix lengths by dynamic programming

We can compute the expected prefix lengths using dynamic programming as follows.

For i = 1,

lp(1, in) = l(X1) (35)

lp(1,out) = 0. (36)
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For i = 2, . . . ,M,

lp(i, in) = E(l(Z[1:i])|Zi = 1)

= l(Xi)+E(l(Z[1:(i−1)]),Zi−1 = 1|Zi = 1)+E(l(Z[1:(i−1)]),Zi−1 = 0|Zi = 1)

= l(Xi)+E(l(Z[1:(i−1)])|Zi−1 = 1,Zi = 1)P(Zi−1 = 1|Zi = 1)

+E(l(Z[1:(i−1)])|Zi−1 = 0,Zi = 1)P(Zi−1 = 0|Zi = 1)

because Z[1:(i−1)] and Zi are independent conditional on Zi−1

= l(Xi)+E(l(Z[1:(i−1)])|Zi−1 = 1)P(Zi−1 = 1|Zi = 1)

+E(l(Z[1:(i−1)])|Zi−1 = 0)P(Zi−1 = 0|Zi = 1)

= l(Xi)+ lp(i−1, in)
P(Zi−1 = 1)P(Zi = 1|Zi−1 = 1)

P(Zi = 1)

+ lp(i−1,out)
P(Zi−1 = 0)P(Zi = 1|Zi−1 = 0)

P(Zi = 1)
.

(37)

Similarly,

lp(i,out) = E(l(Z[1:i])|Zi = 0)

= E(l(Z[1:(i−1)]),Zi−1 = 1|Zi = 0)+E(l(Z[1:(i−1)]),Zi−1 = 0|Zi = 0)

= lp(i−1, in)
P(Zi−1 = 1)P(Zi = 0|Zi−1 = 1)

P(Zi = 0)

+ lp(i−1,out)
P(Zi−1 = 0)P(Zi = 0|Zi−1 = 0)

P(Zi = 0)
.

(38)

Remark 1: If segments Xi−1 and Xi are separated by exon start site sm (i.e., i−1 = I(sm)),

P(Zi = 1|Zi−1 = 0) = pm (39)

P(Zi = 1|Zi−1 = 1) = 1, (40)

P(Zi = 0|Zi−1 = 0) = 1− pm (41)

P(Zi = 0|Zi−1 = 1) = 0, (42)

and if segments Xi−1 and Xi are separated by exon end site em (i.e., i−1 = I(em)),

P(Zi = 1|Zi−1 = 0) = 0 (43)

P(Zi = 1|Zi−1 = 1) = 1−qm, (44)

P(Zi = 0|Zi−1 = 0) = 1 (45)

P(Zi = 0|Zi−1 = 1) = qm. (46)

Remark 2: Section 2.5.3 describes the dynamic programming algorithm to compute P(Zi = 0) and
P(Zi = 1) for i = 1, . . . ,M.
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2.5.2 Expected suffix lengths: ls(i, in) := E(l(Z[i:M])|Zi = 1) and ls(i,out) := E(l(Z[i:M])|Zi = 0) for
the i− th segment

The expected suffix lengths have been used in the M-step of the EM algorithm (see Section 2.4.1). In
this section we formally define them and describe how to compute them using dynamic programming.

2.5.2.1 Definition

We define two types of expected suffix length for the i− th segment, ls(i, in) and ls(i,out), as follows.
Let Z[i:M] denote a subpath which describes a sequence of states for (Zi, . . . ,ZM). ls(i, in) is defined by
the expected length of the subpath Z[i:M] given that Xi is a part of an isoform (i.e., Zi = 1) and ls(i,out) is
defined by the expected length of the subpath Z[i:M] given that Xi is not a part of an isoform (i.e., Zi = 0).
Specifically,

ls(i, in) = E(l(Z[i:M])|Zi = 1) (47)

ls(i,out) = E(l(Z[i:M])|Zi = 0). (48)

2.5.2.2 Computing expected suffix lengths by dynamic programming

We can compute the expected suffix lengths using dynamic programming as follows.

For i = 1, . . . ,M−1,

ls(i, in) = E(l(Z[i:M])|Zi = 1)

= l(Xi)+E(l(Z[(i+1):M]),Zi+1 = 1|Zi = 1)+E(l(Z[(i+1):M]),Zi+1 = 0|Zi = 1)

= l(Xi)+E(l(Z[(i+1):M])|Zi+1 = 1,Zi = 1)P(Zi+1 = 1|Zi = 1)

+E(l(Z[(i+1):M])|Zi+1 = 0,Zi = 1)P(Zi+1 = 0|Zi = 1)

because Z[(i+1):M] and Zi are independent conditional on Zi+1

= l(Xi)+E(l(Z[(i+1):M])|Zi+1 = 1)P(Zi+1 = 1|Zi = 1)

+E(l(Z[(i+1):M])|Zi+1 = 0)P(Zi+1 = 0|Zi = 1)

= l(Xi)+ ls(i+1, in)P(Zi+1 = 1|Zi = 1)

+ ls(i+1,out)P(Zi+1 = 0|Zi = 1).

(49)

Similarly

ls(i,out) = E(l(Z[i:M])|Zi = 0)

= E(l(Z[(i+1):M]),Zi+1 = 1|Zi = 0)+E(l(Z[(i+1):M]),Zi+1 = 0|Zi = 0)

= E(l(Z[(i+1):M])|Zi+1 = 1,Zi = 0)P(Zi+1 = 1|Zi = 0)

+E(l(Z[(i+1):M])|Zi+1 = 0,Zi = 0)P(Zi+1 = 0|Zi = 0)

= ls(i+1, in)P(Zi+1 = 1|Zi = 0)

+ ls(i+1,out)P(Zi+1 = 0|Zi = 0).

(50)
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And for i = M,

ls(M, in) = l(XM) (51)

ls(M,out) = 0. (52)

Remark 1: For the computation of P(Zi = 1|Zi−1 = 0), P(Zi = 1|Zi−1 = 1), P(Zi = 0|Zi−1 = 0), and
P(Zi = 0|Zi−1 = 1), see Remark 1 in Section 2.5.1.2.

2.5.3 Computing P(Zi = 1) and P(Zi = 0) using dynamic programming

The probability that segment Xi is part of a transcript, P(Zi = 1), and the probability that segment Xi

is not part of a transcript, P(Zi = 0), have been used in the dynamic program to compute the expected
prefix lengths in Section 2.5.1.2. We can compute P(Zi = 1) and P(Zi = 0) using dynamic programming
as follows.

For i = 1,

P(Z1 = 0) = 1−π, (53)

P(Z1 = 1) = π. (54)

For i = 2, . . . ,M,

P(Zi = 1) = P(Zi−1 = 1)P(Zi = 1|Zi−1 = 1)+P(Zi−1 = 0)P(Zi = 1|Zi−1 = 0), (55)

P(Zi = 0) = 1−P(Zi = 1), or equivalently

= P(Zi−1 = 1)P(Zi = 0|Zi−1 = 1)+P(Zi−1 = 0)P(Zi = 0|Zi−1 = 0),
(56)

Remark 1: For the computation of P(Zi = 1|Zi−1 = 0), P(Zi = 1|Zi−1 = 1), P(Zi = 0|Zi−1 = 0), and
P(Zi = 0|Zi−1 = 1), see Remark 1 in Section 2.5.1.2.

2.5.4 Computing P(Z j = 1|Zi = 1), P(Z j = 0|Zi = 1), P(Z j = 1|Zi = 0), and P(Z j = 0|Zi = 0) for
1≤ i≤ j ≤M using dynamic programming

The E-step in Section 2.4.2 used P(Zn
j = 1|Zn

1 = 0) and P(Zn
j = 1|Zn

1 = 0) for j = 1, . . . ,M to compute
P(Sn = s j|Θl). We also use P(Zn

j = 1|Zn
i = 1), P(Zn

j = 0|Zn
i = 1), P(Zn

j = 1|Zn
i = 0), and P(Zn

j =
0|Zn

i = 0) for 1≤ i≤ j ≤M in Sections 2.5.6, 2.5.7, 2.5.8, 2.5.9, and 2.5.10. Here, we describe their
computation using dynamic programming (DP). As these quantities are identical for all reads rn, we drop
superscript n in this section for simplicity.
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First, let us denote the probability of Z j conditional on Zi as follows. For 1≤ i≤ j ≤M,

f11(i, j) := P(Z j = 1|Zi = 1) (57)

f10(i, j) := P(Z j = 0|Zi = 1) (58)

f01(i, j) := P(Z j = 1|Zi = 0) (59)

f00(i, j) := P(Z j = 0|Zi = 0). (60)

We can compute these quantities using DP as follows.

2.5.4.1 When i = j

f11(i, j) := P(Z j = 1|Zi = 1) = 1 (61)

f10(i, j) := P(Z j = 0|Zi = 1) = 0 (62)

f01(i, j) := P(Z j = 1|Zi = 0) = 0 (63)

f00(i, j) := P(Z j = 0|Zi = 0) = 1. (64)

2.5.4.2 When i < j

If two segments X j−1 and X j are separated by an exon start site sm (i.e., j−1 = I(sm)):

f11(i, j) := P(Z j = 1|Zi = 1) =

{
1 if i = j−1
f11(i, j−1)+ f10(i, j−1)pm if i < j−1,

(65)

because

P(Z j = 1|Zi = 1)

= P(Z j = 1,Z j−1 = 1|Zi = 1)+P(Z j = 1,Z j−1 = 0|Zi = 1)

= P(Z j = 1|Z j−1 = 1,Zi = 1)P(Z j−1 = 1|Zi = 1)+P(Z j = 1|Z j−1 = 0,Zi = 1)P(Z j−1 = 0|Zi = 1)

= P(Z j = 1|Z j−1 = 1)P(Z j−1 = 1|Zi = 1)+P(Z j = 1|Z j−1 = 0)P(Z j−1 = 0|Zi = 1)

= f11(i, j−1)+ pm f10(i, j−1).
(66)

Similarly,

f10(i, j) := P(Z j = 0|Zi = 1) =

{
0 if i = j−1
f10(i, j−1)(1− pm) if i < j−1.

(67)

f01(i, j) := P(Z j = 1|Zi = 0) =

{
pm if i = j−1
f01(i, j−1)+ f00(i, j−1)pm if i < j−1.

(68)

f00(i, j) := P(Z j = 0|Zi = 0) =

{
1− pm if i = j−1
f00(i, j−1)(1− pm) if i < j−1.

(69)
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If two segments X j−1 and X j are separated by an exon end site em (i.e., j−1 = I(em)):

f11(i, j) := P(Z j = 1|Zi = 1) =

{
1−qm if i = j−1
f11(i, j−1)(1−qm) if i < j−1.

(70)

f10(i, j) := P(Z j = 0|Zi = 1) =

{
qm if i = j−1
f10(i, j−1)+ f11(i, j−1)qm if i < j−1.

(71)

f01(i, j) := P(Z j = 1|Zi = 0) =

{
0 if i = j−1
f01(i, j−1)(1−qm) if i < j−1.

(72)

f00(i, j) := P(Z j = 0|Zi = 0) =

{
1 if i = j−1
f00(i, j−1)+ f01(i, j−1)qm if i < j−1.

(73)

2.5.5 Computation of w(s) = P(S = s|ZF(s) = 1)

The E-step in Section 2.4.2 used P(Sn = s|Zn
F(s) = 1) to compute P(Sn = s|Θl). These probabilities are

also used in Sections 2.5.6, 2.5.7, 2.5.8, 2.5.9, and 2.5.10. Here we describe in detail how to compute
them. As these quantities are identical for all reads rn, we drop index n in this section for simplicity.

We use w(s) to denote the probability of S = s conditional on XF(s) is a part of an isoform. Let a subpath
s = z[a:b](oa, . . . ,ob). Due to the definition of S, that is the shortest subpath of T from which a read is
derived, oa = 1,ob = 1,F(s) = a and L(s) = b.

w(s) = P(S = s|ZF(s) = 1)

=
P(S = s)

P(ZF(s) = 1)

=
P(Za = oa,Za+1 = oa+1, . . . ,Zb = ob)

P(Za = 1)
= P(Za+1 = oa+1, . . . ,Zb = ob|Za = 1).

(74)

Moreover,

w(s) = P(Za+1 = oa+1, . . . ,Zb = ob|Za = 1)

=
b−1

∏
i=a

P(Zi+1 = oi+1|Zi = oi)

= ∏
sm:a≤I(sm)<b

p
(1−oI(sm))(o[I(sm)+1])
m (1− pm)

(1−oI(sm))(1−o[I(sm)+1])

× ∏
em:a≤I(em)<b

q
(oI(em))(1−o[I(em)+1])
m (1−qm)

(oI(em))(o[I(em)+1]).

(75)

In the example of Figure S18, s = z[2:5](1,1,0,1). So a = 2,b = 5,oa = 1,ob = 1,F(s) = 2 and L(s) = 5.
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X1 X3 X4 X5 X6 X7
s1 s3e1 e2 e3

X2

rn

s2
p1 p3q1 q2 q3p2

Figure S18: In this example, s = z[2:5](1,1,0,1) and w(s) = P(Z3 = 1,Z4 = 0,Z5 = 1|Z2 = 1) = 1 ·q1 · p3

Thus,

w(s) = P(Z3 = 1,Z4 = 0,Z5 = 1|Z2 = 1)

= P(Z3 = 1|Z2 = 1)P(Z4 = 0|Z3 = 1)P(Z5 = 1|Z4 = 0)

= 1 ·q1 · p3

or,

= ∏
sm:2≤I(sm)<5

p
(1−oI(sm))(o[I(sm)+1])
m (1− pm)

(1−oI(sm))(1−o[I(sm)+1])

× ∏
em:2≤I(em)<5

q
(oI(em))(1−o[I(em)+1])
m (1−qm)

(oI(em))(o[I(em)+1])

= ∏
sm:s2,s3

p
(1−oI(sm))(o[I(sm)+1])
m (1− pm)

(1−oI(sm))(1−o[I(sm)+1])

× ∏
em:e1

q
(oI(em))(1−o[I(em)+1])
m (1−qm)

(oI(em))(o[I(em)+1])

= p(1−1)(1)
2 (1− p2)

(1−1)(1−1)p(1−0)(1)
3 (1− p3)

(1−0)(1−1)

×q(1)(1−0)
1 (1−q1)

(1)(0)

= 1 · p3×q1.

(76)

2.5.6 Computation of P(Zn
I(sm)

= 0,Zn
I(sm)+1 = 1,Sn = s)

The E-step in Section 2.4.2 used P(Zn
I(sm)

= 0,Zn
I(sm)+1 = 1,Sn = s). Here, we describe how to compute

these probabilities for the different cases when an exon start site sm appears to the left, to the right, or
within a subpath s. Figure S19 illustrates the different cases. As these quantities are identical for all
reads rn, we drop index n in this section for simplicity.

26



2.5.6.1 case 1: I(sm)< F(s)

As shown in Figure S19, an exon start site sm appears left side of a subpath s = z[a:b](oa, . . . ,ob).

P(ZI(sm) = 0,ZI(sm)+1 = 1,S = s)

= P(Z1 = 0,ZI(sm) = 0,ZI(sm)+1 = 1,S = s)+P(Z1 = 1,ZI(sm) = 0,ZI(sm)+1 = 1,S = s)

= P(Z1 = 0)P(ZI(sm) = 0|Z1 = 0)P(ZI(sm)+1 = 1|ZI(sm) = 0)P(ZF(s) = 1|ZI(sm)+1 = 1)P(S = s|ZF(s) = 1)

+P(Z1 = 1)P(ZI(sm) = 0|Z1 = 1)P(ZI(sm)+1 = 1|ZI(sm) = 0)P(ZF(s) = 1|ZI(sm)+1 = 1)P(S = s|ZF(s) = 1)

= (1−π) f00(1, I(sm))pm f11(I(sm)+1,F(s))w(s)+π f10(1, I(sm))pm f11(I(sm)+1,F(s))w(s)

=
[
(1−π) f00(1, I(sm))+π f10(1, I(sm))

]
× pm f11(I(sm)+1,F(s))w(s),

(77)

where f..(i, j) and w(s) can be computed as described in Sections 2.5.4 and 2.5.5.

2.5.6.2 case 2: L(s)< I(sm)

As shown in Figure S19, sm appears right side of the subpath s = z[a:b](oa, . . . ,ob).

P(S = s,ZI(sm) = 0,ZI(sm)+1 = 1)

= P(Z1 = 0,S = s,ZI(sm) = 0,ZI(sm)+1 = 1)+P(Z1 = 1,S = s,ZI(sm) = 0,ZI(sm)+1 = 1)

= P(Z1 = 0)P(ZF(s) = 1|Z1 = 0)P(S = s|ZF(s) = 1)P(ZI(sm) = 0|ZL(s) = 1)P(ZI(sm)+1 = 1|ZI(sm) = 0)

+P(Z1 = 1)P(ZF(s) = 1|Z1 = 1)P(S = s|ZF(s) = 1)P(ZI(sm) = 0|ZL(s) = 1)P(ZI(sm)+1 = 1|ZI(sm) = 0)

= (1−π) f01(1,F(s))w(s) f10(L(s), I(sm))pm +π f11(1,F(s))w(s) f10(L(s), I(sm))pm

=
[
(1−π) f01(1,F(s))+π f11(1,F(s))

]
×w(s) f10(L(s), I(sm))pm,

(78)

where f..(i, j) and w(s) can be computed as described in Sections 2.5.4 and 2.5.5.

2.5.6.3 case 3: F(s)≤ I(sm)< L(s) and (ZI(sm) = 0,ZI(sm)+1 = 1) is a subset of s

A subpath s = z[a:b](oa, . . . ,ob) can be represented by (Za = oa,Za+1 = oa+1, . . . ,Zb = ob). If the sub-
path s contains (ZI(sm) = 0,ZI(sm)+1 = 1), then (ZI(sm) = 0,ZI(sm)+1 = 1) is a subset of s (i.e., (ZI(sm) =
0,ZI(sm)+1 = 1)⊂ s). As shown in Figure S19, sm appears inside of the subpath s = z[a:b](oa, . . . ,ob).

P(S = s,ZI(sm) = 0,ZI(sm)+1 = 1)

= P(S = s)

= P(Z1 = 0,S = s)+P(Z1 = 1,S = s)

= P(Z1 = 0)P(ZF(s) = 1|Z1 = 0)P(S = s|ZF(s) = 1)+P(Z1 = 1)P(ZF(s) = 1|Z1 = 1)P(S = s|ZF(s) = 1)

= (1−π) f01(1,F(s))w(s)+π f11(1,F(s))w(s)

=
[
(1−π) f01(1,F(s))+π f11(1,F(s))

]
×w(s),

(79)

where f..(i, j) and w(s) can be computed as described in Sections 2.5.4 and 2.5.5.

27



Sm

Case 1: I(sm) < F(s)

ZI(sm) = 0, ZI(sm)+1 = 1   

ZI(sm) = 0, ZI(sm)+1 = 0   

Case 1: I(sm) < F(s) -1

Case 2: L(s) < I(sm)

Sm

Case 3 or 4: F(s) ≤ I(sm) < L(s)

rn

Case 4 Case 4

Case 3

Case 5: L(s) = I(sm)

... ...

Case 2: L(s) < I(sm)

Case 3 or 4: F(s) ≤ I(sm) < L(s)

a = F(s) b = L(s)

Case 4
Case 3

Case 4

Case 5: I(sm) = F(s) -1
Case 5: L(s) = I(sm)

Sn = S = Z[a:b]  
   (1,0,0,1)

Figure S19: Visualization of the different cases considered for computing P(Zn
I(sm)

= 0,Zn
I(sm)+1 = 1,Sn =

s) in the upper part, and P(Zn
I(sm)

= 0,Zn
I(sm)+1 = 0,Sn = s) in the lower part. Arrows from each case point

to an exon start site or a set of exon start sites. a and b represent the indices of the first and last segments of
the subpath Sn = s from which read rn is derived. In the upper part for P(Zn

I(sm)
= 0,Zn

I(sm)+1 = 1,Sn = s),
an exon start site sm appears to the left of subpath s (case 1), to the right of s (cases 2 and 5), or within s
(cases 3 and 4). We do not allow for cases 4 and 5 where Zn

I(sm)
= 0 and Zn

I(sm)+1 = 1 are not compatible
with subpath s. In the lower part for P(Zn

I(sm)
= 0,Zn

I(sm)+1 = 0,Sn = s), sm appears to the left of s (cases
1 and 5), to the right of s (cases 2 and 5), or within s (cases 3 and 4). We do not allow for cases 4 and 5
where Zn

I(sm)
= 0 and Zn

I(sm)+1 = 0 are not compatible with subpath s.
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2.5.6.4 case 4: F(s)≤ I(sm)< L(s) and (ZI(sm) = 0,ZI(sm)+1 = 1) is not a subset of s

In this case, ZI(sm) = 0 and ZI(sm)+1 = 1 are not compatible with subpath s.

P(S = s,ZI(sm) = 0,ZI(sm)+1 = 1) = 0 (80)

2.5.6.5 case 5: I(sm) = L(s)

In this case, ZI(sm) = 0 and ZI(sm)+1 = 1 are not compatible with subpath s.

P(S = s,ZI(sm) = 0,ZI(sm)+1 = 1) = 0 (81)

2.5.7 Computation of P(Zn
I(sm)

= 0,Zn
I(sm)+1 = 0,Sn = s)

The E-step in Section 2.4.2 used P(Zn
I(sm)

= 0,Zn
I(sm)+1 = 0,Sn = s). Here, we describe how to compute

these probabilities for the different cases when an exon start site sm appears to the left, to the right, or
within a subpath s. Figure S19 illustrates the different cases. As these quantities are identical for all
reads rn, we drop index n in this section for simplicity.

2.5.7.1 case 1: I(sm)< F(s)−1

As shown in Figure S19, an exon start site sm appears left side of a subpath s = z[a:b](oa, . . . ,ob).

P(ZI(sm) = 0,ZI(sm)+1 = 0,S = s)

= P(Z1 = 0,ZI(sm) = 0,ZI(sm)+1 = 0,S = s)+P(Z1 = 1,ZI(sm) = 0,ZI(sm)+1 = 0,S = s)

= P(Z1 = 0)P(ZI(sm) = 0|Z1 = 0)P(ZI(sm)+1 = 0|ZI(sm) = 0)P(ZF(s) = 1|ZI(sm)+1 = 0)P(S = s|ZF(s) = 1)

+P(Z1 = 1)P(ZI(sm) = 0|Z1 = 1)P(ZI(sm)+1 = 0|ZI(sm) = 0)P(ZF(s) = 1|ZI(sm)+1 = 0)P(S = s|ZF(s) = 1)

= (1−π) f00(1, I(sm))(1− pm) f01(I(sm)+1,F(s))w(s)+π f10(1, I(sm))(1− pm) f01(I(sm)+1,F(s))w(s)

=
[
(1−π) f00(1, I(sm))+π f10(1, I(sm))

]
× (1− pm) f01(I(sm)+1,F(s))w(s),

(82)

where f..(i, j) and w(s) can be computed as described in Sections 2.5.4 and 2.5.5.

2.5.7.2 case 2: L(s)< I(sm)

As shown in Figure S19, sm appears right side of a subpath s = z[a:b](oa, . . . ,ob).

P(S = s,ZI(sm) = 0,ZI(sm)+1 = 0)

= P(Z1 = 0,S = s,ZI(sm) = 0,ZI(sm)+1 = 0)+P(Z1 = 1,S = s,ZI(sm) = 0,ZI(sm)+1 = 0)

= P(Z1 = 0)P(ZF(s) = 1|Z1 = 0)P(S = s|ZF(s) = 1)P(ZI(sm) = 0|ZL(s) = 1)P(ZI(sm)+1 = 0|ZI(sm) = 0)

+P(Z1 = 1)P(ZF(s) = 1|Z1 = 1)P(S = s|ZF(s) = 1)P(ZI(sm) = 0|ZL(s) = 1)P(ZI(sm)+1 = 0|ZI(sm) = 0)

= (1−π) f01(1,F(s))w(s) f10(L(s), I(sm))(1− pm)+π f11(1,F(s))w(s) f10(L(s), I(sm))(1− pm)

=
[
(1−π) f01(1,F(s))+π f11(1,F(s))

]
×w(s) f10(L(s), I(sm))(1− pm),

(83)

where f..(i, j) and w(s) can be computed as described in Sections 2.5.4 and 2.5.5.
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2.5.7.3 case 3: F(s)≤ I(sm)< L(s) and (ZI(sm) = 0,ZI(sm)+1 = 0) is a subset of s

As shown in Figure S19, sm appears inside of a subpath s = z[a:b](oa, . . . ,ob).

P(S = s,ZI(sm) = 0,ZI(sm)+0 = 1)

= P(S = s)

= P(Z1 = 0,S = s)+P(Z1 = 1,S = s)

= P(Z1 = 0)P(ZF(s) = 1|Z1 = 0)P(S = s|ZF(s) = 1)+P(Z1 = 1)P(ZF(s) = 1|Z1 = 1)P(S = s|ZF(s) = 1)

= (1−π) f01(1,F(s))w(s)+π f11(1,F(s))w(s)

=
[
(1−π) f01(1,F(s))+π f11(1,F(s))

]
×w(s),

(84)

where f..(i, j) and w(s) can be computed as described in Sections 2.5.4 and 2.5.5.

2.5.7.4 case 4: F(s)≤ I(sm)< L(s) and (ZI(sm) = 0,ZI(sm)+1 = 0) is not a subset of s

In this case, ZI(sm) = 0 and ZI(sm)+1 = 0 are not compatible with subpath s.

P(s,ZI(sm) = 0,ZI(sm)+1 = 0) = 0 (85)

2.5.7.5 case 5: I(sm) = F(s)−1 or I(sm) = L(s)

In this case, ZI(sm) = 0 and ZI(sm)+1 = 0 are not compatible with subpath s.

P(s,ZI(sm) = 0,ZI(sm)+1 = 0) = 0 (86)

2.5.8 Computation of P(Zn
I(em)

= 1,Zn
I(em)+1 = 1,Sn = s)

The E-step in Section 2.4.2 used P(Zn
I(em)

= 1,Zn
I(em)+1 = 1,Sn = s). Here, we describe how to compute

these probabilities for the different cases when an exon end site em appears to the left, to the right, or
within a subpath s. Figure S20 illustrates the different cases. As these quantities are identical for all
reads rn, we drop index n in this section for simplicity.

2.5.8.1 case 1: I(em)< F(s)

As shown in Figure S20, an exon end site em appears left side of a subpath s = z[a:b](oa, . . . ,ob).

P(ZI(em) = 1,ZI(em)+1 = 1,S = s)

= P(Z1 = 0,ZI(em) = 1,ZI(em)+1 = 1,S = s)+P(Z1 = 1,ZI(em) = 1,ZI(em)+1 = 1,S = s)

= (1−π) f01(1, I(em))(1−qm) f11(I(em)+1,F(s))w(s)+π f11(1, I(em))(1−qm) f11(I(em)+1,F(s))w(s)

=
[
(1−π) f01(1, I(em))+π f11(1, I(em))

]
× (1−qm) f11(I(em)+1,F(s))w(s),

(87)

where f..(i, j) and w(s) can be computed as described in Sections 2.5.4 and 2.5.5.
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em

Case 1: I(em) < F(s) 

ZI(em) = 1, ZI(em)+1 = 1   

ZI(em) = 1, ZI(em)+1 = 0   

Case 1: I(em) < F(s) -1

Case 2: L(s) ≤ I(em)

em

Case 3 or 4: F(s) ≤ I(em) < L(s)

rn

Case 4 Case 4

Case 4
... ...

Case 2: L(s) ≤ I(em)

Case 3 or 4: F(s) ≤ I(em) < L(s)

a = F(s) b = L(s)
Sn = S = Z[a:b]  

Case 3
Case 4

Case 4

Case 5: I(em) = F(s) -1

   (1,0,0,1)

Figure S20: Visualization of the different cases considered for computing P(Zn
I(em)

= 1,Zn
I(em)+1 = 1,Sn =

s) in the upper part, and P(Zn
I(em)

= 1,Zn
I(em)+1 = 0,Sn = s) in the lower part. Arrows from each case point

to an exon end site or a set of exon end sites. a and b represent the indices of the first and last segments of
the subpath Sn = s from which read rn is derived. In the upper part for P(Zn

I(em)
= 1,Zn

I(em)+1 = 1,Sn = s),
an exon end site em appears to the left of subpath s (case 1), to the right of s (case 2), or within s (case 4).
We do not allow for case 4 where Zn

I(em)
= 1, Zn

I(em)+1 = 1 are not compatible with subpath s. In the lower
part for P(Zn

I(sm)
= 1,Zn

I(sm)+1 = 0,Sn = s), sm appears to the left of s (cases 1 and 5), to the right of s
(case 2), or within s (cases 3 and 4). We do not allow for cases 4 and 5 where Zn

I(sm)
= 1 and Zn

I(sm)+1 = 0
are not compatible with subpath s.
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2.5.8.2 case 2: L(s)≤ I(sm)

As shown in Figure S20, em appears right side of a subpath s = z[a:b](oa, . . . ,ob).

P(S = s,ZI(em) = 1,ZI(em)+1 = 1)

= P(Z1 = 0,S = s,ZI(em) = 1,ZI(em)+1 = 1)+P(Z1 = 1,S = s,ZI(em) = 1,ZI(em)+1 = 1)

= (1−π) f01(1,F(s))w(s) f11(L(s), I(em))(1−qm)+π f11(1,F(s))w(s) f11(L(s), I(em))(1−qm)

=
[
(1−π) f01(1,F(s))+π f11(1,F(s))

]
×w(s) f11(L(s), I(em))(1−qm),

(88)

where f..(i, j) and w(s) can be computed as described in Sections 2.5.4 and 2.5.5.

2.5.8.3 case 3: F(s)≤ I(em)< L(s) and (ZI(em) = 1,ZI(em)+1 = 1) is a subset of s

As shown in Figure S20, em appears inside of a subpath s = z[a:b](oa, . . . ,ob).

P(S = s,ZI(em) = 1,ZI(em)+1 = 1)

= P(S = s)

= P(Z1 = 0,S = s)+P(Z1 = 1,S = s)

= (1−π) f01(1,F(s))w(s)+π f11(1,F(s))w(s)

=
[
(1−π) f01(1,F(s))+π f11(1,F(s))

]
×w(s),

(89)

where f..(i, j) and w(s) can be computed as described in Sections 2.5.4 and 2.5.5.

2.5.8.4 case 4: F(s)≤ I(em)< L(s) and (ZI(em) = 1,ZI(em)+1 = 1) is not a subset of s

In this case, ZI(em) = 1 and ZI(em)+1 = 1 are not compatible with subpath s.

P(S = s,ZI(em) = 1,ZI(sm)+1 = 1) = 0 (90)

2.5.9 Computation of P(Zn
I(em)

= 1,Zn
I(em)+1 = 0,Sn = s)

The E-step in Section 2.4.2 used P(Zn
I(em)

= 1,Zn
I(em)+1 = 0,Sn = s). Here, we describe how to compute

these probabilities for the different cases when an exon end site em appears to the left, to the right, or
within a subpath s. Figure S20 illustrates the different cases. As these quantities are identical for all
reads rn, we drop index n in this section for simplicity.

2.5.9.1 case 1: I(em)< F(s)−1

As shown in Figure S20, an exon end site em appears left side of a subpath s = z[a:b](oa, . . . ,ob).

P(ZI(em) = 1,ZI(em)+1 = 0,S = s)

= P(Z1 = 0,ZI(em) = 1,ZI(em)+1 = 0,S = s)+P(Z1 = 1,ZI(em) = 1,ZI(em)+1 = 0,S = s)

= (1−π) f01(1, I(em))qm f01(I(sm)+1,F(s))w(s)+π f11(1, I(sm))qm f01(I(sm)+1,F(s))w(s)

=
[
(1−π) f01(1, I(em))+π f11(1, I(sm))

]
×qm f01(I(sm)+1,F(s))w(s),

(91)

where f..(i, j) and w(s) can be computed as described in Sections 2.5.4 and 2.5.5.
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2.5.9.2 case 2: L(s)≤ I(em)

As shown in Figure S20, em appears right side of a subpath s = z[a:b](oa, . . . ,ob).

P(S = s,ZI(em) = 1,ZI(em)+1 = 0)

= P(Z1 = 0,S = s,ZI(em) = 1,ZI(em)+1 = 0)+P(Z1 = 1,S = s,ZI(em) = 1,ZI(em)+1 = 0)

= (1−π) f01(1,F(s))w(s) f11(L(s), I(sm))qm +π f11(1,F(s))w(s) f11(L(s), I(sm))qm

=
[
(1−π) f01(1,F(s))+π f11(1,F(s))

]
×w(s) f11(L(s), I(sm))qm,

(92)

where f..(i, j) and w(s) can be computed as described in Sections 2.5.4 and 2.5.5.

2.5.9.3 case 3: F(s)≤ I(em)< L(s) and (ZI(em) = 1,ZI(em)+1 = 0) is a subset of s

As shown in Figure S20, em appears inside of a subpath s = z[a:b](oa, . . . ,ob).

P(S = s,ZI(em) = 1,ZI(em)+0 = 1)

= P(S = s)

= (1−π) f01(1,F(s))w(s)+π f11(1,F(s))w(s)

=
[
(1−π) f01(1,F(s))+π f11(1,F(s))

]
×w(s),

(93)

where f..(i, j) and w(s) can be computed as described in Sections 2.5.4 and 2.5.5.

2.5.9.4 case 4: F(s)≤ I(em)< L(s) and (ZI(em) = 1,ZI(em)+1 = 0) is not a subset of s

In this case, ZI(em) = 1 and ZI(em)+1 = 0 are not compatible with subpath s.

P(ZI(em) = 1,ZI(em)+1 = 0,S = s) = 0 (94)

2.5.9.5 case 5: I(em) = F(s)−1

In this case, ZI(em) = 1 and ZI(em)+1 = 0 are not compatible with subpath s.

P(ZI(em) = 1,ZI(em)+1 = 0,S = s) = 0. (95)

2.5.10 Computation of P(Zn
1 = 1,Sn = s) and P(Zn

1 = 0,Sn = s)

The E-step in Section 2.4.2 used P(Zn
1 = 1,Sn = s) and P(Zn

1 = 0,Sn = s). Here, we describe how to
compute these probabilities. As these quantities are identical for all reads rn, we drop index n in this
section for simplicity.

P(Z1 = 1,S = s) = P(Z1 = 1)P(ZF(s) = 1|Z1 = 1)P(S = s|ZF(s) = 1)

= π f11(1,F(s))w(s),
(96)

and

P(Z1 = 0,S = s) = P(Z1 = 0)P(ZF(s) = 1|Z1 = 0)P(S = s|ZF(s) = 1)

= (1−π) f01(1,F(s))w(s),
(97)

where f..(i, j) and w(s) can be computed as described in Sections 2.5.4 and 2.5.5.
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2.6 Benchmarks

2.6.1 Tools and parameters

2.6.1.1 Polyester simulator

We used simulated data to evaluate McSplicer accuracy. As mentioned in the main text, we used
Polyester simulator (version 1.16.0) to simulate RNA-seq reads from human transcripts (Ensembl re-
lease 91). For the three different sequencing depths, we used the software with its default parameters,
and we ran it under the following environment:

R v e r s i o n 3 . 5 . 2 (2018−12−20)
P l a t f o r m : x86 64−r e d h a t−l i n u x−gnu (64− b i t )
Running under : S c i e n t i f i c Linux 7 . 5 ( N i t r o g e n )

As previously mentioned, we provided Polyester with ground truth abundances computed by running
RSEM quantification tool [6] on RNA-seq data obtained from SRA data set SRR6987574 2. Then, we
randomly selected a set of 1000 genes which have at least two expressed transcripts and have sufficiently
high expression, i.e., gene-level read count per kilobase > 500.

2.6.1.2 STAR aligner

The simulated reads were mapped to the human reference genome (GRCh38.91) by running STAR (ver-
sion 2.5.4b) [1] with the following parameters:

−−runMode a l i g n R e a d s
−−outSAMtype BAM S o r t e d B y C o o r d i n a t e
−−s j d b G T F f i l e Homo sapiens . GRCh38 . 9 1 . g t f
−−runThreadN 16
−− r e a d F i l e s I n { p l o y e s t e r o u t p u t . f a s t a }
−−o u t F i l e N a m e P r e f i x { o u t p u t p r e f i x }
−−genomeDir { g e n o m e d i r e c t o r y }
−−ou tSAM st r andF ie l d i n t r o n M o t i f
−−s j d b G T F f i l e

The remaining set of parameters were left to the default values.
For indexing the resulting BAM files we used Samtools (version 0.1.8) [7].

2.6.1.3 StringTie

We ran StringTie [8] (version 1.3.4d) with genome-guided mode enabled (-G option) and provided
Ensembl annotation release 91. The remaining parameters of StringTie were left to the default values.

2.6.1.4 SplAdder

We ran SplAdder (version 1.2.0) with the following set of parameters for benchmarking on simulated
data:

2http://www.ncbi.nlm.nih.gov/sra
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−−bams { b a m f i l e s }
−−a n n o t a t i o n { a n n o t a t i o n g t f }
−−m e r g e s t r a t m e r g e g r a p h s
−−e v e n t t y p e s e x o n s k i p , i n t r o n r e t e n t i o n , a l t 3 p r i m e ,
a l t 5 p r i m e , m u l t e x o n s k i p
−−c o n f i d e n c e 2
−−pyproc n
−−c o m p r e s s t e x t n
−−i g n o r e m i s m a t c h e s y
−−o u t d i r { o u t p u t d i r e c t o r y }

We set the confidence parameter to 1 when running SplAdder on the SIRV dataset in order to detect
novel events.

2.6.1.5 MAJIQ

We ran MAJIQ (version 2.0) with default parameters but with de novo option disabled, i.e., disable−
denovo for all benchmarks on simulated data. We noticed many false positive events when running
MAJIQ without the disable−denovo argument (i.e., enabling de novo mode). We enable de novo mode
again when evaluating MAJIQ on SIRV data sets to detect as many novel events as possible.

2.6.1.6 PSGInfer

To compute edge weight estimates using PSGInfer, we followed two steps. First, we executed the com-
mand psg prepare reference to generate a reference splice graph from annotated transcripts (Ensembl
annotation release 91), and we configured it to generate a line graph since it is computationally more
efficient than other types of graphs yet provides accurate estimates of edge weights [5]. Second, we
ran psg infer frequencies to map RNA-seq reads to the splice graphs generated in the first step and to
estimate the weights of graph edges. PSGInfer uses Bowtie [3] internally for RNA-seq read mapping.
We ran the latest version of PSGInfer 1.2.1 and a compatible version of Bowtie 1.3.0.

−−a n n o t a t i o n s { a n n o t a t i o n g t f }
−−genome−d i r { ch romosome FASTA f i l e s d i r }
− l 100 {m a x r e a d l e n g t h }
−k 0 { o r d e r o f P S G }
−−num−t h r e a d s 72

2.6.2 Comparable splice sites

Let s1,s2, . . . ,sMG denote the splice sites and transcription start and end sites of a gene G, ordered by their
genomic coordinates. Consistent with [2], we define alternative splicing events for pairs of expressed
transcripts t1, t2 as maximal sequences si, . . . ,s j of alternative splice sites, i.e. splice sites that are used
by t1 or by t2, but not by both. To distinguish the outcome of alternative splicing from the outcome
of alternative transcription initiation or termination, we additionally require that si−1 and s j+1 denote
common donor and acceptor sites, respectively. If every transcript expressed by G is consistent with t1
or t2 in its use of si−1,si, . . . ,s j+1, we call the alternative splice sites si, . . . ,s j comparable. Note that the
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definition of comparable splice sites is invariant with respect to the choice of t1 and t2 among expressed
transcripts of G.

2.6.3 True splice site usage

Let A(s) and B(s) denote subsets of transcripts in a gene G that either use or do not use a particular splice
site s, respectively. Then the true usage of splice site s is computed by

us =
∑t∈A(s) θt

∑t∈A(s)∪B(s) θt
=

∑t∈A(s) θt

∑t∈G θt
, (98)

where θt represents the true abundance of transcript t.

2.6.4 Kullback-Leibler (KL) divergence

For a given splice site s, the two possible outcomes, whether or not a transcript uses the splice site can
be modelled by a Bernoulli distribution with the splice site usage us, denoted by Bernoulli(us). Let ûs

represent the estimated splice usage. Then, we measure the accuracy of ûs using the KL divergence of
Bernoulli(ûs) from Bernoulli(us):

DKL (Bernoulli(us)‖Bernoulli(ûs)) = us log
us

ûs
+(1−us) log

1−us

1− ûs
. (99)
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