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SUPPLEMENTARY NOTE  

We undertook a multipronged analytical approach to assess the effects of unilateral superior 

colliculus (SC) inactivation on perceptual decision-making in monkeys. First, we evaluated 

changes in psychometric functions and mean reaction times (RT) pre- and post-muscimol for 

decisions to and away from the inactivated field (IF; Fig. 2). Second, we evaluated changes in the 

shapes of RT distributions pre- and post-muscimol for decisions to and away from the IF as the 

shapes of RT distributions provide reliable ways to distinguish changes in different decision 

processes1, 2 (Fig. 5 and Extended Data Fig. 7). Third, we simulated DDMs with changes only in 

specific parameters from pre- to post-muscimol to assess and compare predicted changes in 

psychophysical performance and mean RTs that may occur if different aspects of decision-making 

were changed post-muscimol (Fig. 5, Extended Data Fig. 5). Fourth, we fit a hierarchical drift-

diffusion model (HDDM), and estimated parameters to see what parameters changed after SC 

inactivation (Extended Data Fig. 6). Fifth, to determine which parameter best explained the 

changes observed with muscimol in the SC, we fitted HDDM variants to the data allowing different 

model parameters to vary individually and compared these to the HDDM with all parameters 

allowed to vary to determine which model variant best explained the results of the muscimol 

inactivation (Supplementary Table 4 and Extended Data Fig. 7). We also fitted a non-hierarchical 

DDM, thus we used two different methods of parameter estimation (hierarchical Bayesian 

estimation and quantile maximum products estimation, QMPE) to ensure robustness (Extended 

Data Fig. 6). Finally, to determine whether an altered urgency signal explained the effects of 

unilateral inactivation of the SC during decision-making, we also fit UGM variants to the pre- and 

post-muscimol data to see which parameters changed due to the muscimol. We then compared 

UGM variants with the urgency signal or the drift rate parameters free to vary to determine which 
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model variant best explained the post-muscimol data (Supplementary Table 4 and Extended Data 

Fig. 7). 

Signal detection theory (SDT) analysis 

In addition to the logistic fits described in the Methods and shown in Fig. 2, we also calculated d’ 

and c to assess whether unilateral inactivation of the SC with muscimol impaired perceptual 

sensitivity or decision criterion, respectively. To calculate d’, we used the following equation 

modified from Macmillan3; 

                                𝑑′ =
1

√2
(

𝑖𝑛𝑣𝑐𝑑𝑓(𝑃(𝑎𝑤𝑎𝑦 𝐼𝐹 𝑐ℎ𝑜𝑖𝑐𝑒 | 𝑎𝑤𝑎𝑦 𝐼𝐹 𝑡𝑟𝑖𝑎𝑙))

−𝑖𝑛𝑣𝑐𝑑𝑓(𝑃(𝑎𝑤𝑎𝑦 𝐼𝐹 𝑐ℎ𝑜𝑖𝑐𝑒 | 𝑡𝑜 𝐼𝐹 𝑡𝑟𝑖𝑎𝑙)
)                                  (S1) 

To calculate the position of the decision criterion we also used the equation from Macmillan3; 

                               𝑐 = −0.5 (
𝑖𝑛𝑣𝑐𝑑𝑓(𝑃(𝑎𝑤𝑎𝑦 𝐼𝐹 𝑐ℎ𝑜𝑖𝑐𝑒 | 𝑎𝑤𝑎𝑦 𝐼𝐹 𝑡𝑟𝑖𝑎𝑙))

+ 𝑖𝑛𝑣𝑐𝑑𝑓(𝑃(𝑎𝑤𝑎𝑦 𝐼𝐹 𝑐ℎ𝑜𝑖𝑐𝑒 | 𝑡𝑜 𝐼𝐹 𝑡𝑟𝑖𝑎𝑙)
)                        (S2)  

Extended Data Fig. 3 shows the d’ and c results for both monkeys. Overall, there was a 

significant change in criterion after muscimol that produced a decision bias away from the IF, 

whereas sensitivity, d’, showed no significant change after muscimol. Neither d’ nor c changed 

after saline injections. 

Non-parametric reaction time (RT) analysis 

To visualize and analyze the chronometric functions from the RT version of the decision task 

(seven in monkey S and two in monkey B for muscimol injections, and four in monkey S for saline 

injections), we used least squares regression to fit the RT data with a linear function of the form: 

                                                            RT = b0 + b1k                                                                  (S3) 
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We fitted the RT function separately for the positive (toIF) and negative (awayIF) coherences (k). 

We extracted the slope parameter (b1), to determine coherence dependent changes in RT from pre- 

to post-muscimol and recovery, and the intercept parameter (b0), to assess non-coherence 

dependent changes in RT from pre- to post-muscimol and recovery. The pre- and post-muscimol 

data and results appear in Fig. 2 and the recovery data appear in Extended Data Fig. 4. Coherence 

dependent changes in RT occurred for toIF decisions and not for awayIF decisions, indicating that 

the SC inactivation affected decision and not purely motor processes. 

Drift-diffusion model (DDM) simulations 

DDMs assume that decision-makers accumulate a representation of noisy sensory evidence over 

time. An evidence path on one trial reflects an internal representation of orientation evidence 

obtained by visually sampling the Glass pattern until a fixed amount of evidence is reached for a 

decision, reported by a saccade, to or away from the IF. Different aspects of the decision-making 

processes are reflected in different parameters of the DDM as described in the Methods2 and seen 

in Fig. 5 and Extended Data Fig. 5. The DDM process was defined and simulated by the following 

equations: 

                                             E(t) = 𝛿 k Δt + ϛ(√Δt) N(0,1)                                                          (S4) 

                             x(t) = x(t-1) + E(t)                                                                  (S5) 

                                                          x(t=0) = w*a                                                                      (S6) 

                                                  x(t) ≥ a → choose toIF                                                               (S7) 

            x(t) ≤ 0 → choose awayIF                                                             (S8) 
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The evidence at time (t), denoted by E(t), depends on the drift rate (𝛿k) for each condition (k) with 

an accumulation noise (ϛ), for every infinitely small time step Δt. In simulations of DDMs and in 

model fitting using QMPE (see below), the small time step is estimated with Δt = 1 ms and the 

noise constant is set to ϛ=1 evidence unit. The evidence at each time point is determined by the 

drift rate, the elapsed time from Glass pattern onset, and within trial noise. The resulting decision 

variable x(t), progresses over time until one of two boundaries is reached (a or 0). The proportional 

start point parameter (w) is defined as the proportion of the distance between the two bounds (a) 

such that a start point of w = 0.5 is the midpoint between the upper (toIF) and lower (awayIF) 

bound. w  > 0.5 indicates the start point is closer to the upper (toIF) bound, and w  < 0.5 indicates 

the start point is closer to the lower (awayIF) bound.  

There are at least six possible, non-mutually exclusive ways that unilateral SC inactivation could 

alter decision-making, which we show in simulation using the DDM (Fig. 5, Extended Data Fig. 

5). The simulations yield different expectations for the psychometric and chronometric functions 

and RT distributions depending on which parameters change and how. Five hundred trials were 

simulated for each possible scenario to make the predictions of choice performance and RT 

distributions, and the first 20 trial simulations of the evidence paths are shown in Fig. 5 and 

Extended Data Fig. 5. All these simulations of performance and RT data can be used for visual 

comparison with the actual data obtained from monkey S and B shown in the shaded regions of 

Fig. 5q-x.  

The first possibility is that muscimol impairs or alters the drift rates (𝛿) in a way that changes the 

proportionality factor between coherence and drift rate. Changes in the proportionality factor 

between coherence and drift rate change how the internal strength of the sensory information for 

orientation is converted into drift rate and therefore, the accumulation of evidence. The change in 
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the proportionality factor can be considered analogous to a change of sensitivity in SDT (assuming 

fixed noise, Fig. 4a,b, in addition to a symmetric change in boundary a, discussed below). We 

simulated a DDM (Fig. 5a-d, Extended Data Fig. 5a-d) with only a proportionality factor decrease 

achieved through a multiplicative decrease in drift rates of 0.5 (pre-muscimol 𝛿1k spanned -3 to 3 

with steps of 0.5 away with mean Δ1 = 0 and post-muscimol 𝛿2k spanned -1.5 to 1.5 with steps of 

0.25 away with mean Δ2 = 0) and no other parameter changes (a = 1.4, 𝜏 = .45 sec, w = 0.5, λ = 0). 

Fig. 5a and Extended Data Fig. 5a show the representation of a sequential sampling of relative 

evidence towards one of two boundaries with 20 simulated evidence paths for a simulated pre-

muscimol injection condition by faded grey lines and a simulated post-muscimol injection 

condition by faded orange lines in the 0% coherence condition. A decision is made once the 

relative path reaches one of two boundaries, then a saccade to the IF or saccade away from the IF 

occurs. Simulated RT distributions from the 0% coherence condition are shown on their respective 

boundaries for each choice (Fig. 5a, Extended Data Fig. 5a; shaded orange RT curves from the 

post-muscimol condition in front of shaded grey RT curves from the pre-muscimol condition). 

Drift rates are the mean rate of evidence accumulation within a trial and as such, are the mean rate 

of evidence accumulation for individual coherences and one direction (shorter arrows Fig. 5a and 

Extended Data Fig. 5a for the 36%, 10%, and 0% coherence conditions for to and away from the 

IF directions). The drift rate is not to be confused with the mean drift rate across all trials, toIF 

and awayIF directions, and all coherences, denoted by the longer arrows in Fig. 5a and Extended 

Data Fig. 5a. The mean drift rate across direction and coherence is also known as the drift rate 

offset, the distance from the drift criterion1 and the drift bias4. Note that the drift rate offset is a 

parameter explicitly fit and estimated in the HDDM, but not in the non-hierarchical DDM and 

UGM, where we calculated the drift rate offset as the mean of the estimated drift rate parameters. 
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We then compared the change in drift rate offsets before and after muscimol (c.f., the longer black 

and orange lines in Fig. 5m and Extended Data Fig. 5m). As we see in Extended Data Fig. 5a-d, a 

decrease in the proportionality factor between coherence and drift rate (with the same drift rate 

offset of zero) would be evident as an increase in the RT distribution tails for both decisions to and 

away from the IF (Fig. 5a, Extended Data Fig. 5a), a change in the slope of the psychometric 

function (Fig. 5b, Extended Data Fig. 5b; dots indicate simulated data and curves show the fit to 

the simulated data, with black indicating pre-muscimol and orange indicating post-muscimol), and 

an increase in mean RTs for correct toIF and awayIF decisions (Fig. 5c,d, Extended Fig. 5c,d; 

black indicating pre- and orange indicating post-muscimol). However, we did not observe 

significant changes in the slope of the psychometric function (Fig. 2f, Fig. 5r,v, shaded) nor did 

we observe consistent mean RT increases for correct awayIF decisions in at least one monkey 

(monkey S; Fig. 5s, shaded), making the possibility of a decrease in the proportionality factor 

between coherence and drift rate unlikely to explain the post-muscimol data. 

The second possibility is that muscimol alters the proportional starting point of the evidence 

accumulation (w) leading to a bias in choosing one or the other option (as a proportion of the 

boundary parameter, a). A change in starting point before evidence accumulation is one way to 

change the decision criterion in SDT, the second being a change in drift rate offset (see Fig. 4 of 

the main text). Drift rate offset and starting point changes can be differentiated in the DDM 

framework by comparing RT distributions. We simulated a DDM (Fig. 5e-h, Extended Data Fig. 

5e-h) with only a decrease in start-point of the evidence accumulation path in proportion to the 

increasing boundary (pre-muscimol w1 was 0.5 and post-muscimol w2 was 0.25) with the same 

initial parameters and boundary height change as the other simulations. Note that absolute changes 

in starting points of evidence accumulation cannot be differentiated from asymmetric changes in 
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evidence boundaries to and away from the IF with behavioral data alone. However, changes in the 

proportional starting point (w) can be differentiated from symmetric changes in boundaries (a) (see 

parameter recovery in Supplementary Fig. 2j-m). As we see in Fig. 5e-h and Extended Data Fig. 

5e-h of the simulation with a change in start point, the predictions show large changes in the 

leading edge of the awayIF RT distribution and shorter mean error toIF RTs, along with a decision 

bias. Looking at the choice performance prediction, a start point change may explain the effects of 

muscimol (Fig. 5r,v, shaded). However, when we look at the mean error toIF RT’s for both 

monkeys (Fig. 5t,x, shaded), we do not observe a decrease, as suggested by the simulation, but 

rather an increase. We also observe a slight shortening of the leading edge of the toIF RT 

distribution for monkey S, but not for monkey B (Fig. 5q,u, shaded). A change in starting point 

could explain the post-muscimol choice performance, but is inconsistent with the changes 

observed in RT distributions.  

A third possibility is that only the toIF boundary (aU) increases (i.e., more evidence is required 

for a toIF decision after muscimol in the SC) without an absolute start point (z) change (Fig. 5i-l, 

Extended Data Fig. 5i-l). Note that an increase in only one decision boundary (perhaps due to 

inactivation of only one SC) would be reflected as an increase in symmetric boundaries (a) and a 

decrease in proportional start point (w) away from the IF with no changes in drift rate offset in the 

HDDMs and DDMs we used. We simulated an upper boundary change with parameters (𝛿1 

spanned -3 to 3 with steps of 0.5 away with mean Δ = 0, 𝜏 = 0.45 sec, z = 0.5, λ = 0) with an 

increase in top boundary from aU1 = 0.7 to aU2 = 1 (which could also be reflected by a symmetric 

boundary increase of  a1 = 1.4 to a2 = 1.7 and proportional start point decrease away from the IF 

w1 = .50 to w2 = 0.41) shown in Fig. 5i and Extended Data Fig. 5i. A single bound change also 

predicts a shift in the decision bias (Fig. 5j and Extended Data Fig. 5j), like those seen with a 
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proportional start point (w) change, a drift rate offset change (Δ), and also in the actual data (see 

Fig. 5r,v, shaded). For the RT predictions, the single bound change predicts an increase in toIF 

RTs for correct and incorrect trials (Fig. 5k,l and Extended Data Fig. 5k,l), which matches the RT 

change we see in monkey S (Fig. 5s,t, shaded) and monkey B (Fig. 5w,x, shaded). However, the 

change in starting point cannot explain the magnitude of the psychometric function shift we 

observed in the data (Fig. 5r,v, shaded) with similar changes in simulated and observed mean RTs 

(Fig. 5s,t,w,x, shaded). 

The fourth possibility is that muscimol alters or impairs the drift rate offset. We simulated a drift 

rate offset change in the DDM by adding an evidence independent constant to all the drift rates, 

which would be shown as an offset in all the drift rates and also the mean of the drift rates across 

toIF and awayIF directions and coherences. However, note that in our model fitting, we defined 

the drift rate offset as the mean of all the drift rates across toIF and awayIF directions and 

coherences. Although the drift rate offset parameter was explicitly fit in the HDDM, the drift rate 

offset in the DDM and UGM was calculated from the estimated drift rates per direction and 

coherence. Changing the drift rate offset is one way to change the decision criterion in SDT, and 

alterations in the drift rate offset would appear as decision biases (in addition to start point biases, 

discussed above; see Fig. 4 of the main text). We simulated a DDM (Fig. 5m-p, Extended Data 

Fig. 5m-p) with a change in drift rate offset (Δ), achieved by a shift in drift rates of 1 evidence unit 

away from the IF (pre-muscimol 𝛿1k spanned -3 to 3 with steps of 0.5 away with mean Δ1 = 0 and 

post-muscimol 𝛿2k spanned -4 to 2 with steps of 0.5 away with mean Δ2 = -1) with the same initial 

parameters as the other simulations. A shift in the drift rate offset favoring awayIF decisions results 

in a laterally shifted psychometric function (Fig. 5n, Extended Data Fig. 5n). The resulting 

chronometric curve from a drift rate offset is distinct, similar to the one we see in the data for 
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monkey S (Fig. 5s, shaded). The drift rate offset change simulation also predicts an increase in 

correct toIF RTs (Fig. 5o,p, Extended Data Fig. 5o,p), which we observed in both monkeys (Fig. 

5s,t,w,x, shaded). Correct awayIF RTs are expected to decrease; an observation made in monkey 

S but not monkey B. Overall, the drift rate offset favoring awayIF decisions explains the effects 

of muscimol in the SC on the choice performance and RT data across monkeys and experiments 

most consistently. 

The fifth possibility is that muscimol alters or impairs decision thresholds symmetrically which 

control the amount of evidence required to reach a decision. We simulated only an increase in 

symmetric evidence boundaries (pre-muscimol a1 was 1.4 and post-muscimol a2 was 1.7) with the 

same initial parameters as the other simulations (Extended Data Fig. 5q-t). An increase in the 

symmetric boundary parameter (a) always results in an increase of RTs and increases in accuracy 

whereas a decrease in the symmetric boundary parameter (a) always results in a decrease of RTs 

and decreases in accuracy. Note that a change in sensitivity in SDT could be reflected by a change 

in symmetric boundary (a) or a change in the proportionality factor between coherence and drift 

rate. Comparing these symmetric boundary simulation predictions of choice performance and RT 

to the actual data (Fig. 5q-x, shaded), we see a lack of a decision bias prediction, but rather only a 

slight sensitivity change prediction (Extended Data Fig. 5r). Since we observed a large decision 

bias in the data, the possibility of a change in symmetric boundaries is unlikely to explain the 

effects of muscimol in the SC on the choice performance and RT data. 

A sixth possibility is that muscimol inactivation of the SC alters the time for processes within a 

trial not related to evidence accumulation, ie., non-decision time (𝜏), such as visual encoding of 

the Glass pattern orientation or saccade execution. We simulated increased non-decision time (pre-

muscimol 𝜏1 was 0.45 sec and post-muscimol 𝜏2 was 0.65) with the same initial parameters as the 
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other simulations (Extended Data Fig. 5u-x). A non-decision time change does not predict any 

changes in SDT because no choice behavior is affected, and therefore also is unlikely to explain 

the post-muscimol data. 

Note that for the simulations we assumed that drift rates would change across coherence based on 

a simple linear function of coherence conditions of the Glass Pattern task, with the explicit ranges 

of drift rates given above. The relationship of drift rate changes in DDMs to SDT (Fig. 4) and the 

simulation results however, are not dependent upon this assumption. In fact, we show that the data 

from both monkeys are explained well by a HDDM with an explicit function that describes each 

drift rate (𝛿) as the comparison of two accumulators. In this HDDM model, the decrease in the 

gain (G) of one accumulator would change the mean drift rate, i.e. drift rate offset  Δ, significantly 

(analogous to Fig. 4c,d, Fig. 5m-p, Extended Data Fig. 5m-p) with less (but some) impact on the 

mean change in proportionality factors across drift rates, whereas a decrease in the gain (G) of 

both accumulators by the same amount would decrease the proportionality factors on each drift 

rate by the same amount (analogous to Fig. 4a,b, Fig. 5a-d, Extended Data Fig. 5a-d) with no 

impact on the drift rate offset.  

These different simulation predictions lay out ways in which SC inactivation can affect RT 

distributions and decision performance, which we can compare visually with the actual data in Fig. 

5q-x shaded in grey. However, for a formal analysis comparing predictions of different models, 

we fit a hierarchical DDM (HDDM) with individual parameters free to vary to see what parameter 

change best explained the effects of muscimol in the SC.  

Hierarchical drift-diffusion model of decision-making (HDDM)      
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We estimated parameters of hierarchical drift-diffusion models (HDDMs) fit to pre, post, and 

recovery data. Hierarchical DDMs often yield better estimates of session parameters due to 

“shrinkage” towards the mean parameters5, 6. This is in contrast to fitting a model per session of 

data which could lead to overfitting and misestimation7, 8. 

The hierarchical drift-diffusion model (HDDM) can be written as a series of statistical 

relationships between parameters and data. In particular, the HDDM can be written as a set of prior 

distributions of parameters, statistical parameter relationships, and likelihoods of observed data. 

Prior distributions provide initial uncertainty about parameters before data are observed. Here, we 

let only the data influence the shape of the posterior distributions by using wide (less informative) 

priors for the hierarchical parameters. Notation “~” refers to a probability distribution of 

parameters or data. The five probability distributions that were used in the hierarchical model are 

the Normal distribution (N) with mean and standard deviation parameters, the Truncated Normal 

distribution with truncation between c and d indicated by ∈ (c, d), the Gamma distribution (𝛤) with 

rate and shape parameters, the Uniform distribution (U) with boundary parameters, and the Wiener 

likelihood for the drift-diffusion model with parameters: non-decision time (𝜏), symmetric 

boundary (a), proportional start point (w), and drift rate (𝛿). Similar to other DDM model fitting 

procedures2, 9, 10, a lapse process defined by the proportion of trials (λ) is found by assuming a 

mixture between the Wiener likelihood and a uniform distribution over all possible positive and 

negative RTs less than three seconds (where positive and negative RTs differentiate toIF and 

awayIF respectively using the Wiener module11). This lapse process thus captures a proportion of 

trials where the monkey did not complete the task and instead made a Bernoulli (i.e. “coin flip”) 

decision either toIF or awayIF with a random RT between 0 and 3 seconds. The hierarchical mean 

parameters (μ) varied by experimental injection condition (e) and monkey (m), which affected 
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parameters that varied by experimental session (s) with some variance given by hierarchical 

variance parameters (𝜎). The drift rate offset parameter (Δ), in each experimental session was 

defined as the mean of the drift rates (𝛿) across positive and negative coherence values (k). The 

drift rate offset is a parameter that was explicitly fitted in the HDDM, in contrast to the non-

hierarchical DDM and UGM where it was calculated. The overall hierarchical model (HDDM, 

Supplementary Fig. 1a) of choice and RT data (vector y) per trial (n) is defined by the following 

equations: 

                      𝜏𝑠 ∼ 𝑁(𝜇(𝜏)𝑒𝑚, 𝜎(𝜏)
2 ) ∈ (0,1); 𝜇(𝜏)𝑒𝑚 ∼ 𝑁(0.5, 0.252); 𝜎(𝜏) ∼ 𝛤(0.3,1)                                      (S9) 

                     𝑤𝑠 ∼ 𝑁(𝜇(𝑤)𝑒𝑚, 𝜎(𝑤)
2 ) ∈ (0,1); 𝜇(𝑤)𝑒𝑚 ∼ 𝑁(0.5,0. 252); 𝜎(𝑤) ∼ 𝛤(0.3,1)                               (S10)                           

                       𝜆𝑠 ∼ 𝑁(𝜇(𝜆)𝑒𝑚, 𝜎(𝜆)
2 ) ∈ (0,1); 𝜇(𝜆)𝑒𝑚 ∼ 𝑁(0.3,0. 152); 𝜎(𝜆) ∼ 𝛤(0.3,1)                                  (S11) 

                          𝑎𝑠 ∼ 𝑁(𝜇(𝑎)𝑒𝑚, 𝜎(𝑎)
2 ) ∈ (0,3); 𝜇(𝑎)𝑒𝑚 ∼ 𝑁(1, 0.52); 𝜎(𝑎) ∼ 𝛤(1,1)                                      (S12) 

                                         𝛥𝑠 ∼ 𝑁(𝜇(𝛥)𝑒𝑚, 𝜎(𝛥)
2 ); 𝜇(𝛥)𝑒𝑚 ∼ 𝑁(0, 22); 𝜎(𝛥) ∼ 𝛤(1,1)                                          (S13) 

                                            𝛿𝑠𝑘 ∼ 𝑁(𝛥𝑠, 𝜎(𝛿)
2 ) ∈ (−9,9); 𝜎(𝛿) ∼ 𝛤(1,1)                                                              (S14) 

                                      𝑦𝑛 ∼ (1 − 𝜆𝑠)𝐷𝐷𝑀(𝜏𝑠, 𝑤𝑠, 𝑎𝑠, 𝛿𝑠𝑘) + 𝜆𝑠𝑈(−3,3)                                                        (S15) 

 Note that we fit a simple HDDM without trial-to-trial variability in the model parameters, 

specifically trial-to-trial variability in non-decision time, drift rate, and initial bias. We assume that 

some across-trial variability in these parameters exist in the data due to there being intrinsic 

variability in the stimulus display and the monkeys’ performance. However simple DDM models 

often estimate the mean DDM parameters well even in the presence of across-trial variability12. 
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We therefore simplified the model fitting procedure by excluding across-trial variability 

parameters, which are often difficult to estimate13. 

We tested the prior sensitivity of the HDDM by changing the prior distributions of the hierarchical 

mean parameters (𝜇) and keeping the other equations the same. We observed no changes greater 

than a few percentage points in posterior distributions (see Supplementary Table 5), although 

changes in BFs did occur as we previously discussed in the Methods. We fitted an additional 3 

models; a “Shifted” HDDM with shifted hierarchical mean priors from the original priors above, 

𝜇(𝜏)𝑒𝑚 ∼ 𝑁(1.0, 0.252) , 𝜇(𝑤)𝑒𝑚 ∼ 𝑁(0.25,0. 252) , 𝜇(𝜆)𝑒𝑚 ∼ 𝑁(0.4,0. 152) , 𝜇(𝑎)𝑒𝑚 ∼ 𝑁(2, 0.52) , and 

𝜇(𝛥)𝑒𝑚 ∼ 𝑁(1, 22); a “Narrow” HDDM with half the width hierarchical mean priors compared to 

the original priors above, 𝜇(𝜏)𝑒𝑚 ∼ 𝑁(0.5, 0.1252) , 𝜇(𝑤)𝑒𝑚 ∼ 𝑁(0.5,0. 1252) , 𝜇(𝜆)𝑒𝑚 ∼

𝑁(0.3,0. 0752) , 𝜇(𝑎)𝑒𝑚 ∼ 𝑁(1, 0.252) , and 𝜇(𝛥)𝑒𝑚 ∼ 𝑁(0, 12); a “Wide” HDDM with double the 

width hierarchical mean priors compared to the original priors above, 𝜇(𝜏)𝑒𝑚 ∼ 𝑁(0.5, 0.52) , 

𝜇(𝑤)𝑒𝑚 ∼ 𝑁(0.5,0. 52) , 𝜇(𝜆)𝑒𝑚 ∼ 𝑁(0.3,0. 32) , 𝜇(𝑎)𝑒𝑚 ∼ 𝑁(1, 1.02) , and 𝜇(𝛥)𝑒𝑚 ∼ 𝑁(0, 42) . 

Hierarchical parameter estimates of pre, post, and recovery data from the HDDM appear in 

Extended Data Fig. 6a-j. Also presented are 2.5th and 97.5th percentiles of the posterior 

distributions of hierarchical parameters, which provide 95% credible intervals. These credible 

intervals provide 95% certainty about the parameter estimates given the likelihood of the data and 

prior distributions. For both monkeys, we see a significant change (defined as greater than 95% 

probability estimated by the posterior distributions) in the drift rate offset towards the awayIF 

decisions in the post-muscimol data after unilateral inactivation of the SC (Extended Data Fig. 

6a,b). We observed a significant decrease in start point for monkey S (Extended Data Fig. 6c) but 

not for monkey B (Extended Data Fig. 6d). Increases in non-decision time and symmetric bound 
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for monkey B were also observed (Extended Data Fig. 6f,h). The changes in non-decision time (𝜏) 

and symmetric bound (a) for monkey S were not very probable (the 95% credible interval of post- 

data includes the estimate of the pre- data, Extended Data Fig. 6e,g). We did not observe any 

significant changes in the lapse proportion (𝜆) (Extended Data Fig. 6i,j) for either monkey. 

The graphical results of the full HDDM (Fig. 5q,u, shaded) were generated by estimating the 

median posterior samples of each hierarchical parameter (μ), the parameter estimates that are 

shown in Extended Data Fig. 6a-j. The graphical DDM for monkey S (Fig. 5q, shaded) was 

generated with median posteriors of -0.06 evidence units per second drift rate offset (μΔ) pre-

muscimol, -0.64 drift rate offset (μΔ) post-muscimol, 0.54 proportion of decision evidence as the 

start-point (μw) pre-muscimol, 0.49 proportion of decision evidence as the start-point (μw) post-

muscimol, 1.50 evidence units boundary (μa) pre-muscimol, 1.55 evidence units boundary (μa) 

post-muscimol, 408 ms non-decision time (μ𝜏) pre-muscimol, 433 ms non-decision time (μ𝜏) post-

muscimol. The median posteriors of 3% lapse rate (μ𝜆) pre-muscimol and 4% lapse rate (μ𝜆) post-

muscimol for monkey S are not shown in the graphical results (Fig. 5q, shaded). The graphical 

DDM for monkey B was generated with mean posteriors of 0.09 drift rate offset (μΔ) pre-muscimol, 

-0.85 drift rate offset (μΔ) post-muscimol, 0.52 proportion of decision evidence as the start-point 

(μw) pre-muscimol, 0.55 proportion of decision evidence as the start-point (μw) post-muscimol, 

1.33 evidence units boundary (μa) pre-muscimol, 1.55 evidence units boundary (μa) post-

muscimol, 543 ms non-decision time (μ𝜏) pre-muscimol, 597 ms non-decision time (μ𝜏) post-

muscimol. The median posteriors of 5%  lapse rate (μ𝜆) pre-muscimol and 5% lapse rate (μ𝜆)  post-

muscimol for monkey B are not shown in the graphical results (Fig. 5u, shaded).  We also estimated 

the median posterior samples of drift rates for each monkey in each session by combining the 

posterior distributions across sessions. The estimates were for the -36%, -10%, 0%, 10%, and 36% 
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were used to plot drift rate estimates as arrows in the graphical representation (Fig. 5q,u, shaded) 

and were the following: (-1.82, -0.86, -0.16, 0.71, 1.96) pre-muscimol in monkey S, (-1.89, -1.29, 

-0.90, -0.02, 1.3) post-muscimol in monkey S, (-2.74, -1.13, 0.20, 1.71, 3.29) pre-muscimol in 

monkey B, and (-3.20, -1.87, -0.87, 0.02, 2.16) post-muscimol in monkey B. 

Given that there are multiple parameter changes from pre-muscimol to post-muscimol, we tested 

which parameter best described the observed behavioral changes in choice performance and RT 

distributions after muscimol injection in the SC by fitting the HDDMs that fixed all parameters 

across injection conditions besides the parameter of interest. This resulted in four additional 

variants of the hierarchical DDM that were fitted to the data: HDDM with the drift rate offset free 

to vary (HDDM-Δ), HDDM with the start point free to vary (HDDM-w), HDDM with non-decision 

time free to vary (HDDM-τ), and HDDM with the start point and bound free to vary (HDDM-a,w). 

In each variant, hierarchical parameters (µ), besides hierarchical parameters of the variable of 

interest (Δ or w or τ), only varied by monkey (m) and not by injection condition (e). We modeled 

the HDDM with the free-to-vary drift rate offset by letting all individual drift rates per k condition 

and the drift rate offset parameter free to vary. With this model, we assessed whether the drift rate 

offset changes could explain the post-muscimol data. Hierarchical parameters of the variable of 

interest could vary by both monkey (m) and injection condition (e). Sessions (s) were collapsed 

across the pre- and post-muscimol and recovery sessions for each separate injection into a 

parameter “day” (d), where one “day” collapsed across three sessions of data that constituted two 

sessions (a pre- session occurring immediately preceding a post-muscimol or saline session) and a 

recovery session within ~24 hours. Parameters besides the variable of interest could vary by day 

(d), while the parameter of interest varied by session (s). Thus, each parameter besides the 

parameter of interest could only explain variance in the data due to the monkey (B or S) and across 
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unique “days”. Only the parameter of interest could explain variance in the data due to the effect 

of an injection changing across injection types (e) and separate sessions (s). Similar non-

informative prior distributions were used as in the full HDDM. The overall hierarchical model 

with the drift rate offset (Δ) as the variable of interest (HDDM-Δ, Supplementary Fig. 1b) of choice 

and RT data (vector y) per trial (n) is defined by the following equations: 

                        𝜏𝑑 ∼ 𝑁(𝜇(𝜏)𝑚, 𝜎(𝜏)
2 ) ∈ (0,1); 𝜇(𝜏)𝑚 ∼ 𝑁(0.5, 0.252); 𝜎(𝜏) ∼ 𝛤(0.3,1)                                  (S16) 

                      𝑤𝑑 ∼ 𝑁(𝜇(𝑤)𝑚, 𝜎(𝑤)
2 ) ∈ (0,1); 𝜇(𝑤)𝑚 ∼ 𝑁(0.5, 0.252); 𝜎(𝑤) ∼ 𝛤(0.3,1)                                  (S17) 

                        𝜆𝑑 ∼ 𝑁(𝜇(𝜆)𝑚, 𝜎(𝜆)
2 ) ∈ (0,1); 𝜇(𝜆)𝑚 ∼ 𝑁(0.3,0. 152); 𝜎(𝜆) ∼ 𝛤(0.3,1)                                       (S18) 

                           𝑎𝑑 ∼ 𝑁(𝜇(𝑎)𝑚, 𝜎(𝑎)
2 ) ∈ (0,3); 𝜇(𝑎)𝑚 ∼ 𝑁(1,0. 52); 𝜎(𝑎) ∼ 𝛤(1,1)                                              (S19) 

                                   𝛥𝑠 ∼ 𝑁(𝜇(𝛥)𝑒𝑚, 𝜎(𝛥)
2 ); 𝜇(𝛥)𝑒𝑚 ∼ 𝑁(0, 22); 𝜎(𝛥) ∼ 𝛤(1,1)                                                      (S20) 

                                            𝛿𝑠𝑘 ∼ 𝑁(𝛥𝑠, 𝜎(𝛿)
2 ) ∈ (−9,9); 𝜎(𝛿) ∼ 𝛤(1,1)                                                                       (S21) 

                                       𝑦𝑛 ∼ (1 − 𝜆𝑑)𝐷𝐷𝑀(𝜏𝑑 , 𝑤𝑑 , 𝑎𝑑 , 𝛿𝑠𝑘) + 𝜆𝑑𝑈(−3,3)                                                          (S22) 

As in the full HDDM, in a hierarchical model with start point (w) as the variable of interest 

(HDDM-w, Supplementary Fig. 1c), the start point of evidence accumulation (w) was assumed to 

be fixed across coherence values before evidence accumulation in a trial. The model variant is 

defined by the following equations: 

                         𝜏𝑑 ∼ 𝑁(𝜇(𝜏)𝑚, 𝜎(𝜏)
2 ) ∈ (0,1); 𝜇(𝜏)𝑚 ∼ 𝑁(0.5,0. 252); 𝜎(𝜏) ∼ 𝛤(0.3,1)                                 (S23) 

                         𝑤𝑠 ∼ 𝑁(𝜇(𝑤)𝑒𝑚, 𝜎(𝑤)
2 ) ∈ (0,1); 𝜇(𝑤)𝑒𝑚 ∼ 𝑁(0.5, 0.252); 𝜎(𝑤) ∼ 𝛤(0.3,1)                    (S24) 

                            𝜆𝑑 ∼ 𝑁(𝜇(𝜆)𝑚, 𝜎(𝜆)
2 ) ∈ (0,1); 𝜇(𝜆)𝑚 ∼ 𝑁(0.3, 0.152); 𝜎(𝜆) ∼ 𝛤(0.3,1)                        (S25) 
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                                𝑎𝑑 ∼ 𝑁(𝜇(𝑎)𝑚, 𝜎(𝑎)
2 ) ∈ (0,3); 𝜇(𝑎)𝑚 ∼ 𝑁(1,0. 52); 𝜎(𝑎) ∼ 𝛤(1,1)                            (S26) 

                                       𝛥𝑑 ∼ 𝑁(𝜇(𝛥)𝑚, 𝜎(𝛥)
2 ); 𝜇(𝛥)𝑚 ∼ 𝑁(0, 22); 𝜎(𝛥) ∼ 𝛤(1,1)                                        (S27) 

                                             𝛿𝑑𝑘 ∼ 𝑁(𝛥𝑑 , 𝜎(𝛿)
2 ) ∈ (−9,9); 𝜎(𝛿) ∼ 𝛤(1,1)                                                       (S28) 

                                        𝑦𝑛 ∼ (1 − 𝜆𝑑)𝐷𝐷𝑀(𝜏𝑑 , 𝑤𝑠, 𝑎𝑑 , 𝛿𝑑𝑘) + 𝜆𝑑𝑈(−3,3)                               (S29) 

Unlike in the full HDDM, non-decision time (ω) was allowed to be variable across coherence 

values (k) with a hierarchical non-decision time (𝜏) as the variable of interest (HDDM-τ, 

Supplementary Fig. 1d). The model variant is defined by the following equations: 

                                𝜏𝑠 ∼ 𝑁(𝜇(𝜏)𝑒𝑚, 𝜎(𝜏)
2 ); 𝜇(𝜏)𝑒𝑚 ∼ 𝑁(0.5,0. 252); 𝜎(𝜏) ∼ 𝛤(0.3,1)                                  (S30) 

                        𝑤𝑑 ∼ 𝑁(𝜇(𝑤)𝑚, 𝜎(𝑤)
2 ) ∈ (0,1); 𝜇(𝑤)𝑚 ∼ 𝑁(0.5, 0.252); 𝜎(𝑤) ∼ 𝛤(0.3,1)                          (S31) 

                           𝜆𝑑 ∼ 𝑁(𝜇(𝜆)𝑚, 𝜎(𝜆)
2 ) ∈ (0,1); 𝜇(𝜆)𝑚 ∼ 𝑁(0.3, 0.152); 𝜎(𝜆) ∼ 𝛤(0.3,1)                           (S32) 

                             𝑎𝑑 ∼ 𝑁(𝜇(𝑎)𝑚, 𝜎(𝑎)
2 ) ∈ (0,3); 𝜇(𝑎)𝑚 ∼ 𝑁(1, 0.52); 𝜎(𝑎) ∼ 𝛤(1,1)                                   (S33) 

                                      𝛥𝑑 ∼ 𝑁(𝜇(𝛥)𝑚, 𝜎(𝛥)
2 ); 𝜇(𝛥)𝑚 ∼ 𝑁(0, 22); 𝜎(𝛥) ∼ 𝛤(1,1)                                           (S34) 

                                               𝛿𝑑𝑘 ∼ 𝑁(𝛥𝑑 , 𝜎(𝛿)
2 ) ∈ (−9,9); 𝜎(𝛿) ∼ 𝛤(1,1)                                                     (S35) 

                                                                      𝜔𝑠𝑘 ∼ 𝑁(𝜏𝑠, 𝜎(𝜔)
2 ) ∈ (0,1); 𝜎(𝜔) ∼ 𝛤(0.3,1)                                                       (S36) 

                                        𝑦𝑛 ∼ (1 − 𝜆𝑑)𝐷𝐷𝑀(𝜔𝑠𝑘 , 𝑤𝑑 , 𝑎𝑑 , 𝛿𝑑𝑘) + 𝜆𝑑𝑈(−3,3)                                            (S37) 

To answer the question whether any boundary change (including a symmetric boundary or either 

single boundary change) could explain the effects of unilateral inactivation of the SC with 

muscimol, we fit a model variant with only the symmetric boundary (a) and start point (w) free to 
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vary across experimental conditions (e) and sessions (s). This final model variant is defined by the 

following priors and likelihood equations: 

                                𝜏𝑑 ∼ 𝑁(𝜇(𝜏)𝑚, 𝜎(𝜏)
2 ) ∈ (0,1); 𝜇(𝜏)𝑚 ∼ 𝑁(0.5,0. 252); 𝜎(𝜏) ∼ 𝛤(0.3,1)                          (S38) 

                            𝑤𝑠 ∼ 𝑁(𝜇(𝑤)𝑒𝑚, 𝜎(𝑤)
2 ) ∈ (0,1); 𝜇(𝑤)𝑒𝑚 ∼ 𝑁(0.5, 0.252); 𝜎(𝑤) ∼ 𝛤(0.3,1)                      (S39) 

                              𝜆𝑑 ∼ 𝑁(𝜇(𝜆)𝑚, 𝜎(𝜆)
2 ) ∈ (0,1); 𝜇(𝜆)𝑚 ∼ 𝑁(0.3, 0.152); 𝜎(𝜆) ∼ 𝛤(0.3,1)                         (S40) 

                                𝑎𝑠 ∼ 𝑁(𝜇(𝑎)𝑒𝑚, 𝜎(𝑎)
2 ) ∈ (0,3); 𝜇(𝑎)𝑒𝑚 ∼ 𝑁(1,0. 52); 𝜎(𝑎) ∼ 𝛤(1,1)                            (S41) 

                                       𝛥𝑑 ∼ 𝑁(𝜇(𝛥)𝑚, 𝜎(𝛥)
2 ); 𝜇(𝛥)𝑚 ∼ 𝑁(0, 22); 𝜎(𝛥) ∼ 𝛤(1,1)                                        (S42) 

                                               𝛿𝑑𝑘 ∼ 𝑁(𝛥𝑑 , 𝜎(𝛿)
2 ) ∈ (−9,9); 𝜎(𝛿) ∼ 𝛤(1,1)                                                      (S43) 

                                           𝑦𝑛 ∼ (1 − 𝜆𝑑)𝐷𝐷𝑀(𝜏𝑑 , 𝑤𝑠, 𝑎𝑠, 𝛿𝑑𝑘) + 𝜆𝑑𝑈(−3,3)                                             (S44) 

When comparing the in-sample prediction of all five model variants, the full HDDM explains the 

change in decision bias the best in both monkeys (98.3% of the data for monkey S, 99.3% for 

monkey B) as shown in the predicted psychometric functions (Extended Data Fig. 7; 

Supplementary Table 4). The HDDM-Δ captures the change in decision bias almost as well as the 

full HDDM in both monkeys (97.6% for monkey S, 98.3% for monkey B), followed by HDDM-

a,w (94.6% for monkey S, 94.0% for monkey B), then HDDM-w (94.5% for monkey S, 93.5% for 

monkey B), and then HDDM-τ (89.9% for monkey S, 91.3% for monkey B). The full HDDM also 

explains the RT distribution best for both monkeys (Supplementary Table 4) as seen by the visual 

comparisons of the predictions of the HDDM and the actual data (Extended Data Fig. 7). While 

HDDM-τ fails to capture any decision bias from pre to post data, it does capture RT data almost 

as well as the full model (Extended Data Fig. 7; Supplementary Table 4). Overall, the full HDDM 
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best predicts the choice performance and the RT data and the results of this model are discussed 

in the Main text. 
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Supplementary Fig. 1. Graphical model descriptions. (Associated with Fig. 5 of the main text) Hierarchical models 

represented by the graph structure of a full HDDM b HDDM-Δ c HDDM-w d HDDM-τ e HDDM-a,w, given by the 

prior and likelihood equations in the Supplementary Note (S9-44). Arrows represent dependencies of variables on 

hierarchical variables, including hierarchical means (𝜇) and hierarchical variance parameters (𝝈). Hierarchical means 

vary by either both monkey (m) and injection condition (e) or just monkey (m). Other variables vary by session (s), 

day (d), coherence condition (k). The observed joint decision-RT data (y) per trial (n) is described by a Wiener process 

depending upon variables in the lowest level of the hierarchy. 

To better understand the mechanism of unilateral inactivation of the SC on evidence accumulation, 

we fit one final HDDM variant with the same parameters and priors as the full HDDM but with an 

enforced equation that describes each drift rate (𝛿) per experimental session (s) and coherence (k) 

as the linear comparison of two accumulators. One can interpret this model as the addition of a 

gain element that impacts how evidence is accumulated in one of two accumulators, i.e., a 

biologically plausible implementation of a change in drift rate offset14, 15. To achieve model 

identifiability, we assumed that the injected SC accumulated a probability for an IF decision with 

probability (θ) that varied with coherence (k) with the other SC accumulating with probability (1 

- θ). The injected SC was also influenced by gain effects (G(toIF)) and the unaffected SC was 

influenced by gain effects (G(awayIF)) that both varied by injection condition (e). For model 

identifiability, we could only gauge the relative influence of injection conditions on the gain 

effects, and thus G(awayIF) was set to 1 in each injection condition and G(toIF) was set to 1 in the pre-

muscimol injection condition. We explored the amount of gain on toIF decisions (G(toIF)) in the 

other five experimental conditions: post-muscimol (e=2), recovery from muscimol (e=3), pre-

saline (e=4), post-saline (e=5), and recovery from saline (e=6) with Bayes Factors (see Methods). 

Finally, the linear accumulator comparison was scaled by a parameter in seconds (R) that varied 
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per monkey (m). Thus, this final model variant (HDDM-G) is fully described by equations S9 

through S12 as well as the following equations: 

                                                            𝜃𝑘 ∼ 𝑁(0.5, 0.252) ∈ (0,1)                                                     (S45) 

                                    𝐺(𝑎𝑤𝑎𝑦𝐼𝐹)𝑒 = 1; 𝐺(𝑡𝑜𝐼𝐹)1 = 1; 𝐺(𝑡𝑜𝐼𝐹)𝑒 ∼ 𝑁(1, 32)∀𝑒 ∈ {2,3,4,5,6}                (S46) 

                                                          𝑅𝑚 ∼ 𝑁(0.5, 0.252) ∈ (0.1,4)                                                                        (S47) 

                                                𝛿𝑠𝑘 =
1

𝑅𝑚
(𝜃𝑘𝐺(𝑡𝑜𝐼𝐹)𝑒 − (1 − 𝜃𝑘)𝐺(𝑎𝑤𝑎𝑦𝐼𝐹)𝑒)                                                     (S48) 

                                             𝑦𝑛 ∼ (1 − 𝜆𝑠)𝐷𝐷𝑀(𝜏𝑠, 𝑤𝑠, 𝑎𝑠 , 𝛿𝑠𝑘) + 𝜆𝑠𝑈(−3,3)                                                (S49) 

All HDDMs were fitted for 52,000 original samples in each of six Markov chains for each 

parameter. After removing the first 2000 samples as a “warm-up" and then keeping only every 

10th sample, i.e., using a “thinning” parameter of 10, this resulted in 5,000 posterior samples in 

each Markov chain for 5,000 * 6 = 30,000 samples from the estimated posterior distributions for 

each parameter. To assess model convergence, the Gelman-Rubin statistic and the number of 

effective samples were calculated7. The Gelman-Rubin statistic assesses the convergence of 

MCMC samplers by comparing the between-chain variance to the within-chain variance of each 

parameter, with Gelman-Rubin statistic > 1.1 thought to be a necessity for convergence. The 

“effective number of samples” equation scales the total sample number for each parameter 

posterior by autocorrelation in the chains in order to estimate an independent number of samples7. 

We also implemented the recommendation by 7 (see footnote in the 3rd Edition on page 283) to 

split the chains in half before calculating the Gelman-Rubin statistic in order to account for non-

stationary chains. Larger effective numbers of samples for each parameter in the model are better. 

The chains for parameters with the largest Gelman-Rubin statistics and smallest effective number 
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of samples were also visually inspected to ensure convergence. Model HDDM converged with 

Gelman-Rubin statistics of <= 1.03 and a number of effective samples >=222 for all parameters. 

Model HDDM-Δ converged with Gelman-Rubin statistics of <= 1.01 and a number of effective 

samples of >=882 for all parameters, and model HDDM-w converged with Gelman-Rubin 

statistics of <= 1.03 and a number of effective samples >=31 for all parameters. Model HDDM-τ 

had some non-decision time variables reach multiple-peaked posterior distributions, and so did not 

converge with Gelman-Rubin statistics of <= 1.12 and a number of effective samples >=37 for all 

parameters. The model HDDM-a,w converged with Gelman-Rubin statistics of <= 1.06 and a 

number of effective samples >=22 for all parameters. Model HDDM-G converged with Gelman-

Rubin statistics of <= 1.02 and a number of effective samples >=337 for all parameters. The 

goodness of fit measure, R2
pred for these sets of parameter estimates for HDDM to the data are 

shown in Supplementary Table 4. 

Non-hierarchical drift-diffusion model of decision-making (DDM) 

We also fitted the non-hierarchical DDM, to the pre-muscimol and post-muscimol data using 

quantile maximum products estimation (QMPE)16 in the ChaRTr package17, along with the HDDM 

to ensure that our parameter estimations were robust against different modeling methods. Model 

fitting of the non-hierarchical DDM was performed on the RT task data from monkey S and 

monkey B (seven for monkey S and two for monkey B), separately for each monkey for pre- and 

post-muscimol data, and pooled across sessions. This model fit to the data with nine RT quantiles 

that summarize the RT distribution of each of the 11 trial conditions (24%, 17% 10%, 5%, 3%, 

0%) for toIF and awayIF decisions with the 0% collapsed for to and awayIF decisions. The 36% 

conditions in the toIF and awayIF data were excluded for both monkeys because there were not 

enough data for fitting error RT quantiles. For all the fits using the models in the ChaRTr package, 
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five iterations were fitted for each dataset with different random seeds to avoid getting stuck in 

local minima when optimizing the goodness of fit measure, the QMP statistic. The best out of the 

five fits (according to AIC/BIC scores calculated from the QMP statistic) was used for model 

comparisons and reported for parameter estimation (Supplementary Table 4 and Extended Data 

Fig. 6). 

The main differences between the HDDM and the non-hierarchical DDM are that 1) they employ 

a different modeling method (QMPE for non-hierarchical DDM and Bayesian Estimation for 

HDDM), 2) the HDDM has a hierarchical structure that allows for the parameters of individual 

experimental sessions to be pushed towards the mean parameters of all the sessions in an effort to 

better estimate parameters, 3) the inclusion of a lapse rate in the HDDM and 4) the drift rate offset 

was a parameter explicitly fit in the HDDM whereas in the DDM, the drift rate offset was 

calculated from fitted individual drift rate parameters. However, for model fitting, the definition 

of the drift rate offset, the mean of all the drift rates across directions and coherences, is the same 

in the HDDM, DDM, and UGM. For our non-hierarchical DDM, the drift rate for each condition, 

start point (w), non-decision time (𝜏), and the symmetric boundary (a) were free parameters that 

were estimated for pre- and post-muscimol data.  

The parameter estimates of the DDM from fitting pre and post sessions showed the same relative 

changes from pre- to post-muscimol in all the parameters for both monkeys that we also saw using 

the HDDM parameter estimates, including the same change in the drift rate offset (Extended Data 

Fig. 6k,l), indicating that our parameter estimation results are robust against different modeling 

methods.  

Urgency-gating models (UGMs) 
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Urgency-gating Models (UGMs) are another class of accumulation to bound model where the 

sensory evidence is 1) low-pass filtered to prioritize more recent evidence and 2) multiplied by a 

linearly growing urgency signal during a decision18, 19. We found evidence that the UGM may also 

reasonably explain the behavior of monkey B in the pre-muscimol sessions, whereas data from 

monkey S were better explained by DDMs (Supplementary Table 4), although it is impossible to 

distinguish DDMs from UGMs using tasks with constant evidence during a trial, such as the Glass 

pattern decision task20. Nevertheless, under the assumption that the monkeys’ behavior could be 

explained by the UGM, and given our finding that a change in the drift rate offset (Δ) best explained 

the effect of the muscimol when assuming a DDM (Supplementary Table 4), we tested whether 

unilateral SC inactivation could be explained by a change in drift rate offset, or a change in the 

urgency signal of a UGM. Changes in the drift rate offset parameter signals a shift in the drift rates 

that are directly involved in the computation of evidence, biasing the evidence accumulation to 

one direction. In contrast, changes in the urgency signal affect a time-varying gain factor that 

influences decisions after the evidence is computed, rather than being involved in the computation 

of evidence itself. To assess whether the effects of SC inactivation were better explained by a 

change in the drift rate offset or an urgency signal, we fitted UGM variants to the data from monkey 

S and monkey B by letting either the drift rate offset or the urgency signal free to vary in post-

muscimol data while keeping other parameters fixed to their pre-muscimol parameter estimate 

values. The UGM variant with the drift rate offset free to vary was modeled by letting all individual 

drift rates per coherence and direction free to vary, therefore allowing drift rate offset to change.  

This UGM process that we used for our model is defined by the following equations modified 

from the ChaRTr package: 
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                                                                  α = T/(T +Δt)                                                          (S50) 

                                          E(t) = α E(t-1) + (1-α) (𝛿 k Δt + ϛ N(0,1))                                     (S51) 

                                                                 u(t) = i + mt                                                             (S52) 

                                                                x(t) = E(t)u(t)                                                            (S53) 

                                                               x(t=0) = w*a                                                              (S54) 

                                                      x(t) ≥ a → choose toIF                                                        (S55) 

                                                   x(t) ≤ 0 → choose awayIF                                                      (S56) 

Evidence during a trial, E(t), is low pass filtered with a weight for previous evidence (α) that is 

controlled by the filter constant set to T = 100 ms and a weight for incoming evidence (1-α) that 

is influenced by the drift rate (𝛿) for each coherence condition (k), the time step (Δt = 1 ms), and 

the noise constant (ϛ), set to 100 evidence units. Evidence is calculated and influenced by the drift 

rate, elapsed time since the Glass pattern onset, and the within-trial noise. Evidence in the UGM 

is low-pass filtered to prioritize more recent evidence, similar to a leaky integrator. Also in the 

UGM, unlike the DDM, the current state of evidence, E(t), is multiplied by the linear urgency 

signal u(t) with a slope (m) and an intercept (i), fixed to 0. This linear urgency signal is a time-

varying gain parameter that is multiplied by the evidence. In the UGM, ramping activity of 

decision-making neurons is driven by the urgency signal rather than evidence accumulation as in 

DDM.  

The slope of the linearly growing urgency signal (m) in the UGM was free to vary to assess whether 

the effects of muscimol were best explained by a change in the urgency signal. The symmetric 
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boundary (a) was fixed to estimate the urgency slope (m) as a free parameter because parameter 

recovery results of the UGM with both a free boundary and a free urgency slope suggested that 

there was an overlapping role of the bound height and the urgency slope in explaining the choice 

and reaction time data (Supplementary Fig. 2a-e). Because we were only interested in assessing 

whether the effects of muscimol in the SC were best explained by a change in the urgency signal 

or the drift rate offset, we fixed the symmetric boundary to accurately estimate the change in 

urgency slope from pre- to post-muscimol. For fitting the UGM with both the pre- and post-

muscimol data, the boundary value was fixed at the value of the parameter estimate of the boundary 

from fitting the UGM with the only the boundary (a), drift rates (𝛿 k), non-decision time (𝜏), and 

start point (w) allowed to vary in the pre-muscimol data. Therefore, in our full UGM, the drift rate 

for each condition (𝛿 k), non-decision time (𝜏), start point (w), and the slope of the urgency signal 

(m) were free parameters that were estimated for pre- and post-muscimol data for both monkeys. 
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Supplementary Fig. 2. Parameter Recovery for UGM and DDM The set of parameter estimates for each of the 

five iterations of fits used for parameter recovery (denoted as x) are shown along with the known parameters used to 

simulate the data (denoted as black circles). The y-axis scale for each parameter was determined by the lower restraint 

and the upper restraint when estimating the parameter during fitting. a-e The parameter recovery estimates for the 

UGM with free proportional start point, free drift rates, free non-decision time (NDT), free urgency slope, and a free 

bound. Visually, the parameter recovery estimates of all 5 iterations of the drift rate, proportional start point, and non-

decision time match the true parameter estimate. However, parameter estimates from four out of the five fits of the 

urgency slope and the bound are overestimated. The magnitude of the overestimation of the urgency slope and the 

bound even seem correlated, where the fits with a higher slope also have a higher bound. Because we were unable to 

recover the slope reliably when the bound was free and because we wanted to assess whether a change in urgency 

slope best explained the effect of muscimol in the SC, we used a version of the UGM where the urgency slope, drift 

rate, proportional start point, and non-decision time were free, but the bound was fixed. f-i To confirm that the UGM 
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with the free urgency slope but fixed bound (free proportional start point, free drift rates, free non-decision time, free 

urgency slope, fixed bound) was able to estimate parameters accurately, we show the parameter recovery estimates 

for this UGM variant. All parameter recovery estimates of all five fits recover the true parameter for this model. We 

defined this as our “full UGM” and used for modeling the actual data to recover slope estimates. j-m We also made 

sure that the non-hierarchical DDM could recover parameters accurately with free proportional start point, free drift 

rate, free bound, and free non-decision time. All parameters from all of the five fits match the true parameters. 

Fitting the UGM for parameter estimation of pre- and post-muscimol data and also fitting UGM 

variants with only either the drift rates or the urgency slope free, we used the same pre- and post-

muscimol data pooled across sessions and modeling method described in the non-hierarchical 

DDM section, using the ChaRTr package17. To test the robustness of this procedure of fitting 

pooled data, we also fitted all the pre-muscimol sessions individually across experimental sessions, 

with only 9 conditions: 17%, 10%, 5%, 3% each for toIF and awayIF, and 0% condition collapsed 

across toIF and awayIF. The 24% and 36% conditions were excluded because there were not 

enough error trials in each individual session for either monkey. We also used the results of fitting 

individual pre-muscimol session data, for model comparison between the HDDM, DDM, and 

UGM for each monkey (model fits denoted with ** in Supplementary Table 4). The parameter 

estimates for fitting the DDM and the UGM using the pooled and individual data were similar 

(Supplementary Fig. 3). 
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Supplementary Fig. 3. Parameter estimates of fits using pre-muscimol data from individual data versus pooled 

data a-d DDM parameter estimates fitted to pre-muscimol data that were pooled across all muscimol injections (black 

x) are shown in comparison to the DDM parameter estimates fitted to the pre-muscimol data from individual muscimol 

injection sessions for monkey S (n=9 injections, circles). e-h Same as in a-d for monkey B (n=2 injections, circles). i-

l Same as in a-d for the UGM for monkey S (n=9 injections, circles). m-p Same as in i-l for monkey B (n=2 injections, 

circles). For both monkeys and for both models, although there is some variability in parameter estimates between 
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injection sessions, especially in DDM parameter estimates for monkey S, the parameter estimates obtained using 

pooled data for fitting the models summarize the parameters from all the individual sessions reasonably well.  

The parameter estimates of the UGM from fitting pre- and post-muscimol sessions show the 

relative changes from pre- to post-muscimol for the drift rate offset as seen with the HDDM and 

DDM, along with changes in urgency slope for both monkeys, slightly for monkey S and more so 

for monkey B (Extended Data Fig. 6k,l). However, when fitting the UGM with only the slope free 

to vary, the model failed to capture the post-muscimol decision bias data (Supplementarty Table 4 

and Extended Data Fig. 7b,d in UGM-m row). In contrast, the UGM with the drift rates free to 

vary captured the choice data almost as well as the full UGM (Supplementary Table 4 and 

Extended Data Fig. 7b,d in UGM-𝛿 row), indicating that the change in drift rate offset best explains 

the effect of muscimol on decision bias. This result confirmed the results obtained using the 

HDDM and DDM. 

Model Comparison 

To compare across model variants, we found the amount of variance explained for in-sample and 

out-of-sample prediction of choice-RT data (Supplementary Table 4). In-sample prediction refers 

to how well each model performed at predicting proportion of choices and RT quantiles of the data 

that were used to fit model parameters. We used 80% of the in-session trials (randomly picked 

with a uniform distribution), to fit model parameters and determine in-sample prediction statistics. 

Out-of-sample predictions were obtained using the 20% of the data that was not used to fit the 

data. Bayesian Information Criteria (BIC) and Akaike Information Criteria (AIC) were also 

calculated for the DDM and UGM models in ChaRTr, which are measures of in-sample prediction 

collapsed across data types (choice performance and RT) that include penalties for model 
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complexity. BIC more often favors models that match the ground truth while AIC more often 

favors models that will be more predictive of new data17. 

R2
pred measures the amount of variance in the data (either in-sample or out-of-sample), explained 

by the prediction of the model. Obtaining estimates of variance explained for RT statistics (mean, 

25th percentiles, median, and 75th percentiles) and proportions of choice are useful to understand 

how one model performs better than another model. R2
pred ranges from -∞ to 1 and can be 

multiplied by 100 for an estimate of -∞ to 100% percentage of variance explained by the data 

statistic (Q) by prediction. Note that values can be negative indicating that the amount of variance 

in prediction is greater than the variance of the statistic (Supplementary Table 4). However, the 

relative values from one model to the next are still informative about the improvement in 

prediction. R2
pred is defined as one minus the mean squared error of prediction of a certain statistic 

(Q) scaled by the estimated variance of a statistic using a number of observations J equal to the 

total number of coherence conditions (K) across experimental sessions (S)  for a total J = K*S. 

For calculating the R2
pred for the non-hierarchical DDM and UGM that were fit to individual pre-

muscimol sessions for model comparison between the HDDM, DDM, and UGM, we used the 

individual session’s predictions (with the 24% and 36% conditions excluded, see UGMs section) 

in calculating the mean squared error of prediction for R2
pred , while the R2

pred of the HDDM was 

also calculated from fitting the exact pre-muscimol data for each monkey without the 36% and 

24% coherence conditions (model fits denoted with ** in Supplementary Table 4). For all other 

R2
pred for the non-hierarchical DDM and the UGMs (i.e. DDM, UGM, UGM-𝛿, UGM-m), we 

found the difference between the predictions from those pooled fits to each individual session’s 

actual data to calculate the error of prediction. 
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Parameter recovery 

We performed parameter recovery to ensure that QMPE would return accurate estimates of free-

to-vary UGM and DDM parameters. For our process of parameter recovery, we first simulated 

choice and RT data for the DDM and UGM, using parameter values approximated from previous 

fits of our pre-muscimol data for monkey B using the ChaRTr. We then fitted the UGM and DDM 

to the simulated data to determine whether the parameter estimates from the fits matched the 

parameters that generated the simulations. All five sets of parameter estimates from the five fits 

demonstrated that the models used (DDM and UGM with fixed bound and free slope) can recover 

parameters accurately. We found that the parameter estimates closely matched the known 

parameters for the DDM and the UGM (Supplementary Fig. 2). 
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Supplementary Tables  

 

Supplementary Table 1. Unilateral Muscimol Injections into the monkey SC. (Associated 

with Figs. 1 and 2 main text) Details of the injections in two monkeys. Each row shows an 

individual injection (n=29) and each column shows the specifics of one particular injection. The 

column labeled monkey indicates that the experiment was performed in monkey S or monkey B 

and the treatment column indicates whether the injection was saline or muscimol. The next column 

indicates the total injection volume in µl. The column labeled Conc. (µg/µl) lists the concentration 

of muscimol or saline and the side of injection column lists the side of the brain in which the 

injection was made. The decision task type column indicates the version of the decision task used 

(RT or delay). The RFₓ column shows the horizontal position of the RF for each injection, and the 

RFy column shows the vertical position of the RF. 
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Supplementary Table 2. Statistics for recovery psychometric and chronometric function fits 

(Associated with Fig. 2 of the main text) All statistical tests that were performed with the recovery 

data for the muscimol and saline injections for the , , RT slope, and RT intercept parameters 

associated with the fits in Extended Data Fig. 4 are listed. The first column indicates on which 

parameter the statistics were performed, the second column indicates which paired groups of data 

sessions were compared, the third column indicates which paired test was performed, the n 

indicates number of observations, followed by the p-value, test-statistic, and the confidence 

interval if a t-test was performed. The statistical results are sectioned by the injection (saline or 

muscimol) data that the statistics were performed on, marked by horizontal lines. We performed 

pairwise comparisons between parameters of pre-muscimol to recovery (the 2nd pairwise 

comparison of pre-muscimol to post-muscimol are shown in the main text) with Bonferroni 

corrections (two pairwise comparison tests performed,  = 0.05/2 = 0.025). 
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Supplementary Table 3. Statistics for choice accuracy and peak saccadic velocity analysis 

(Associated with Fig. 3 of the main text) This table reports the statistical results of comparing 

differences in performance accuracy for the decision and selection tasks, for toIF and awayIF 

trials, pre- and post-muscimol. Also listed are the statistics for assessing the differences in post-

muscimol peak saccadic velocity for toIF saccades made in the decision and the selection tasks, 

for each muscimol injection shown in Fig. 3d and e. N=9 muscimol injections for monkey S and 

n=8 muscimol injections for monkey B. The table is divided by horizontal black lines into three 

main sections - muscimol accuracy comparisons, saline accuracy comparisons, and muscimol 

peak saccadic velocity comparisons. Each of these main sections is further separated by monkey. 

The muscimol accuracy comparisons section and the saline accuracy comparisons section have 

the same ordering of columns. The first column, “task/side” describes the task and side of 

accuracy from pre to post, i.e. “decision toIF” means the test assessed differences in accuracy for 

toIF trials in the decision task between pre- and post-muscimol. The second column describes the 

data sessions compared and the next column describes the statistical test that was used to 

compare the two data sets. We used a paired samples t-test when both samples (data from pre 

and post) consisted of normally distributed data or the Wilcoxon signed rank test when either of 

the two samples consisted of non-normally distributed data, implementing a Bonferroni 

correction (four accuracy multiple comparison tests per monkey,  = 0.05/4 = 0.0127). The next 

column indicates the sample size (number of injections). The column after shows the p-value of 

the statistical comparison analysis followed by the test statistic. The last column indicates the 

confidence interval if a t-test was performed. For the section assessing differences in post-

muscimol peak saccadic velocity for toIF saccades made in the decision task compared to the 

selection task, on an injection-by-injection basis, the first column describes the injection 
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experiment number, the second column shows the tasks from which the data are compared, and 

the next column describes the specific statistical test that was used to compare the two samples 

of peak velocities of saccades made. A two independent sample t-test (for normally distributed 

data sessions) or Wilcoxon rank-sum test (for non-normally distributed data sessions) was used 

to compare the post-muscimol toIF peak saccadic velocities between the decision and selection 

tasks with Bonferroni corrections of  = 0.05/9 = 0.0056 for the tests for monkey S, since nine t-

tests were performed on data from each injection, and  = 0.05/8 = 0.0063 for monkey B, since 

eight t-tests were performed on data from each injection, totaling 17 injections. Six injections 

were excluded due to technical issues with the eye tracker that impacted measurement of eye 

speed but not assessment of choice or RT. The next column indicates the sample size, the 

number of trials where the peak saccadic velocities were recorded, from the decision task and the 

following column indicates the sample size of the peak saccadic velocities from the selection 

task. The next column relates the p-value of the test followed by the test statistic in the next 

column for the specific statistical test performed. The last column indicates the confidence 

interval if a t-test was performed. 
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Supplementary Table 4. Table of R2
pred for in-sample and out-of-sample predictions 

(Associated with Fig. 5 of the main text). For model comparisons, we obtained goodness of fit 

measures such as R2
pred for choice performance data, RT mean, RT 25th percentile, RT median, 

RT 75th percentiles, along with the AIC and BIC values (where can be applied) for the in-sample 

predictions where various models were fit to a random 80% of the data (Supplementary Note) for 

monkey S (top left) and monkey B (top right). Also shown are the R2
pred values for out-of-sample 

predictions (bottom left for monkey S and bottom right for monkey B), where the predictions of 

the fits are compared to the 20% of the data that was not fit to assess if the data was overfit and 
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see if the same conclusions of model comparison are supported. Each section of the table starts 

with the model comparisons between the full HDDM, HDDM with free drift rate offset (HDDM-

Δ), HDDM with free proportional start point (HDDM-w), the HDDM with free non-decision time 

(HDDM-τ), and the HDDM with the free proportional start point and bound (HDDM-a,w). For 

both monkeys, the in-sample R2
pred shows that the HDDM-Δ fit explains the choice data best 

compared to HDDM variants with specific parameters free to vary. The HDDM-a,w also captures 

some of the choice data but not to the extent of the HDDM-Δ, which fully captures the magnitude 

of the decision bias, which is visualized in Extended Data Fig. 7. Like HDDM-a,w, the HDDM-w 

also captures some of the decision bias, but not sufficiently to capture the magnitude of decision 

bias seen in the data. The HDDM-τ explains the least of the choice data out of the models. The 

R2
pred goodness of fits are also shown for HDDM-G, the full HDDM with the same parameters but 

with drift rates constrained to a linear comparison of two accumulators to test a model with two 

independent accumulators with gain (Supplementary Note). The HDDM-G fits the data well but 

not as well as the full HDDM. The predictions from the model fits denoted with ** are the models 

that were fitted to individual pre-muscimol data (rather than pooled pre-muscimol data) with nine 

conditions (17%, 10%, 5%, 3% separately for toIF and awayIF trials, with the 0% collapsed across 

toIF and awayIF trials) for direct model comparison between the HDDM, DDM, and UGM for 

each monkey (Supplementary Note) to see whether the UGM is also a reasonable decision-making 

model assumption as the HDDM/DDM in our behavioral data. The next four models are the DDM 

and UGM fits for pre and post data that were pooled (Supplementary Note) to show the measures 

of fits that correspond to the parameter estimates seen in Extended Data Fig. 6. Finally, the model 

comparisons for the full UGM, UGM with free drift rates (UGM-δ), and UGM with free urgency 

slope (UGM-m) for the post-muscimol data (while keeping the other parameters fixed at pre-
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muscimol parameter estimate values, Supplementary Note), are shown. For monkey S, the AIC 

and BIC values indicate that the UGM-δ is a better fit than the UGM-m, whereas for monkey B, 

the AIC and BIC values favor the UGM-m than the UGM-δ. However, the in-sample R2
pred values 

for choice data show that the UGM-m fails to capture the choice data for both monkeys whereas 

the UGM-δ captures the choice data almost as well as the full UGM (also visualized in Extended 

Data Fig. 7). The UGM-δ better explains the shift in decision bias than UGM-m in both monkeys, 

while the UGM-m better explains the RT distribution change from monkey B, but not for monkey 

S, likely due to individual strategy differences. The out-of-sample predictions generally show the 

same results although they are more variable. 
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Supplementary Table 5. Probability and Bayes Factor (BF) estimates derived from posterior 

distributions for specific parameter changes with different prior distributions for hierarchical mean 

parameters (𝜇). “Original” refers to the HDDM listed in the Main text and Methods. “Shifted” 

refers to a HDDM with shifted hierarchical mean priors from “Original” HDDM (Supplementary 

Note). “Narrow” refers to a HDDM with half the width hierarchical mean priors compared to the 

“Original” HDDM (Supplementary Note). “Wide” refers to a HDDM with double the width 

hierarchical mean priors compared to the “Original” HDDM.  

 


