

**Figure S1.** Forest plot of the incidence of COVID-19 in people with CKD without kidney replacement therapy.



Total and observations: person-weeks; CI: confidence interval

**<u>Figure S2.</u>** Forest plot of the incidence rate ratio of death in people with CKD and COVID-19 compared to people with CKD without COVID-19.



Experimental: people with CKD and COVID-19; Control: people with CKD without COVID-19

| Figure S3. Forest plot of the incidence of death in people with CKD without kidney replacement | t |
|------------------------------------------------------------------------------------------------|---|
| therapy and COVID-19.                                                                          |   |

| tudy E                                                                  | vents | Total  | Weight | Events per 1000 observation:<br>IV, Random, 95% Cl | IV, Random, 95% C                       |
|-------------------------------------------------------------------------|-------|--------|--------|----------------------------------------------------|-----------------------------------------|
| nang 2020                                                               | 4     | 18     | 0.3%   | 222.22 [ 90.01; 452.15]                            |                                         |
| hen 2020                                                                | 2     | 22     | 0.3%   | 90.91 [25.30; 278.15]                              |                                         |
| an 2020                                                                 | 3     | 26     | 0.4%   | 115.38 [ 40.03; 289.76]                            |                                         |
| tonen 2020                                                              | 0     | 30     | 0.4%   | 0.00 [ 0.00; 113.51]                               |                                         |
| hen 2020c                                                               | 4     | 33     | 0.4%   | 121.21 [ 48.16; 273.26]                            |                                         |
| bolghasemi 2020                                                         | 4     | 35     | 0.5%   | 114.29 [ 45.35; 259.51]                            |                                         |
| an Halem 2020                                                           | 3     | 36     | 0.5%   |                                                    |                                         |
|                                                                         |       |        |        | 83.33 [ 28.75; 218.27]                             |                                         |
| onzalez Diaz 2020                                                       | 1     | 42     | 0.5%   | 23.81 [ 4.22; 123.21]                              |                                         |
| lagner 2020                                                             | 3     | 56     | 0.6%   | 53.57 [ 18.39; 146.07]                             |                                         |
| priani                                                                  | 6     | 65     | 0.7%   | 92.31 [ 43.00; 187.12]                             |                                         |
| u 2020                                                                  | 6     | 69     | 0.7%   | 86.96 [ 40.46; 177.01]                             |                                         |
| irim 2021                                                               | 2     | 75     | 0.8%   | 26.67 [ 7.34; 92.11]                               | -                                       |
| lardo 2020                                                              | 7     | 84     | 0.8%   | 83.33 [ 40.95; 162.16]                             | -                                       |
| lam 2020                                                                | 4     | 90     | 0.9%   | 44.44 [ 17.42; 108.77]                             | -                                       |
| e 2020                                                                  | 3     | 94     | 0.9%   | 31.91 [ 10.91; 89.67]                              | -                                       |
| ao 2020                                                                 | 10    | 95     | 0.9%   | 105.26 [ 58.19; 183.02]                            | _                                       |
| aliskan 2020                                                            | 5     | 98     | 0.9%   | 51.02 [21.99; 113.92]                              |                                         |
| otta 2020                                                               | 2     | 118    | 1.0%   | 16.95 [ 4.66; 59.70]                               |                                         |
|                                                                         |       |        |        |                                                    |                                         |
| utierrez 2020                                                           | 16    | 128    | 1.0%   | 125.00 [ 78.43; 193.43]                            |                                         |
| wang 2020                                                               | 3     | 131    | 1.0%   | 22.90 [ 7.82; 65.17]                               | -                                       |
| rimaldi 2020                                                            | 22    | 132    | 1.0%   | 166.67 [112.72; 239.47]                            |                                         |
| men 2020                                                                | 1     | 139    | 1.1%   | 7.19 [ 1.27; 39.62]                                |                                         |
| achega 2020                                                             | 4     | 144    | 1.1%   | 27.78 [ 10.85; 69.24]                              | -                                       |
| ho 2021                                                                 | 7     | 144    | 1.1%   | 48.61 [ 23.74; 96.94]                              | -                                       |
| ikpouraghdam 2020                                                       | 3     | 144    | 1.1%   | 20.83 [ 7.11; 59.46]                               | -                                       |
| avanian 2021                                                            | 5     | 153    | 1.1%   | 32.68 [ 14.04; 74.21]                              | -                                       |
| uan 2020                                                                | 5     | 153    | 1.1%   | 32.68 [ 14.04; 74.21]                              | -                                       |
| anini 2020                                                              | 9     | 163    | 1.1%   | 55.21 [ 29.32; 101.59]                             |                                         |
|                                                                         | 24    | 188    | 1.2%   |                                                    |                                         |
| iceri 2020<br>kob 2020                                                  | 24    |        |        | 127.66 [ 87.31; 182.92]                            |                                         |
| koh 2020                                                                |       | 204    | 1.2%   | 142.16 [100.84; 196.70]                            |                                         |
| hi 2020                                                                 | 12    | 216    | 1.2%   | 55.56 [ 32.06; 94.58]                              | -                                       |
| aake 2021                                                               | 9     | 229    | 1.3%   | 39.30 [ 20.81; 72.99]                              | -                                       |
| hilimuri 2020                                                           | 31    | 233    | 1.3%   | 133.05 [ 95.34; 182.66]                            |                                         |
| han 2021                                                                | 7     | 253    | 1.3%   | 27.67 [ 13.47; 56.00]                              | -                                       |
| ang 2020                                                                | 12    | 285    | 1.4%   | 42.11 [ 24.25; 72.14]                              | -                                       |
| an Halem 2020                                                           | 25    | 288    | 1.4%   | 86.81 [ 59.49; 125.00]                             |                                         |
| brishami 2020                                                           | 3     | 309    | 1.4%   | 9.71 [ 3.31; 28.15]                                | -                                       |
| alacup 2020                                                             | 11    | 330    | 1.4%   | 33.33 [ 18.71; 58.69]                              | -                                       |
| shrati 2020                                                             | 14    | 368    | 1.4%   | 38.04 [ 22.79; 62.84]                              | -                                       |
|                                                                         |       |        |        |                                                    |                                         |
| ccarino 2020                                                            | 31    | 390    | 1.5%   | 79.49 [ 56.56; 110.62]                             |                                         |
| car 2021                                                                | 11    | 407    | 1.5%   | 27.03 [ 15.16; 47.74]                              | <b>.</b>                                |
| asparini 2020                                                           | 11    | 453    | 1.5%   | 24.28 [ 13.61; 42.95]                              | <b>.</b>                                |
| oca 2020                                                                | 55    | 544    | 1.6%   | 101.10 [ 78.50; 129.30]                            | <b>=</b>                                |
| ackson 2020                                                             | 6     | 611    | 1.6%   | 9.82 [ 4.51; 21.26]                                |                                         |
| uhammad 2021                                                            | 19    | 780    | 1.6%   | 24.36 [ 15.65; 37.73]                              |                                         |
| zturk 2020                                                              | 82    | 826    | 1.6%   | 99.27 [ 80.70; 121.56]                             |                                         |
| hlstrom 2021                                                            | 15    | 889    | 1.7%   | 16.87 [ 10.25; 27.65]                              | -                                       |
| ude-Sampedro 2020                                                       | 30    | 909    | 1.7%   | 33.00 [ 23.21; 46.72]                              |                                         |
| endy 2020                                                               | 13    | 914    | 1.7%   | 14.22 [ 8.33; 24.18]                               |                                         |
|                                                                         | 35    | 924    | 1.7%   |                                                    |                                         |
| uang 2020                                                               |       |        |        | 37.88 [ 27.36; 52.22]                              |                                         |
| amdari 2020                                                             | 23    | 948    | 1.7%   | 24.26 [ 16.22; 36.14]                              |                                         |
| apak 2020                                                               | 11    | 949    | 1.7%   | 11.59 [ 6.48; 20.64]                               |                                         |
| astad 2021                                                              | 28    | 981    | 1.7%   | 28.54 [ 19.82; 40.94]                              |                                         |
| usso 2021                                                               | 131   | 1110   | 1.7%   | 118.02 [100.34; 138.33]                            | <b>=</b>                                |
| unblit 2020                                                             | 43    | 1195   | 1.7%   | 35.98 [ 26.82; 48.12]                              | -                                       |
| ortoles 2020                                                            | 60    | 1251   | 1.7%   | 47.96 [ 37.44; 61.25]                              | <b>•</b>                                |
| bohamr 2020                                                             | 15    | 1263   | 1.7%   | 11.88 [ 7.21; 19.50]                               | +                                       |
| guila-Gordo 2021                                                        | 55    | 1269   | 1.7%   | 43.34 [ 33.45; 55.99]                              |                                         |
| menez 2020                                                              | 40    | 1322   | 1.7%   | 30.26 [ 22.30; 40.94]                              | -                                       |
| dalgo 2021                                                              | 95    | 1477   | 1.7%   | 64.32 [ 52.90; 78.00]                              |                                         |
| ohamed 2021a                                                            | 138   | 1706   | 1.7%   | 80.89 [ 68.87; 94.79]                              |                                         |
|                                                                         |       |        |        |                                                    | -                                       |
| hishinga 2020                                                           | 49    | 1807   | 1.8%   | 27.12 [ 20.57; 35.67]                              |                                         |
| ythe 2020                                                               | 265   | 2084   | 1.8%   | 127.16 [113.54; 142.15]                            | _                                       |
| upta 2021                                                               | 47    | 2520   | 1.8%   | 18.65 [ 14.05; 24.71]                              |                                         |
| ikami 2020                                                              | 131   | 2700   | 1.8%   | 48.52 [ 41.04; 57.28]                              | -                                       |
| riya 2021                                                               | 64    | 2734   | 1.8%   | 23.41 [ 18.37; 29.78]                              |                                         |
| arcolino 2021                                                           | 47    | 3016   | 1.8%   | 15.58 [ 11.74; 20.66]                              | -                                       |
| alyanaraman 2020                                                        | 258   | 4337   | 1.8%   | 59.49 [ 52.83; 66.93]                              | +                                       |
| ustgi 2020                                                              | 79    | 4996   | 1.8%   | 15.81 [ 12.71; 19.66]                              |                                         |
| anagiotou 2021                                                          | 339   | 5936   | 1.8%   | 57.11 [ 51.49; 63.30]                              | <b>a</b>                                |
|                                                                         |       |        |        |                                                    |                                         |
| pulle 2020                                                              | 111   | 8729   | 1.8%   | 12.72 [ 10.57; 15.29]                              |                                         |
| arrison 2020                                                            | 486   | 21099  | 1.8%   | 23.03 [ 21.10; 25.15]                              |                                         |
| akhchanian 2021                                                         | 690   | 29863  | 1.8%   | 23.11 [ 21.46; 24.87]                              |                                         |
| orking group for the surveillance and control of COVID-19 in Spain 2020 | 938   | 41926  | 1.8%   | 22.37 [ 21.00; 23.83]                              |                                         |
| chonfeld 2021                                                           | 727   | 71537  | 1.9%   | 10.16 [ 9.45; 10.92]                               |                                         |
| ernandez–Galdamez 2020                                                  |       | 79186  | 1.9%   | 22.10 [ 21.10; 23.15]                              |                                         |
|                                                                         |       |        |        | 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1            |                                         |
| 1.1/050/ 00                                                             |       | 000000 | 100.0% | 39.93 [ 34.78; 45.39]                              | 1 A A A A A A A A A A A A A A A A A A A |
| otal (95% CI)                                                           |       | 309008 |        |                                                    |                                         |

Total and observations: person-weeks; CI: confidence interval

Item S1. Electronic database search strategies

# MEDLINE strategy

## 1. COVID-19/

2. Coronavirus Infections/

3. covid-19.mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms]

- 4. (sars-cov-2 or sars-cov2).tw.
- 5. "severe acute respiratory syndrome coronavirus 2".tw.
- 6. 2019-ncov.tw.
- 7. "2019 novel coronavirus".tw.
- 8. coronavirus.tw.

#### 9. or/1-8

- 10. Kidney Diseases/
- 11. exp Renal Replacement Therapy/
- 12. Renal Insufficiency/
- 13. exp Renal Insufficiency, Chronic/
- 14. Diabetic Nephropathies/
- 15. diabetic kidney disease\$.tw.
- 16. diabetic nephropath\$.tw.
- 17. exp Hypertension, Renal/
- 18. dialysis.tw.
- 19. (hemodialysis or haemodialysis).tw.
- 20. (hemofiltration or haemofiltration).tw.
- 21. (hemodiafiltration or haemodiafiltration).tw.
- 22. (kidney disease\* or renal disease\* or kidney failure or renal failure).tw.
- 23. (ESRF or ESKF or ESRD or ESKD).tw.
- 24. (CKF or CKD or CRF or CRD).tw.
- 25. (CAPD or CCPD or APD).tw.
- 26. (predialysis or pre-dialysis).tw.
- 27. (kidney transplant\$ or renal transplant\$).tw.
- 28. Uremia/
- 29. (uremic or ur?emia).tw.
- 30. or/10-29
- 31. and/9,30

## EMBASE strategy

- 1. coronavirinae/
- 2. Coronavirus infection/

3. covid-19.mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word]

- 4. coronavirus disease 2019.mp.
- 5. (sars-cov-2 or sars-cov2).tw.
- 6. "acute respiratory syndrome coronavirus 2".tw.
- 7. 2019 novel coronavirus.tw.
- 8. 2019-ncov.tw.
- 9. coronavirus.tw.

#### 10. or/1-9

- 11. exp renal replacement therapy/
- 12. kidney disease/
- 13. chronic kidney disease/
- 14. kidney failure/
- 15. chronic kidney failure/
- 16. mild renal impairment/
- 17. stage 1 kidney disease/
- 18. moderate renal impairment/
- 19. severe renal impairment/
- 20. end stage renal disease/
- 21. renal replacement therapy-dependent renal disease/

- 22. diabetic nephropathy/
- 23. kidney transplantation/
- 24. renovascular hypertension/
- 25. (hemodialysis or haemodialysis).tw.
- 26. (hemofiltration or haemofiltration).tw.
- 27. (hemodiafiltration or haemodiafiltration).tw.
- 28. dialysis.tw.
- 29. (CAPD or CCPD or APD).tw.
- 30. (kidney disease\* or renal disease\* or kidney failure or renal failure).tw.
- 31. (CKF or CKD or CRF or CRD).tw.
- 32. (ESRF or ESKF or ESRD or ESKD).tw.
- 33. (predialysis or pre-dialysis).tw.
- 34. ((kidney or renal) adj (transplant\* or graft\* or allograft\*)).tw.
- 35. or/11-34
- 36. and/10,35

#### PubMed LitCovid strategy (https://www.ncbi.nlm.nih.gov/research/coronavirus/)

- 1. "Chronic kidney disease"
- 2. Hemodialysis or haemodialysis
- 3. "Peritoneal dialysis"
- 4. "Kidney transplantation"
- 5. or/1-4

| Item S2. Quality In Prognosis Studies (QUIPS) tool for assessing the risk of bias in studies of the | е |
|-----------------------------------------------------------------------------------------------------|---|
| prognostic factor                                                                                   |   |

| prognostic factor                                                                                                                                                                                  |                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Signalling Question                                                                                                                                                                                | Author's judgement for 'yes'                                                                                            |
| Study participants: yes/no/unclear/NA                                                                                                                                                              |                                                                                                                         |
| a. Adequate participation in the study by eligible                                                                                                                                                 |                                                                                                                         |
| people                                                                                                                                                                                             |                                                                                                                         |
| b. Description of the source population or                                                                                                                                                         | Source population for cohort with Covid-19                                                                              |
| population of interest                                                                                                                                                                             | disease is clearly described                                                                                            |
| c. Description of the baseline study sample                                                                                                                                                        | Number of people with Covid-19 (probable,                                                                               |
|                                                                                                                                                                                                    | suspected, confirmed) is clearly described                                                                              |
| d. Adequate description of the sampling frame                                                                                                                                                      | Method of establishing the source population,                                                                           |
| and recruitment                                                                                                                                                                                    | selection criteria and key characteristics of the                                                                       |
|                                                                                                                                                                                                    |                                                                                                                         |
| A loss of a loss of the second loss had been                                                                                                                                                       | source population clearly described                                                                                     |
| e. Adequate description of the period and place                                                                                                                                                    | Time period and place of recruitment for both                                                                           |
| of recruitment                                                                                                                                                                                     | baseline and follow-up clearly described                                                                                |
| f. Adequate description of inclusion and                                                                                                                                                           | Definition of people with Covid-19 disease                                                                              |
| exclusion criteria                                                                                                                                                                                 | (probable, suspected, confirmed) and                                                                                    |
|                                                                                                                                                                                                    | description of other inclusion and exclusion                                                                            |
|                                                                                                                                                                                                    | criteria                                                                                                                |
| Study participation: risk of bias rating                                                                                                                                                           | High: most items are answered with 'no'; Low:                                                                           |
| (high/low/unclear)                                                                                                                                                                                 | all items answered with 'yes'; Unclear: most                                                                            |
| ( 5                                                                                                                                                                                                | items are answered with 'unclear'                                                                                       |
|                                                                                                                                                                                                    | Note: potentially a single item may introduce a                                                                         |
|                                                                                                                                                                                                    | high risk of bias, depending on study specifics                                                                         |
| Study attrition: yes/no/unclear/NA                                                                                                                                                                 |                                                                                                                         |
| a. Adequate response rate for study participants                                                                                                                                                   |                                                                                                                         |
|                                                                                                                                                                                                    | Attended to collect information on participants                                                                         |
| b. Attempts to collect information on participants                                                                                                                                                 | Attempts to collect information on participants                                                                         |
| who dropped out described                                                                                                                                                                          | who dropped out are described (e.g. telephone                                                                           |
|                                                                                                                                                                                                    | contact, mail, registers)                                                                                               |
| <ul> <li>Reasons for loss to follow-up provided</li> </ul>                                                                                                                                         | Reasons on participants who dropped out are                                                                             |
|                                                                                                                                                                                                    | available (e.g. deceased participants between                                                                           |
|                                                                                                                                                                                                    | baseline and follow-up, participants moving to                                                                          |
|                                                                                                                                                                                                    | another location)                                                                                                       |
| d. Adequate description of participants lost to                                                                                                                                                    | Key characteristics of participants lost to follow-                                                                     |
| follow-up                                                                                                                                                                                          | up are described                                                                                                        |
| e. No important differences between                                                                                                                                                                | Study authors described differences between                                                                             |
| participants who completed the study and those                                                                                                                                                     | participants completing the study and those who                                                                         |
| who did not                                                                                                                                                                                        | did not as not important or information provided                                                                        |
| who did flot                                                                                                                                                                                       |                                                                                                                         |
| Study attrition, risk of hiss rating                                                                                                                                                               | to judge the differences                                                                                                |
| Study attrition: risk of bias rating                                                                                                                                                               | <b>High</b> : most items are answered with 'no'; <b>Low</b> :                                                           |
| (high/low/unclear)                                                                                                                                                                                 | all items answered with 'yes'; <b>Unclear</b> : most                                                                    |
|                                                                                                                                                                                                    | items are answered with 'unclear'                                                                                       |
|                                                                                                                                                                                                    | Note: potentially a single item may introduce a                                                                         |
|                                                                                                                                                                                                    | high risk of bias, depending on study specifics                                                                         |
| Covid-19 disease status measurement:                                                                                                                                                               |                                                                                                                         |
| yes/no/unclear/NA                                                                                                                                                                                  |                                                                                                                         |
| a. Clear definition or description provided                                                                                                                                                        | Measurements for Covid-19 disease (probable,                                                                            |
|                                                                                                                                                                                                    | suspected, confirmed) are provided                                                                                      |
| b. Adequately valid and reliable method of                                                                                                                                                         | Ideally measurement for Covid-19 include a                                                                              |
|                                                                                                                                                                                                    |                                                                                                                         |
| measurement                                                                                                                                                                                        | laboratory-based or point of care RT-PCR assay                                                                          |
|                                                                                                                                                                                                    |                                                                                                                         |
|                                                                                                                                                                                                    | and meet World Health Organisation case                                                                                 |
| measurement                                                                                                                                                                                        | and meet World Health Organisation case definition                                                                      |
| c. Continuous variables reported or appropriate                                                                                                                                                    | and meet World Health Organisation case                                                                                 |
| c. Continuous variables reported or appropriate<br>cut points used                                                                                                                                 | and meet World Health Organisation case<br>definition<br>Not applicable                                                 |
| <ul> <li>measurement</li> <li>c. Continuous variables reported or appropriate<br/>cut points used</li> <li>d. Same method and setting of measurement</li> </ul>                                    | and meet World Health Organisation case<br>definition<br>Not applicable<br>Measurements of Covid-19 status are the same |
| <ul> <li>measurement</li> <li>c. Continuous variables reported or appropriate<br/>cut points used</li> <li>d. Same method and setting of measurement<br/>used in all study participants</li> </ul> | and meet World Health Organisation case<br>definition<br>Not applicable                                                 |
| <ul> <li>measurement</li> <li>c. Continuous variables reported or appropriate<br/>cut points used</li> <li>d. Same method and setting of measurement</li> </ul>                                    | and meet World Health Organisation case<br>definition<br>Not applicable<br>Measurements of Covid-19 status are the same |

| f. Appropriate methods of imputation were used for missing data                                                    | NA: missing measurements for Covid-19 cannot be reliably imputed                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Covid-19 disease status measurement: risk<br>of bias rating (high/low/unclear)                                     | <b>High</b> : most items are answered with 'no'; <b>Low</b> :<br>all items answered with 'yes'; <b>Unclear</b> : most<br>items are answered with 'unclear'<br>Note: potentially a single item may introduce a<br>high risk of bias, depending on study specifics |
| Outcome measurement: yes/no/unclear                                                                                |                                                                                                                                                                                                                                                                  |
| a. Clear definition of the outcome provided                                                                        | Measurement of the outcome of interest has to be defined and described                                                                                                                                                                                           |
| <ul> <li>b. Use of adequately valid and reliable method<br/>of outcome measurement</li> </ul>                      | The source of information about the outcome is provided                                                                                                                                                                                                          |
| c. Use of same method and setting of outcome measurement in all study participants                                 | Measurements of outcome is the same for all study participants                                                                                                                                                                                                   |
| Outcome measurement: risk of bias rating<br>(high/low/unclear)                                                     | <b>High</b> : most items are answered with 'no'; <b>Low</b> :<br>all items answered with 'yes'; <b>Unclear</b> : most<br>items are answered with 'unclear'<br>Note: potentially a single item may introduce a<br>high risk of bias, depending on study specifics |
| Study confounding: yes/no/unclear                                                                                  |                                                                                                                                                                                                                                                                  |
| a. Measurement of all important confounders                                                                        | Important confounders are: age, sex, co-existing<br>illness, stage of chronic kidney disease,<br>geographical location, immunosuppression<br>therapy                                                                                                             |
| b. Provision of clear definitions of the important confounders measured                                            | Measurement of confounders has to be clearly described                                                                                                                                                                                                           |
| c. Adequately valid and reliable measurement of all important confounders                                          | Measurement of confounders is valid and reliable                                                                                                                                                                                                                 |
| <ul> <li>d. Use of same method and setting of<br/>confounding measurement in all study<br/>participants</li> </ul> | Measurements of confounders are the same for all study participants                                                                                                                                                                                              |
| e. Appropriate imputation methods used for missing confounders (if applicable)                                     | Strategy to impute missing confounder data is described                                                                                                                                                                                                          |
| f. Important potential confounders were<br>accounted for in the study design                                       | Methods section of the publication describes strategy to account for confounders                                                                                                                                                                                 |
| g. Important potential confounders were accounted for in the analysis                                              | Important confounders are accounted for in<br>multivariable logistic regression and Cox<br>proportional hazards models                                                                                                                                           |
| Study confounding measurement: risk of<br>bias rating (high/low/unclear)                                           | <b>High</b> : most items are answered with 'no'; <b>Low</b> :<br>all items answered with 'yes'; <b>Unclear</b> : most<br>items are answered with 'unclear'<br>Note: potentially a single item may introduce a<br>high risk of bias, depending on study specifics |
| Statistical analysis and reporting:<br>yes/no/unclear/NA                                                           |                                                                                                                                                                                                                                                                  |
| a. Sufficient presentation of data to assess the adequacy of the analytic strategy                                 | Mean or median values, including confidence<br>intervals or standard errors or standard<br>deviations                                                                                                                                                            |
| b. Strategy for model building is appropriate and based on a conceptual framework or model                         | NA: we do not anticipate conceptual frameworks<br>or explicit model building strategies for this type<br>of research question (focusing on one<br>prognostic factor only)                                                                                        |
| c. Statistical model is adequate for the study design                                                              | Mainly incidence rates, uni- and multivariate logistic regression, Cox proportional hazard model                                                                                                                                                                 |
| d. No selective reporting of results                                                                               | Critical outcomes are death, kidney replacement therapy, life participation, kidney transplant loss                                                                                                                                                              |

| Statistical analysis and reporting: risk of bias rating (high/low/unclear)                | <b>High</b> : most items are answered with 'no'; <b>Low</b> :<br>all items answered with 'yes'; <b>Unclear</b> : most<br>items are answered with 'unclear'<br>Note: potentially a single item may introduce a |  |  |  |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                           | high risk of bias, depending on study specifics                                                                                                                                                               |  |  |  |
| <sup>a</sup> No: no or no relevant information to answer the s                            |                                                                                                                                                                                                               |  |  |  |
| <sup>b</sup> Unclear: not enough information to answer signalling question with yes or no |                                                                                                                                                                                                               |  |  |  |
| °NA (not applicable): signalling question not appre                                       | opriate for this type of prognostic review                                                                                                                                                                    |  |  |  |

## Item S3. References for the included studies

1. Abohamr SI, Abazid RM, Aldossari MA, Amer HA, Badhawi OS, Aljunaidi OM, et al. Clinical characteristics and in-hospital mortality of COVID-19 adult patients in Saudi Arabia. Saudi Med J. 2020;41(11):1217-26.

2. Åbolghasemi S, Mardani M, Sali S, Honarvar N, Baziboroun M. COVID-19 and kidney transplant recipients. Transplant Infectious Disease. 2020;22(6):e13413.

3. Abrishami A, Khalili N, Dalili N, Khaleghnejad Tabari R, Farjad R, Samavat S, et al. Clinical and Radiologic Characteristics of COVID-19 in Patients With CKD. Iranian journal of Kidney Diseases. 2020;14(4):267-77.

4. Acar HC, Can G, Karaali R, Borekci S, Balkan, II, Gemicioglu B, et al. An easy-to-use nomogram for predicting in-hospital mortality risk in COVID-19: a retrospective cohort study in a university hospital. BMC Infect Dis. 2021;21(1):148.

5. Aggarwal S, Garcia-Telles N, Aggarwal G, Lavie C, Lippi G, Henry B M. Clinical features, laboratory characteristics, and outcomes of patients hospitalized with coronavirus disease 2019 (COVID-19): Early report from the United States. Diagnosis. 2020;7(2):91-6.

6. Aguila-Gordo D, Martinez-Del Rio J, Mazoteras-Munoz V, Negreira-Caamano M, Nieto-Sandoval Martin de la Sierra P, Piqueras-Flores J. [Mortality and associated prognostic factors in elderly and very elderly hospitalized patients with respiratory disease COVID-19]. Rev Esp Geriatr Gerontol. 2020.

7. Ahlstrom B, Frithiof R, Hultstrom M, Larsson IM, Strandberg G, Lipcsey M. The swedish covid-19 intensive care cohort: Risk factors of ICU admission and ICU mortality. Acta Anaesthesiol Scand. 2021;12:12.

8. Aimen C, Bari A, Rashid J, Alvi Y, Naz F, Rana N, et al. Comorbidity and covid-19 in childrena single center experience. Pakistan Paediatric Journal. 2020;44(4):306-13.

9. Akalin E, Azzi Y, Bartash R, Seethamraju H, Parides M, Hemmige V, et al. Covid-19 and kidney transplantation. New England Journal of Medicine. 2020:epub ahead-epub ahead.

10. Akchurin OM, Biswas S, Greenbaum M, Licona A, Choi JJ, Choi ME. COVID-19 in patients with CKD in New York City. Journal of the American Society of Nephrology. 2020;31:282.

11. Akdur A, Karakaya E, Ayvazoglu Soy E H, Alshalabi O, Kirnap M, Arslan H, et al. Coronavirus Disease (COVID-19) in Kidney and Liver Transplant Patients: A Single-Center Experience. Experimental & Clinical Transplantation: Official Journal of the Middle East Society for Organ Transplantation. 2020;18(3):270-4.

12. Al Azzi Y, Ajaimy M, Liriano-Ward LE, Pynadath CT, Campos PL, Nandigam PB, et al. Clinical outcomes of hospitalized kidney transplant recipients with COVID-19 in a predominantly minority population. Journal of the American Society of Nephrology. 2020;31:277-8.

13. Alamdari NM, Afaghi S, Rahimi FS, Tarki FE, Tavana S, Zali A, et al. Mortality Risk Factors among Hospitalized COVID-19 Patients in a Major Referral Center in Iran. Tohoku Journal of Experimental Medicine. 2020;252(1):73-84.

14. Alattar R, Ibrahim T B H, Shaar S H, Abdalla S, Shukri K, Daghfal J N, et al. Tocilizumab for the treatment of severe coronavirus disease 2019. Journal of Medical Virology. 2020.

15. Albalate M, Arribas P, Torres E, Cintra M, Alcazar R, Puerta M, et al. [High prevalence of asymptomatic COVID-19 in haemodialysis: learning day by day in the first month of the COVID-19 pandemic]. Nefrologia. 2020;40(3):279-86.

16. Alberici F, Delbarba E, Manenti C, Econimo L, Valerio F, Pola A, et al. A report from the Brescia Renal COVID Task Force on the clinical characteristics and short-term outcome of hemodialysis patients with SARS-CoV-2 infection. Kidney International. 2020;98(1):20-6.

17. Alberici F, Delbarba E, Manenti C, Econimo L, Valerio F, Pola A, et al. A single center observational study of the clinical characteristics and short-term outcome of 20 kidney transplant patients admitted for SARS-CoV2 pneumonia. Kidney Int. 2020;97(6):1083-8.

18. Altonen BL, Arreglado TM, Leroux O, Murray-Ramcharan M, Engdahl R. Characteristics, comorbidities and survival analysis of young adults hospitalized with COVID-19 in New York City. PLoS ONE [Electronic Resource]. 2020;15(12):e0243343.

19. Anisimova A, Ripa V, Almaz B, Mistry N, Rezai F. COVID-19 infection in patients with ESRD requiring hemodialysis. Journal of the American Society of Nephrology. 2020;31:265.

20. Antonius M, Jackson D, Aithal SV, Shiel MT, Davies H. Patients with COVID-19 and kidney disease: Who fared best? Journal of the American Society of Nephrology. 2020;31:807.

21. Apata IW, Cobb J, Navarrete JE, Lea JP. Implementing COVID-19 infection control procedures in outpatient dialysis in an urban us population. Journal of the American Society of Nephrology. 2020;31:263.

22. Arenas MD, Crespo M, Perez-Saez MJ, Collado S, Redondo-Pachon D, Llinas-Mallol L, et al. Clinical Profiles in Renal Patients with COVID-19. Journal of Clinical Medicine. 2020;9(8):18.

23. Argenziano M G, Bruce S L, Slater C L, Tiao J R, Baldwin M R, Barr R G, et al. Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: retrospective case series. BMJ. 2020;369:m1996-m.

24. Arshad S, Kilgore P, Chaudhry Z S, Jacobsen G, Wang D D, Huitsing K, et al. Treatment with Hydroxychloroquine, Azithromycin, and Combination in Patients Hospitalized with COVID-19. International Journal of Infectious Diseases. 2020:epub ahead of print-epub ahead of print.

25. Arslan H, Musabak U, Ayvazoglu Soy E H, Kurt Azap O, Sayin B, Akcay S, et al. Incidence and Immunologic Analysis of Coronavirus Disease (COVID-19) in Hemodialysis Patients: A Single-Center Experience. Experimental & Clinical Transplantation: Official Journal of the Middle East Society for Organ Transplantation. 2020;18(3):275-83.

26. Atkins JL, Masoli JAH, Delgado J, Pilling LC, Kuo CL, Kuchel GA, et al. Preexisting Comorbidities Predicting COVID-19 and Mortality in the UK Biobank Community Cohort. J Gerontol A Biol Sci Med Sci. 2020;75(11):2224-30.

27. Auld SC, Caridi-Scheible M, Blum JM, Robichaux C, Kraft C, Jacob JT, et al. ICU and Ventilator Mortality among Critically III Adults with Coronavirus Disease 2019\*. Critical Care Medicine. 2020:E799-E804.

28. Aydin Bahat K, Parmaksiz E, Sert S. The clinical characteristics and course of COVID-19 in hemodialysis patients. Hemodialysis International. 2020;24(4):534-40.

29. Ayed M, Borahmah AA, Yazdani A, Sultan A, Mossad A, Rawdhan H. Assessment of clinical characteristics and mortality-associated factors in COVID-19 Critical cases in Kuwait. Medical principles and practice : international journal of the Kuwait University, Health Science Centre. 2020;16.

30. Azam TU, Shadid HR, Blakely P, O'Hayer P, Berlin H, Pan M, et al. Soluble Urokinase Receptor (SuPAR) in COVID-19-Related AKI. Journal of the American Society of Nephrology. 2020;31(11):2725-35.

31. Azzi Y, Parides M, Alani O, Loarte-Campos P, Bartash R, Forest S, et al. COVID-19 infection in kidney transplant recipients at the epicenter of pandemics. Kidney International. 2020;98(6):1559-67.

32. Banerjee D, Popoola J, Shah S, Ster I C, Quan V, Phanish M. COVID-19 infection in kidney transplant recipients. Kidney Int. 2020;97(6):1076-82.

33. Bell S, Campbell J, McDonald J, O'Neill M, Watters C, Buck K, et al. COVID-19 in patients undergoing chronic kidney replacement therapy and kidney transplant recipients in Scotland: findings and experience from the Scottish renal registry. BMC Nephrol. 2020.

34. Benotmane I, Gautier-Vargas G, Wendling MJ, Perrin P, Velay A, Bassand X, et al. In-depth virological assessment of kidney transplant recipients with COVID-19. American Journal of Transplantation. 2020;20(11):3162-72.

35. Bhandari S, Singh A, Sharma R, Rankawat G, Banerjee S, Gupta V, et al. Characteristics, Treatment Outcomes and Role of Hydroxychloroquine among 522 COVID-19 hospitalized patients in Jaipur City: An Epidemio-Clinical Study. Journal of the Association of Physicians of India. 2020;68(6):13-9.

36. Bhargava A, Fukushima E A, Levine M, Zhao W, Tanveer F, Szpunar S M, et al. Predictors for Severe COVID-19 Infection. Clinical Infectious Diseases. 2020:epub ahead of print-epub ahead of print.

37. Bhatla A, Mayer M M, Adusumalli S, Hyman M C, Oh E, Tierney A, et al. COVID-19 and cardiac arrhythmias. Heart Rhythm. 2020:in press-in press.

38. Bigelow BF, Tang O, Toci GR, Stracker N, Sheikh F, Jacobs Slifka KM, et al. Transmission of SARS-CoV-2 Involving Residents Receiving Dialysis in a Nursing Home - Maryland, April 2020. MMWR - Morbidity & Mortality Weekly Report. 2020;69(32):1089-94.

39. Binda B, Picchi G, Carucci AC, Sinatti G, Di Norcia M, Grimaldi A, et al. Follow-up and Management of Kidney Transplant Recipients During the COVID-19 Lockdown: The Experience of an Italian Transplant Center, Including Two Cases of COVID-19 Pneumonia. Transplantation Proceedings. 2020;52(9):2614-9.

40. Bosch F, Borner N, Kemmner S, Lampert C, Jacob S, Koliogiannis D, et al. Attenuated early inflammatory response in solid organ recipients with COVID-19. Clinical Transplantation. 2020:e14027-e.

41. Bossini N, Alberici F, Delbarba E, Valerio F, Manenti C, Possenti S, et al. Kidney transplant patients with SARS-CoV-2 infection: the brescia renal COVID task force experience. American Journal of Transplantation. 2020:epub ahead of print-epub ahead of print.

42. Boulle A, Davies MA, Hussey H, Ismail M, Morden E, Vundle Z, et al. Risk factors for COVID-19 death in a population cohort study from the Western Cape Province, South Africa. Clinical Infectious Diseases. 2020;29:29.

43. Boushab BM, Kone N, Baba SEWO, Bellattv MJOMEM, Ahmed MMO, Habiboullah HO, et al. Management of COVID-19 infection in patients undergoing hemodialysis. Pan African Medical Journal. 2021;38:1-5.

44. Broseta JJ, Rodriguez-Espinosa D, Cuadrado E, Guillen-Olmos E, Hermida E, Montagud-Marrahi E, et al. SARS-CoV-2 Infection in a Spanish Cohort of CKD-5D Patients: Prevalence, Clinical Presentation, Outcomes, and De-Isolation Results. Blood Purification. 2020:1-8.

45. Caillard S, Anglicheau D, Matignon M, Durrbach A, Greze C, Frimat L, et al. An initial report from the French SOT COVID Registry suggests high mortality due to COVID-19 in recipients of kidney transplants. Kidney International. 2020;98(6):1549-58.

46. Caliskan T, Saylan B. Smoking and comorbidities are associated with COVID-19 severity and mortality in 565 patients treated in Turkey: a retrospective observational study. Rev Assoc Med Bras. 2020;66(12):1679-84.

47. Capak K, Brkic-Bilos I, Kralj V, Poljicanin T, Sekerija M, Ivanko P, et al. Prevalence of somatic comorbidities among coronavirus disease 2019 patients in Croatia in the first pandemic wave: data from national public health databases. Croat Med J. 2020;61(6):518-24.

48. Carlson N, Nelveg-Kristensen KE, Freese Ballegaard E, Feldt-Rasmussen B, Hornum M, Kamper AL, et al. Increased vulnerability to COVID-19 in chronic kidney disease. Journal of Internal Medicine. 2021;16:16.

49. Cecconi M, Piovani D, Brunetta E, Aghemo A, Greco M, Ciccarelli M, et al. Early predictors of clinical deterioration in a cohort of 239 patients hospitalized for Covid-19 infection in Lombardy, Italy. Journal of Clinical Medicine. 2020;9(5).

50. Chan L, Chaudhary K, Saha A, Chauhan K, Vaid A, Baweja M, et al. Acute Kidney Injury in Hospitalized Patients with COVID-19. medRxiv. 2020.

51. Chan L, Jaladanki SK, Somani S, Paranjpe I, Kumar A, Zhao S, et al. Outcomes of Patients on Maintenance Dialysis Hospitalized with COVID-19. Clinical journal of the American Society of Nephrology : CJASN. 2020;30.

52. Chang M-H, Moonesinghe R, Truman BI. COVID-19 Hospitalization by Race and Ethnicity: Association with Chronic Conditions Among Medicare Beneficiaries, January 1-September 30, 2020. J Racial Ethn Health Disparities. 2021.

53. Chang T S, Ding Y, Freund M K, Johnson R, Schwarz T, Yabu J M, et al. Prior diagnoses and medications as risk factors for COVID-19 in a Los Angeles Health System. medRxiv. 2020.

54. Chaudhry Z S, Williams J D, Vahia A, Fadel R, Acosta T P, Prashar R, et al. Clinical Characteristics and Outcomes of COVID-19 in Solid Organ Transplant Recipients: A Case-Control Study. Am J Transplant. 2020.

55. Chavarot N, Gueguen J, Bonnet G, Jdidou M, Trimaille A, Burger C, et al. COVID-19 severity in kidney transplant recipients is similar to nontransplant patients with similar comorbidities. American Journal of Transplantation. 2020;30:30.

56. Chawki S, Buchard A, Sakhi H, Dardim K, El Sakhawi K, Chawki M, et al. Treatment impact on COVID-19 evolution in hemodialysis patients. Kidney International. 2020;98(4):1053-4.

57. Chen, T.Dai, Z.Mo, P.Li, X.Ma, Z.Song, et al. Clinical characteristics and outcomes of older patients with coronavirus disease 2019 (COVID-19) in Wuhan, China (2019): a single-centered, retrospective study. J Gerontol A Biol Sci Med Sci.

58. Chen J, Bai H, Liu J, Chen G, Liao Q, Yang J, et al. Distinct clinical characteristics and risk factors for mortality in female COVID-19 inpatients: a sex-stratified large-scale cohort study in Wuhan, China. Clin Infect Dis. 2020.

59. Chen R, Liang W, Jiang M, Guan W, Zhan C, Wang T, et al. Risk Factors of Fatal Outcome in Hospitalized Subjects With Coronavirus Disease 2019 From a Nationwide Analysis in China. Chest. 2020;158(1):97-105.

60. Chen T, Wu D, Chen H YW, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091-m.

61. Chen T Y, Farghaly S, Cham S, Tatem L L, Sin J H, Rauda R, et al. COVID-19 pneumonia in kidney transplant recipients: Focus on immunosuppression management. Transplant Infectious Disease. 2020:e13378-e.

62. Cheng Y, Luo R, Wang X, Wang K, Zhang N, Zhang M, et al. The Incidence, Risk Factors, and Prognosis of Acute Kidney Injury in Adult Patients with Coronavirus Disease 2019. Clinical Journal of The American Society of Nephrology: CJASN. 2020;15(10):1394-402.

63. Cheng Y LR, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with inhospital death of patients with COVID-19. Kidney International Reports. 2020;97(5):829-38.

64. Chilimuri S, Sun H, Alemam A, Mantri N, Shehi E, Tejada J, et al. Predictors of Mortality in Adults Admitted with COVID-19: Retrospective Cohort Study from New York City. West J Emerg Med. 2020;21(4):779-84.

65. Chishinga N, Gandhi NR, Onwubiko UN, Telford C, Prieto J, Smith S, et al. Characteristics and Risk Factors for Hospitalization and Mortality among Persons with COVID-19 in Atlanta Metropolitan Area. MedRxiv : the Preprint Server for Health Sciences. 2020;16:16.

66. Cho J H, Kang S H, Park H C, Kim D K, Lee S H, Do J Y, et al. Hemodialysis with Cohort Isolation to Prevent Secondary Transmission during a COVID-19 Outbreak in Korea. Journal of the American Society of Nephrology. 2020;31(7):1398-408.

 Cho SY, Park SS, Song MK, Bae YY, Lee DG, Kim DW. Prognosis score system to predict survival outcome of COVID-19: a Korean nationwide cohort study. J Med Internet Res. 2021;03:03.
 Ciceri F, Castagna A, Rovere-Querini P, De Cobelli F, Ruggeri A, Galli L, et al. Early predictors of clinical outcomes of COVID-19 outbreak in Milan, Italy. Clinical Immunology. 2020;217:108509-.

69. Cipriani A, Capone F, Donato F, Molinari L, Ceccato D, Saller A, et al. Cardiac injury and mortality in patients with Coronavirus disease 2019 (COVID-19): insights from a mediation analysis. Intern. 2020;27:27.

70. Clarke C, Lucisano G, Prendecki M, Gleeson S, Martin P, Ali M, et al. Informing the Risk of Kidney Transplantation Versus Remaining on the Waitlist in the Coronavirus Disease 2019 Era. Kidney Int Rep. 2021.

71. Coca A, Burballa C, Centellas-Perez FJ, Perez-Saez MJ, Bustamante-Munguira E, Ortega A, et al. Outcomes of COVID-19 Among Hospitalized Patients With Non-dialysis CKD. Frontiers in Medicine. 2020;7:615312.

72. Corbett R W, Blakey S, Nitsch D, Loucaidou M, McLean A, Duncan N, et al. Epidemiology of COVID-19 in an Urban Dialysis Center. J Am Soc Nephrol. 2020.

73. Corcillo A, Cohen S, Game D, Karalliedde J. High prevalence of Afro-Caribbean ethnicity and hypoglycaemia in patients with diabetes and end stage renal disease hospitalized with COVID-19. Nephrology. 2020.

74. Craig-Schapiro R, Salinas T, Lubetzky M, Abel BT, Sultan S, Lee JR, et al. COVID-19 outcomes in patients waitlisted for kidney transplantation and kidney transplant recipients. American Journal of Transplantation. 2020;12:12.

75. Cravedi P, Suraj S M, Azzi Y, Haverly M, Farouk S, Perez-Saez M J, et al. COVID-19 and Kidney Transplantation: Results from the TANGO International Transplant Consortium. Am J Transplant. 2020.

76. Creput C, Fumeron C, Toledano D, Diaconita M, Izzedine H. COVID-19 in Patients Undergoing Hemodialysis: Prevalence and Asymptomatic Screening During a Period of High Community Prevalence in a Large Paris Center. Kidney Medicine. 2020;2(6):716-23.e1.

77. Crespo M, Mazuecos A, Rodrigo E, Gavela E, Villanego F, Sanchez-Alvarez E, et al. Respiratory and Gastrointestinal COVID-19 Phenotypes in Kidney Transplant Recipients. Transplantation. 2020:2225-33.

78. Crespo M, Perez-Saez M J, Redondo-Pachon D, Llinas-Mallol L, Montero M M, Villar-Garcia J, et al. COVID-19 in elderly kidney transplant recipients. Am J Transplant. 2020.

79. Cruzado MAA, Ferrer F. Outbreak in the dialysis unit: Contact tracing in a hospital based dialysis centre in the Philippines during the covid-19 pandemic. Nephrology. 2020;25 (SUPPL 1):3.

80. Cucchiari D, Guillen E, Cofan F, Torregrosa J-V, Esforzado N, Revuelta I, et al. Taking care of kidney transplant recipients during the COVID-19 pandemic: Experience from a medicalized hotel. Clin Transplant. 2020.

81. Dai Y, Liu Z, Du X, Wei H, Wu Y, Li H, et al. Acute Kidney Injury in Hospitalized Patients Infected with COVID-19 from Wuhan, China: A Retrospective Study. Biomed Res Int. 2021;2021:6655185.

82. Daifi C, Uduman J, Yee J. Outcomes of COVID-19 in ESRD patients on hemodialysis. Journal of the American Society of Nephrology. 2020;31:268.

83. De La Flor Merino JC, Amado FV, Marschall A, Gravalos TL, Canepa-Escaro F, Cicero ER, et al. COVID-19 in chronic hemodialysis patients: A report of 9 cases in Madrid, Spain. Clinical Nephrology. 2021;95(1):45-53.

84. De Meester J, De Bacquer D, Naesens M, Meijers B, Couttenye MM, De Vriese AS. Incidence, Characteristics, and Outcome of COVID-19 in Adults on Kidney Replacement Therapy: A Regionwide Registry Study. J Am Soc Nephrol. 2020. 85. de Souza CD, de Arruda Magalhaes AJ, Lima AJ, Nunes DN, de Fatima Machado Soares E, de Castro Silva L, et al. Clinical manifestations and factors associated with mortality from COVID-19 in older adults: Retrospective population-based study with 9807 older Brazilian COVID-19 patients. Geriatr Gerontol Int. 2020;20(12):1177-81.

86. Demir E, Uyar M, Parmaksiz E, Sinangil A, Yelken B, Dirim A B, et al. COVID-19 in kidney transplant recipients: A multicenter experience in Istanbul. Transplant Infectious Disease. 2020:e13371-e.

87. Depetri GC, Brazzoli MA, Puricelli F, Ogliari V, Tantardini C, Grassini A. [The peak of the Coronavirus emergency and hemodialysis patients: the experience of the Dialysis Center in Crema]. Giornale Italiano di Nefrologia. 2020;37(5):05.

88. Deshpande R, Dash S, Bahadur MM, Thamba A, Pathan AK, Dave K, et al. Study of COVID-19 Pandemic in Representative Dialysis Population Across Mumbai, India: An Observational Multicentric Analysis. Journal of the Association of Physicians of India. 2020;68(10):13-7.

89. Devresse A, Belkhir L, Vo B, Ghaye B, Scohy A, Kabamba B, et al. COVID-19 Infection in Kidney Transplant Recipients: A Single-Center Case Series of 22 Cases From Belgium. Kidney Medicine. 2020.

90. DheIr H, S SI, Yaylaci S, CetIn ES, Gen CA, Firat N, et al. Clinical course of COVID-19 disease in immunosuppressed renal transplant patients. Turkish Journal of Medical Sciences. 2020;13:13.

91. Di Fusco M, Shea KM, Lin J, Nguyen JL, Angulo FJ, Benigno M, et al. Health outcomes and economic burden of hospitalized COVID-19 patients in the United States. J Med Econ. 2021:1.

92. Dian S, Simeone M, Rossi B, Scaparrotta G, Fragasso A, Carretta G, et al. Going to war with COVID-19: Strategies for SARS-CoV-2 management in the Padua Nephrology and Dialysis Unit's hemodialysis facility. Clinical nephrology. 2020;30.

93. Dina-Batlle E, Pantaleon HA, Almanzar MC, Rodriguez NA. Clinical presentation of hemodialysis patients with COVID-19: A single-center study with 18 patients. Journal of the American Society of Nephrology. 2020;31:809.

94. Dirim AB, Demir E, Yadigar S, Garayeva N, Parmaksiz E, Safak S, et al. COVID-19 in chronic kidney disease: a retrospective, propensity score-matched cohort study. International Urology & Nephrology. 2021;06:06.

95. Docherty A B, Harrison E M, Green C A, Hardwick H E, Pius R, Norman L, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020;369:m1985-m.

96. Du X, Li H, Dong L, Li X, Tian M, Dong J. Clinical features of hemodialysis patients with COVID-19: a single-center retrospective study on 32 patients. Clin Exp Nephrol. 2020.

97. Duanmu Y, Brown I P, Gibb W R, Singh J, Matheson L W, Blomkalns A L, et al. Characteristics of Emergency Department Patients With COVID-19 at a Single Site in Northern California: Clinical Observations and Public Health Implications. Academic Emergency Medicine. 2020;27(6):505-9.

98. Dudreuilh C, Kumar N, Moxham V, Hemsley C, Goldenberg S, Moutzouris D A. De-isolation of COVID-19-positive hemodialysis patients in the outpatient setting: a single-center experience. Kidney International. 2020;98(1):236-7.

99. Edler C, Schroder A S, Aepfelbacher M, Fitzek A, Heinemann A, Heinrich F, et al. Dying with SARS-CoV-2 infection-an autopsy study of the first consecutive 80 cases in Hamburg, Germany. International Journal of Legal Medicine. 2020;134(4):1275-84.

100. Elec AD, Oltean M, Goldis P, Cismaru C, Lupse M, Muntean A, et al. COVID-19 after kidney transplantation: Early outcomes and renal function following antiviral treatment. International Journal of Infectious Diseases. 2021;104:426-32.

101. Elias M, Pievani D, Randoux C, Louis K, Denis B, Delion A, et al. COVID-19 Infection in Kidney Transplant Recipients: Disease Incidence and Clinical Outcomes. Journal of the American Society of Nephrology. 2020;31(10):2413-23.

102. Eshrati B, Baradaran HR, Erfanpoor S, Mohazzab A, Moradi Y. Investigating the factors affecting the survival rate in patients with COVID-19: A retrospective cohort study. Med J Islam Repub Iran. 2020;34:88.

103. Esposito P, Russo R, Conti N, Falqui V, Massarino F, Moriero E, et al. Management of COVID-19 in hemodialysis patients: The Genoa experience. Hemodial. 2020.

104. Fava A, Cucchiari D, Montero N, Toapanta N, Centellas FJ, Vila-Santandreu A, et al. Clinical characteristics and risk factors for severe COVID-19 in hospitalized kidney transplant recipients: A multicentric cohort study. American Journal of Transplantation. 2020;20(11):3030-41.

105. Felldin M, Softeland JM, Magnusson J, Ekberg J, Karason K, Schult A, et al. Initial Report From a Swedish High-volume Transplant Center After the First Wave of the COVID-19 Pandemic. Transplantation. 2021;105(1):108-14.

106. Fernandez-Ruiz M, Andres A, Loinaz C, Delgado J F, Lopez-Medrano F, San Juan R, et al. COVID-19 in solid organ transplant recipients: a single-center case series from Spain. American Journal of Transplantation. 2020.

107. Fidalgo P, Verissimo R, F SC. Chronic kidney disease is associated with worse outcomes following SARS-CoV2 infection among 18647 patients: A population-based cohort study. Nefrologia. 2021;23:23.

108. Filardo TD, Khan MR, Krawczyk N, Galitzer H, Karmen-Tuohy S, Coffee M, et al. Comorbidity and clinical factors associated with COVID-19 critical illness and mortality at a large public hospital in New York City in the early phase of the pandemic (March-April 2020). PLoS ONE [Electronic Resource]. 2020;15(11):e0242760.

109. Fisher M, Neugarten J, Bellin E, Yunes M, Stahl L, Johns TS, et al. AKI in Hospitalized Patients with and without COVID-19: A Comparison Study. Journal of the American Society of Nephrology. 2020;31(9):2145-57.

110. Fisher M, Yunes M, Mokrzycki MH, Golestaneh L, Coco M. ESKD patients hospitalized with COVID-19: Early outcomes in Bronx, New York. Journal of the American Society of Nephrology. 2020;31:262.

111. Flythe JE, Assimon MM, Tugman MJ, Chang EH, Gupta S, Shah J, et al. Characteristics and Outcomes of Individuals With Pre-existing Kidney Disease and COVID-19 Admitted to Intensive Care Units in the United States. Am J Kidney Dis. 2020.

112. Fominskiy, E V, Scandroglio, Á M, Monti, G, et al. Prevalence, Characteristics, Risk Factors, and Outcomes of Invasively Ventilated COVID-19 Patients with Acute Kidney Injury and Renal Replacement Therapy.

113. Fontana Francesco, Giaroni Francesco, Frisina Monica, Alfano Gaetano, Mori Giacomo, Lucchi Leonardo, et al. SARS-CoV-2 infection in dialysis patients in northern Italy: a single-centre experience. Clinical Kidney Journal. 2020;13(3):334-9.

114. Forest SJ, Michler RE, Skendelas JP, DeRose JJ, Friedmann P, Parides MK, et al. De Novo Renal Failure and Clinical Outcomes of Patients With Critical Coronavirus Disease 2019. Critical Care Medicine. 2021;49(2):e161-e9.

115. Fried MW, Crawford JM, Mospan AR, Watkins SE, Munoz Hernandez B, Zink RC, et al. Patient Characteristics and Outcomes of 11,721 Patients with COVID19 Hospitalized Across the United States. Clinical Infectious Diseases. 2020;28:28.

116. Fuentes LR, Zhang H, Cherif A, Kotanko P. Network analysis of in-center spread of COVID-19: A single dialysis center experience. Journal of the American Society of Nephrology. 2020;31:269.

117. Fuentes-Mendez LC, Hurtado AMC, Perez-Navarro LM, Valdez-Ortiz R, Merino M. Demographic and clinical characteristics of patients with CKD and SARS-COV2 undergoing hemodialysis treatment. Journal of the American Society of Nephrology. 2020;31:266.

118. Galassi A, Magagnoli L, Cozzolino M, Paolo C-RWGaAS, Carlo in M. COVID-19 in a dialysis center in Milan from March to June 2020: understanding how to respond to the second wave of the pandemic. Journal of Nephrology. 2021;34(1):11-4.

119. Gandolfini I, Zanelli P, Palmisano A, Salvetti D, Parmigiani A, Maltzman JS, et al. Anti-HLA and anti-SARS-CoV2 Antibodies in Kidney Transplant Recipient with COVID-19. Transplant International. 2021;22:22.

120. Gao S, Jiang F, Jin W, Shi Y, Yang L, Xia Y, et al. Risk factors influencing the prognosis of elderly patients infected with COVID-19: a clinical retrospective study in Wuhan, China. Aging (Albany NY). 2020.

121. Garces TS, Sousa GJB, Florencio RS, Cestari VRF, Pereira MLD, Moreira TMM. COVID-19 in a state of Brazilian Northeast: Prevalence and associated factors in people with flu-like syndrome. J Clin Nurs. 2020;29(21-22):4343-8.

122. Gasparini M, Khan S, Patel JM, Parekh D, Bangash MN, Stupsilonmpfle R, et al. Renal impairment and its impact on clinical outcomes in patients who are critically ill with COVID-19: a multicentre observational study. Anaesthesia. 2020.

123. Georgery H, Devresse A, Scohy A, Kabamba B, Darius T, Buemi A, et al. The Second Wave of COVID-19 Disease in a Kidney Transplant Recipient Cohort: A Single-center Experience in Belgium. Transplantation. 2021.

124. Geriatric Medicine Research C. Age and frailty are independently associated with increased COVID-19 mortality and increased care needs in survivors: results of an international multi-centre study. Age Ageing. 2021;05:05.

125. Ghaffari Rahbar M, Nafar M, Khoshdel A, Dalili N, Abrishami A, Firouzan A, et al. Low Rate of COVID-19 pneumonia in Kidney Transplant Recipients - A Battle Between Infection and Immune Response? Transplant Infectious Disease. 2020:e13406-e.

126. Giaime P, Guenoun M, Pedinielli N, Narbonne H, Bergounioux JP, Solas C, et al. Hydroxychloroquine and azithromycin tolerance in haemodialysis patients during COVID-19 infection. Nephrology Dialysis Transplantation. 2020;35(8):1346-53.

127. Giannouchos TV, Sussman RA, Mier JM, Poulas K, Farsalinos K. Characteristics and risk factors for COVID-19 diagnosis and adverse outcomes in Mexico: an analysis of 89,756 laboratory-confirmed COVID-19 cases. European Respiratory Journal. 2020;30:30.

128. Gisondi P, Zaza G, Del Giglio M, Rossi M, Iacono V, Girolomoni G. Risk of hospitalization and death from COVID-19 infection in patients with chronic plaque psoriasis receiving a biologic treatment and renal transplant recipients in maintenance immunosuppressive treatment. Journal of the American Academy of Dermatology. 2020.

129. Goicoechea M, Sanchez Camara L A, Macias N, Munoz de Morales A, Rojas A G, Bascunana A, et al. COVID-19: clinical course and outcomes of 36 hemodialysis patients in Spain. Kidney International. 2020;98(1):27-34.

130. Gok M, Cetinkaya H, Kandemir T, Karahan E, Tuncer IB, Bukrek C, et al. Chronic kidney disease predicts poor outcomes of COVID-19 patients. International Urology & Nephrology. 2021;04:04.

131. Gonzalez-Diaz A, Abad-Lopez P, Pena-Vallejo E, Caro-Gonzalez MP, Calzas-Montalvo C, Gil-Moradillo J, et al. Urological surgery during SARS-CoV-2 pandemic. Descriptive analysis of the experience in a Urology Department across the pandemic phases. Actas Urol Esp. 2020;44(10):665-73.

132. Gottlieb M, Sansom S, Frankenberger C, Ward E, Hota B. Clinical Course and Factors Associated With Hospitalization and Critical Illness Among COVID-19 Patients in Chicago, Illinois. Academic Emergency Medicine. 2020;27(10):963-73.

133. Goupil R, Nadeau-Fredette AC, Beaubien-Souligny W, Madore F, Suri R. Accuracy of lower temperature thresholds in detecting COVID-19 in hemodialysis patients. Journal of the American Society of Nephrology. 2020;31:271.

134. Grandone E, Pesavento R, Tiscia G, De Laurenzo A, Ceccato D, Sartori MT, et al. Mortality and Transfusion Requirements in COVID-19 Hospitalized Italian Patients According to Severity of the Disease. Journal of Clinical Medicine. 2021;10(2):11.

135. Grimaldi D, Aissaoui N, Blonz G, Carbutti G, Courcelle R, Gaudry S, et al. Characteristics and outcomes of acute respiratory distress syndrome related to COVID-19 in Belgian and French intensive care units according to antiviral strategies: the COVADIS multicentre observational study. Ann Intensive Care. 2020;10(1):131.

136. Gu T, Chu Q, Yu Z, Fa B, Li A, Xu L, et al. History of coronary heart disease increased the mortality rate of patients with COVID-19: a nested case-control study. BMJ Open. 2020;10(9):e038976.

137. Guan W J, Liang W H, Zhao Y, Liang H R, Chen Z S, Li Y M, et al. Comorbidity and its impact on 1,590 patients with Covid-19 in China: A nationwide analysis. European Respiratory Journal. 2020;55(5).

138. Gubensek J, Vajdic Trampuz B, Persic V, Gregorcic S, Mrvic T, Arnol M. The possibility of SARS-CoV-2 transmission in a haemodialysis unit - report from a large in-hospital centre. Epidemiol Infect. 2020;148:e226.

139. Gude-Sampedro F, Fernandez-Merino C, Ferreiro L, Lado-Baleato O, Espasandin-Dominguez J, Hervada X, et al. Development and validation of a prognostic model based on comorbidities to predict Covid-19 severity. A population-based study. Int J Epidemiol. 2020;08:08.

140. Gupta R, Agrawal R, Bukhari Z, Jabbar A, Wang D, Diks J, et al. Higher comorbidities and early death in hospitalized African-American patients with Covid-19. BMC Infect Dis. 2021;21(1):78. 141. Gupta S, Coca SG, Chan L, Melamed ML, Brenner SK, Hayek SS, et al. AKI Treated with Renal Replacement Therapy in Critically III Patients with COVID-19. Journal of the American Society of Nephrology. 2021;32(1):161-76.

142. Gutierrez Rodriguez J, Montero Munoz J, Jimenez Muela F, Guirola Garcia-Prendes C, Martinez Rivera M, Gomez Armas L. [Variables associated with mortality in a selected sample of patients older than 80 years and with some degree of functional dependence hospitalized for COVID-19 in a Geriatrics Service]. Revista Espanola de Geriatria y Gerontologia. 2020;55(6):317-25.

143. Hachim IY, Hachim MY, Naeem KB, Hannawi H, Al Salmi I, Al-Zakwani I, et al. Kidney Dysfunction among COVID-19 Patients in the United Arab Emirates. Oman med. 2021;36(1):e221.

144. Hamad AI, Elgaali M, Abuhelaiqa E, Alkadi MM, Othman M, Elesnawi MA, et al. Impact of undertaking safeguards to limit exposure and prevent COVID-19 infection in ambulatory dialysis: A single-center experience. Journal of the American Society of Nephrology. 2020;31:268.

145. Hamilton P, Hanumapura P, Castelino L, Henney R, Parker K, Kumar M, et al. Characteristics and outcomes of hospitalised patients with acute kidney injury and COVID-19. PLoS ONE [Electronic Resource]. 2020;15(11):e0241544.

146. Hansrivijit P, Gadhiya KP, Gangireddy M, Goldman JD. Risk Factors, Clinical Characteristics, and Prognosis of Acute Kidney Injury in Hospitalized COVID-19 Patients: A Retrospective Cohort Study. Medicines. 2021;8(1):07.

147. Hardesty A, Pandita A, Vieira K, Rogers R, Merhi B, Osband AJ, et al. Coronavirus Disease 2019 in Kidney Transplant Recipients: Single-Center Experience and Case-Control Study. Transplantation Proceedings. 2021;13:13.

148. Harrison SL, Buckley BJR, Fazio-Eynullayeva E, Underhill P, Lane DA, Lip GYH. End-Stage renal disease and 30-day mortality for adults with and without COVID-19. Eur. 2021;83:93-5.

149. Harrison SL, Fazio-Eynullayeva E, Lane DA, Underhill P, Lip GYH. Comorbidities associated with mortality in 31,461 adults with COVID-19 in the United States: A federated electronic medical record analysis. PLoS Med. 2020;17(9):e1003321.

150. Hartzell S, Bin S, Benedetti C, Haverly M, Gallon L, Zaza G, et al. Evidence of potent humoral immune activity in COVID-19-infected kidney transplant recipients. American Journal of Transplantation. 2020;20(11):3149-61.

151. He Y, Xie M, Zhao J, Liu X. Clinical Characteristics and Outcomes of Patients with Severe COVID-19 and Chronic Obstructive Pulmonary Disease (COPD). Med Sci Monit. 2020;26:e927212.
152. Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Medicine. 2020;46(6):1089-98.

153. Hendra H, Vajgel G, Antonelou M, Neradova A, Manson B, Clark SG, et al. Identifying prognostic risk factors for poor outcome following COVID-19 disease among in-centre haemodialysis patients: role of inflammation and frailty. Journal of Nephrology. 2021;30:30.

154. Hernandez-Galdamez DR, Gonzalez-Block MA, Romo-Duenas DK, Lima-Morales R, Hernandez-Vicente IA, Lumbreras-Guzman M, et al. Increased Risk of Hospitalization and Death in Patients with COVID-19 and Pre-existing Noncommunicable Diseases and Modifiable Risk Factors in Mexico. Arch Med Res. 2020;51(7):683-9.

155. Hilbrands LB, Duivenvoorden R, Vart P, Franssen CFM, Hemmelder MH, Jager KJ, et al. COVID-19-related mortality in kidney transplant and dialysis patients: Results of the ERACODA collaboration. Nephrology Dialysis Transplantation. 2020;35(11):1973-83.

156. Hong Daqing, Long Lin, Wang Amanda Y, Lei Yu, Tang Yun, Zhao Jia Wei, et al. Kidney manifestations of mild, moderate and severe coronavirus disease 2019: a retrospective cohort study. Clinical Kidney Journal. 2020.

157. Hsu CM, Weiner DE, Aweh G, Miskulin DC, Manley HJ, Stewart C, et al. COVID-19 Infection Among US Dialysis Patients: Risk Factors and Outcomes From a National Dialysis Provider. American Journal of Kidney Diseases. 2021;16:16.

158. Hu S C, Fu E Q, Fan J F, Ye Q Q, Xia C, Gan T E, et al. Infection Control Precautions and Care Delivery in Hemodialysis Unit during Coronavirus Disease 2019 Outbreak: A Case Series. Blood Purification. 2020:1-8.

159. Hu Y, Tu C, Dong JW, Chen WL, Wang XH, Luo D, et al. Bed-sided short-duration renal replacement therapy provide a possible option to treat non-critical coronavirus disease 2019 in maintenance hemodialysis patients in public health crisis. Therapeutic Apheresis & Dialysis: Official Peer-Reviewed Journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy. 2021;25(1):55-65.

160. Hua J, Qian C, Luo Z, Li Q, Wang F. Invasive mechanical ventilation in COVID-19 patient management: The experience with 469 patients in Wuhan. Critical Care. 2020;24(1).

161. Huang J, Zhu L, Bai X, Jia X, Lu Y, Deng A, et al. Multidimensional Analysis of Risk Factors for the Severity and Mortality of Patients with COVID-19 and Diabetes. Infect. 2020;9(4):981-1002. 162. Husain S A, Dube G, Morris H, Fernandez H, Chang J H, Paget K, et al. Early Outcomes of Outpatient Management of Kidney Transplant Recipients with Coronavirus Disease 2019. Clin J Am Soc Nephrol. 2020.

163. Hussain AU, Eqbal K, Shah R, Dutton M, Berry M. COVID-19 infection in renal transplant patients. Journal of the American Society of Nephrology. 2020;31:806.

164. Hwang J M, Kim J H, Park J S, Chang M C, Park D. Neurological diseases as mortality predictive factors for patients with COVID-19: a retrospective cohort study. Neurol Sci. 2020.

165. Iaccarino G, Grassi G, Borghi C, Carugo S, Fallo F, Ferri C, et al. Gender differences in predictors of intensive care units admission among COVID-19 patients: The results of the SARS-RAS study of the Italian Society of Hypertension. PLoS One. 2020.

166. Iaccarino G, Grassi G, Borghi C, Ferri C, Salvetti M, Volpe M, et al. Age and Multimorbidity Predict Death Among COVID-19 Patients: Results of the SARS-RAS Study of the Italian Society of Hypertension. Hypertension. 2020;76(2):366-72.

167. Ibernon M, Bueno I, Rodriguez-Farre N, Ruiz P, Sanchez A, Masso E, et al. The impact of COVID-19 in hemodialysis patients: Experience in a hospital dialysis unit. Hemodialysis International. 2020;22:22.

168. Imam Z, Odish F, Gill I, O'Connor D, Armstrong J, Vanood A, et al. Older age and comorbidity are independent mortality predictors in a large cohort of 1305 COVID-19 patients in Michigan, United States. J Intern Med. 2020.

169. Islam M, Ozturk Y, Koc Y. Clinical outcomes of COVID-19 in hemodialysis patients in the city of Zonguldak, Turkey. International Urology & Nephrology. 2021;15:15.

170. Islam MZ, Riaz BK, Islam ANMS, Khanam F, Akhter J, Choudhury R, et al. Risk factors associated with morbidity and mortality outcomes of COVID-19 patients on the 28th day of the disease course: A retrospective cohort study in Bangladesh. Epidemiology and Infection. 2020.

171. Izurieta HS, Graham DJ, Jiao Y, Hu M, Lu Y, Wu Y, et al. Natural history of COVID-19: Risk factors for hospitalizations and deaths among >26 million U.S. Medicare beneficiaries. J Infect Dis. 2020;16:16.

172. Jackson BR, Gold JAW, Natarajan P, Rossow J, Neblett Fanfair R, da Silva J, et al. Predictors at admission of mechanical ventilation and death in an observational cohort of adults hospitalized with COVID-19. Clinical Infectious Diseases. 2020;24:24.

173. Jager KJ, Kramer A, Chesnaye NC, Couchoud C, Sanchez-Alvarez JE, Garneata L, et al. Results from the ERA-EDTA Registry indicate a high mortality due to COVID-19 in dialysis patients and kidney transplant recipients across Europe. Kidney International. 2020;98(6):1540-8.

174. Jarrin Tejada CD, Zachariah M, Cruz ABV, Hussein S, Wipula E, Meeks N, et al. Favorable outcome of COVID-19 among African American (AA) renal transplant recipients in Detroit. Clinical Transplantation. 2020:e14169.

175. Javanian M, Bayani M, Shokri M, Sadeghi-Haddad-Zavareh M, Babazadeh A, Ghadimi R, et al. Risk factors for mortality of 557 adult patients with COVID 19 in Babol, Northern Iran: a retrospective cohort study. Bratisl Lek Listy. 2021;122(1):34-8.

176. Ji W, Huh K, Kang M, Hong J, Bae G H, Lee R, et al. Effect of Underlying Comorbidities on the Infection and Severity of COVID-19 in Korea: a Nationwide Case-Control Study. Journal of Korean Medical Science. 2020;35(25):e237-e.

177. Jiang HJ, Tang H, Xiong F, Chen WL, Tian JB, Sun J, et al. COVID-19 in Peritoneal Dialysis Patients. Clinical Journal of The American Society of Nephrology: CJASN. 2020;16(1):121-3.

178. Jimenez E, Fontan-Vela M, Valencia J, Fernandez-Jimenez I, Alvaro-Alonso EA, Izquierdo-Garcia E, et al. Characteristics, complications and outcomes among 1549 patients hospitalised with COVID-19 in a secondary hospital in Madrid, Spain: a retrospective case series study. BMJ Open. 2020;10(11):e042398.

179. Jones ESW, Davidson BJ, Barday Z, Barday Z, Davids MR, Thomson D, et al. COVID-19 and the kidney: A South African state healthcare experience. Clinical Nephrology. 2021;09:09.

180. Jung H Y, Lim J H, Kang S H, Kim S G, Lee Y H, Lee J, et al. Outcomes of COVID-19 among Patients on In-Center Hemodialysis: An Experience from the Epicenter in South Korea. J. 2020.
181. Kalyanaraman Marcello R, Dolle J, Grami S, Adule R, Li Z, Tatem K, et al. Characteristics

and outcomes of COVID-19 patients in New York City's public hospital system. PLoS ONE [Electronic Resource]. 2020;15(12):e0243027.

182. Kang SH, Kim SW, Kim AY, Cho KH, Park JW, Do JY. Association between Chronic Kidney Disease or Acute Kidney Injury and Clinical Outcomes in COVID-19 Patients. Journal of Korean Medical Science. 2020;35(50):e434.

183. Katz-Greenberg G, Yadav A, Gupta M, Martinez-Cantarin MP, Gulati R, Ackerman L, et al. Outcomes of COVID-19-positive kidney transplant recipients: A single-center experience. Clinical Nephrology. 2020;94(6):318-21.

184. Keller N, Chantrel F, Krummel T, Bazin-Kara D, Faller AL, Muller C, et al. Impact of first-wave COronaVIrus disease 2019 infection in patients on haemoDIALysis in Alsace: the observational COVIDIAL study. Nephrology Dialysis Transplantation. 2020;35(8):1338-411.

185. Khalid Ú, Ilham MA, Nagaraja P, Elker D, Asderakis A. SÁRS-CoV-2 in Kidney Transplant and Waitlisted Patients During the First Peak: The Welsh Experience. Transplantation Proceedings. 2020;19:19. 186. Khamis F, Al-Zakwani I, Al Naamani H, Al Lawati S, Pandak N, Omar M B, et al. Clinical characteristics and outcomes of the first 63 adult patients hospitalized with COVID-19: An experience from Oman. Journal of Infection and Public Health. 2020;13(7):906-13.

187. Khan Chachar AZ, Khan K, Khan AA, Muhammad Imran Hasan K, Ashraf Zia M, Siddique N, et al. Clinical and Demographic Characteristics Including Comorbidities and Their Outcomes Among Patients Hospitalized With COVID-19 in Four Tertiary Care Hospitals Across Lahore. Cureus. 2021;13(1):e12663.

188. Kikuchi K, Nangaku M, Ryuzaki M, Yamakawa T, Hanafusa N, Sakai K, et al. COVID-19 of dialysis patients in Japan: Current status and guidance on preventive measures. Therapeutic Apheresis & Dialysis: Official Peer-Reviewed Journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy. 2020;24(4):361-5.

189. Kim D W, Byeon K H, Kim J, Cho K D, Lee N. The Correlation of Comorbidities on the Mortality in Patients with COVID-19: an Observational Study Based on the Korean National Health Insurance Big Data. Journal of Korean Medical Science. 2020;35(26):e243-e.

190. Kim SR, Nam SH, Kim YR. Risk Factors on the Progression to Clinical Outcomes of COVID-19 Patients in South Korea: Using National Data. International Journal of Environmental Research & Public Health [Electronic Resource]. 2020;17(23):28.

191. Kolhe NV, Fluck RJ, Selby NM, Taal MW. Acute kidney injury associated with COVID-19: A retrospective cohort study. PLoS Med. 2020;17(10):e1003406.

192. Kular D, Ster IC, Braide-Azikiwe DB, Sarnowski A, Lioudaki E, Ford ML, et al. Clinical characteristics, management, and outcomes in COVID-19-positive dialysis patients from three London Renal Centres, United Kingdom. Journal of the American Society of Nephrology. 2020;31:276.

193. Kumaresan M, Babu M, Parthasarathy R, Matthew M, Kathir C, Rohit A, et al. Clinical profile of SARS-CoV-2 infection in kidney transplant patients - A single centre observational study. Indian Journal of Transplantation. 2020;14(4):288-92.

194. Kute VB, Bhalla AK, Guleria S, Ray DS, Bahadur MM, Shingare A, et al. Clinical Profile and Outcome of COVID-19 in 250 Kidney Transplant Recipients: a Multicenter Cohort Study From India. Transplantation Publish Ahead of Print. 2020;21:21.

195. La Milia V, Bacchini G, Bigi M C, Casartelli D, Cavalli A, Corti M, et al. COVID-19 Outbreak in a Large Hemodialysis Center in Lombardy, Italy. KI Reports. 2020;5(7):1095-9.

196. Laake JH, Buanes EA, Smastuen MC, Kvale R, Olsen BF, Rustoen T, et al. Characteristics, management and survival of ICU patients with coronavirus disease-19 in Norway, March - June 2020. A prospective observational study. Acta anaesthesiologica Scandinavica. 2021;27.

197. Lacson EK, Aweh GN, Ladik V, Manley HJ, Stewart C, Johnson D. SARS-COV-2 infection and outcomes in chronic dialysis patients. Journal of the American Society of Nephrology. 2020;31:261-2.

198. Lagi F, Piccica M, Graziani L, Vellere I, Botta A, Tilli M, et al. Early experience of an infectious and tropical diseases unit during the coronavirus disease (COVID-19) pandemic, Florence, Italy, February to March 2020. Eurosurveillance. 2020;25(17).

199. Lanini S, Montaldo C, Nicastri E, Vairo F, Agrati C, Petrosillo N, et al. COVID-19 disease-Temporal analyses of complete blood count parameters over course of illness, and relationship to patient demographics and management outcomes in survivors and non-survivors: A longitudinal descriptive cohort study. PLoS ONE [Electronic Resource]. 2020;15(12):e0244129.

200. Lano G, Braconnier A, Bataille S, Cavaille G, Moussi-Frances J, Gondouin B, et al. Risk factors for severity of COVID-19 in chronic dialysis patients from a multicentre French cohort. Clinical Kidney Journal. 2020;13(5):878-88.

201. Lapalu S, Izaaryene G, Honore N, Couchoud C. [Role of the French national registry REIN in the health monitoring of patients with end-stage chronic renal failure infected with SARS-CoV-2: Organization and initial data]. Nephrol Ther. 2021.

202. Li J, Yang Y, Gong M, Shi J, Zhou X, Xing X, et al. Aggressive Quarantine Measures Reduce the High Morbidity of COVID-19 in Patients on Maintenance Hemodialysis and Medical Staff of Hemodialysis Facilities in Wuhan, China. Kidney dis. 2020;6(4):271-83.

Li P, Chen L, Liu Z, Pan J, Zhou D, Wang H, et al. Clinical features and short-term outcomes of elderly patients with COVID-19. International Journal of Infectious Diseases. 2020;97:245-50.
Lubetzky M, Aull MJ, Craig-Schapiro R, Lee JR, Marku-Podvorica J, Salinas T, et al. Kidney allograft recipients, immunosuppression, and coronavirus disease-2019: a report of consecutive cases from a New York City transplant center. Nephrology Dialysis Transplantation. 2020;35(7):1250-61.

205. Ludwig M, Jacob J, Basedow F, Andersohn F, Walker J. Clinical outcomes and characteristics of patients hospitalized for Influenza or COVID-19 in Germany. Int J Infect Dis. 2020.
206. Lum E, Bunnapradist S, Multani A, Beaird OE, Carlson M, Gaynor P, et al. Spectrum of Coronavirus Disease 2019 Outcomes in Kidney Transplant Recipients: A Single-Center Experience. Transplantation Proceedings. 2020;52(9):2654-8.

207. Luo Y, Li J, Liu Z, Yu H, Peng X, Cao C. Characteristics and outcomes of hemodialysis patients with COVID-19: a retrospective single center study. Peerj. 2020;8:e10459.

208. Ma Y, Diao B, Lv X, Zhu J, Chen C, Liu L, et al. Epidemiological, Clinical, and Immunological Features of a Cluster of COVID-19-Contracted Hemodialysis Patients. KI Reports. 2020;5(8):1333-41. 209. Mahmoud H, Ghai S, Francis JM. COVID-19 in kidney transplant recipients at New England's largest safety-net hospital. Journal of the American Society of Nephrology. 2020;31:281-2.

210. Maldonado M, Ossorio M, Del Peso G, Santos C, Alvarez L, Sanchez-Villanueva R, et al. COVID-19 incidence and outcomes in a home dialysis unit in Madrid (Spain) at the height of the pandemic. Nefrologia. 2020;05:05.

211. Mamode N, Ahmed Z, Jones G, Banga N, Motallebzadeh R, Tolley H, et al. Mortality Rates in Transplant Recipients and Transplantation Candidates in a High-prevalence COVID-19 Environment. Transplantation. 2021;105(1):212-5.

212. Manes M, Radin E, Pellu V, Molino A, Gabrielli D, Paternoster G, et al. [Preliminary report on the Covid-19 outbreak in Valle d'Aosta dialysis centers]. G. 2020.

213. Manganaro M, Baldovino S, Besso L, Biancone L, Boero R, Borzumati M, et al. First considerations on the SARS-CoV-2 epidemic in the Dialysis Units of Piedmont and Aosta Valley, Northern Italy. Journal of Nephrology. 2020;33(3):393-5.

214. Manley HJ, Majchrzak KM, Sanders R, Cumber S, Aweh GN, Ladik V, et al. Screening for SARS-CoV-2 (COVID) infection in chronic dialysis patients: A nonprofit provider's experience. Journal of the American Society of Nephrology. 2020;31:32.

215. Marathi R, Davis PW, Rivera FHC, Cheungpasitporn W, Kanduri SR, Kovvuru K, et al. COVID-19 in kidney transplant recipients. Journal of the American Society of Nephrology. 2020;31:812-3.

216. Marcolino MS, Ziegelmann PK, Souza-Silva MVR, do Nascimento IJB, Oliveira LM, Monteiro LS, et al. Clinical characteristics and outcomes of patients hospitalized with COVID-19 in Brazil: results from the Brazilian COVID-19 Registry. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases. 2021;11.

217. Maritati F, Cerutti E, Zuccatosta L, Fiorentini A, Finale C, Ficosecco M, et al. SARS-CoV-2 infection in kidney transplant recipients: experience of the italian marche region. Transplant Infectious Disease. 2020:e13377-e.

Marlais M, Wlodkowski T, Schaefer F, Tullus K. COVID-19 in children treated with immunosuppressive medication for kidney diseases. Arch Dis Child. 2020;105 (SUPPL 2):A1.
Mazzoleni L, Ghafari C, Mestrez F, Sava R, Bivoleanu E, Delmotte P, et al. COVID-19

Outbreak in a Hemodialysis Center: A Retrospective Monocentric Case Series. Canadian Journal of Kidney Health & Disease. 2020;7:2054358120944298.

220. McCafferty K, Davari M, Price K, Rajakariar R, Cove-smith A, Forbes SH. Rates of asymptomatic carriage and antibody positivity for SARSCOV-2 in a large haemodialysis cohort. Journal of the American Society of Nephrology. 2020;31:274.

221. Medjeral-Thomas NR, Thomson T, Ashby D, Muthusamy A, Nevin M, Duncan N, et al. Cohort Study of Outpatient Hemodialysis Management Strategies for COVID-19 in North-West London. KI Reports. 2020;5(11):2055-65.

222. Mehta S A, Leonard J, Labella P, Cartiera K, Soomro I, Neumann H, et al. Outpatient management of kidney transplant recipients with suspected COVID-19-Single-center experience during the New York City surge. Transplant Infectious Disease. 2020:e13383-e.

223. Melgosa M, Madrid A, Alvarez O, Lumbreras J, Nieto F, Parada E, et al. SARS-CoV-2 infection in Spanish children with chronic kidney pathologies. Pediatric Nephrology. 2020;35(8):1521-4.

224. Mendy A, Apewokin S, Wells A A, Morrow A L. Factors Associated with Hospitalization and Disease Severity in a Racially and Ethnically Diverse Population of COVID-19 Patients. medRxiv. 2020.

225. Merhi B, Gohh R. Kidney Transplantation and COVID-19. R I Med. 2020;103(8):34-7.

226. Meziyerh S, van der Helm D, de Vries APJ. Vulnerabilities in kidney transplant recipients with COVID-19: a single center experience. Transplant International. 2020;07:07.

227. Michel PA, Piccoli GB, Couchoud C, Fessi H. Home hemodialysis during the COVID-19 epidemic: comment on the French experience from the viewpoint of a French home hemodialysis care network. Journal of Nephrology. 2020;33(6):1125-7.

228. Mikami T, Miyashita H, Yamada T, Harrington M, Steinberg D, Dunn A, et al. Risk Factors for Mortality in Patients with COVID-19 in New York City. Journal of General Internal Medicine. 2020. 229. Min Y, Cheng L, Tu C, Li H, He D, Huang D, et al. Clinical characteristics of deceased hemodialysis patients affected by COVID-19. International Urology & Nephrology. 2021;02:02.

230. Mohamed IH, Chowdary PB, Shetty S, Sammartino C, Sivaprakasam R, Lindsey B, et al. Outcomes of Renal Transplant Recipients With SARS-CoV-2 Infection in the Eye of the Storm: A Comparative Study With Waitlisted Patients. Transplantation. 2021;105(1):115-20.

231. Mohamed NE, Benn EKT, Astha V, Okhawere KE, Korn TG, Nkemdirim W, et al. Association between chronic kidney disease and COVID-19-related mortality in New York. World Journal of Urology. 2021;22:22.

232. Molaei H, Khedmat L, Nemati E, Rostami Z, Saadat SH. Iranian kidney transplant recipients with COVID-19 infection: Clinical outcomes and cytomegalovirus coinfection. Transplant Infectious Disease. 2020:e13455.

233. Monfared A, Dashti-Khavidaki S, Jafari R, Jafari A, Ramezanzade E, Lebadi MK, et al. Clinical characteristics and outcome of COVID-19 pneumonia in kidney transplant recipients in Razi hospital, Rasht, Iran. Transplant Infectious Disease. 2020;22(6):e13420.

234. Monk RD, Vitu K, Mauser SJ, Oneil JL. COVID-19 induces a wasting syndrome in hemodialysis outpatients: Outcomes in Rochester, New York. Journal of the American Society of Nephrology. 2020;31:806-7.

235. Montagud-Marrahi E, Cofan F, Torregrosa J V, Cucchiari D, Ventura-Aguiar P, Revuelta I, et al. Preliminary data on outcomes of SARS-CoV-2 infection in a Spanish single center cohort of kidney recipients. Am J Transplant. 2020.

236. Motta JC, Novoa DJ, Gomez CC, Moreno JM, Vargas L, Perez J, et al. Prognostic factors in hospitalized patients diagnosed with SARS-CoV-2 infection, Bogota, Colombia. Biomedica (Bogota). 2020;40(Supl. 2):116-30.

237. Muhammad R, Ogunti R, Ahmed B, Munawar M, Donaldson S, Sumon M, et al. Clinical Characteristics and Predictors of Mortality in Minority Patients Hospitalized with COVID-19 Infection. Journal of Racial & Ethnic Health Disparities. 2021;04:04.

238. Munblit D, Nekliudov NA, Bugaeva P, Blyuss O, Kislova M, Listovskaya E, et al. StopCOVID cohort: An observational study of 3,480 patients admitted to the Sechenov University hospital network in Moscow city for suspected COVID-19 infection. Clinical Infectious Diseases. 2020;09:09.

239. Murk W, Gierada M, Fralick M, Weckstein A, Klesh R, Rassen JA. Diagnosis-wide analysis of COVID-19 complications: an exposure-crossover study. Cmaj. 2021;193(1):E10-E8.

240. Mutinelli-Szymanski P, Hude I, Merle E, Lombardi Y, Seris P, Abtahi M, et al. Neutrophil:lymphocyte ratio predicts short-term outcome of COVID-19 in haemodialysis patients. Clinical Kidney Journal. 2021;14(1):124-31.

241. Nachega JB, Ishoso DK, Otokoye JO, Hermans MP, Machekano RN, Sam-Agudu NA, et al. Clinical Characteristics and Outcomes of Patients Hospitalized for COVID-19 in Africa: Early Insights from the Democratic Republic of the Congo. Am J Trop Med Hyg. 2020;103(6):2419-28.

242. Nair, V.Jandovitz, N.Hirsch, J SNair, G.Abate, M.Bhaskaran, et al. COVID-19 in kidney transplant recipients. Am J Transplant.

243. Navarrete JE, Hosein D, Franch HA, Rahbari-Oskoui FF, Connor MJ, Lea JP. Outcome of hospitalized ESRD-COVID-19 (C19) infected patients. Journal of the American Society of Nephrology. 2020;31:269.

244. Ng JH, Hirsch JS, Hazzan A, Wanchoo R, Shah HH, Malieckal DA, et al. Outcomes Among Patients Hospitalized With COVID-19 and Acute Kidney Injury. American Journal of Kidney Diseases. 2021;77(2):204-15.e1.

Ng JH, Hirsch JS, Wanchoo R, Sachdeva M, Sakhiya V, Hong S, et al. Outcomes of patients with end-stage kidney disease hospitalized with COVID-19. Kidney International. 2020;98(6):1530-9.
Nikpouraghdam M, Jalali Farahani A, Alishiri G, Heydari S, Ebrahimnia M, Samadinia H, et al. Epidemiological characteristics of coronavirus disease 2019 (COVID-19) patients in IRAN: A single center study. Journal of Clinical Virology. 2020;127:104378-.

247. Nimkar A, Naaraayan A, Hasan A, Pant S, Durdevic M, Suarez CN, et al. Incidence and Risk Factors for Acute Kidney Injury and Its Effect on Mortality in Patients Hospitalized From COVID-19. Mayo Clin Proc Innov Qual Outcomes. 2020;4(6):687-95.

248. Noce E, Zorzanello M, Patel D, Kodali R. Management of COVID-19 in an Outpatient Dialysis Program. Nephrology Nursing Journal: Journal of the American Nephrology Nurses' Association. 2020;47(5):423-7.

249. Oetjens MT, Luo JZ, Chang A, Leader JB, Hartzel DN, Moore BS, et al. Electronic health record analysis identifies kidney disease as the leading risk factor for hospitalization in confirmed COVID-19 patients. PLoS ONE [Electronic Resource]. 2020;15(11):e0242182.

250. Okoh A K, Sossou C, Dangayach N S, Meledathu S, Phillips O, Raczek C, et al. Coronavirus disease 19 in minority populations of Newark, New Jersey. International Journal for Equity in Health. 2020;19(1):93-.

251. Omrani AS, Almaslamani MA, Daghfal J, Alattar RA, Elgara M, Shaar SH, et al. The first consecutive 5000 patients with Coronavirus Disease 2019 from Qatar; a nation-wide cohort study. BMC Infect Dis. 2020;20(1):777.

252. Orlando V, Rea F, Savare L, Guarino I, Mucherino S, Perrella A, et al. Development and validation of a clinical risk score to predict the risk of SARS-CoV-2 infection from administrative data: A population-based cohort study from Italy. PLoS ONE [Electronic Resource]. 2021;16(1):e0237202. 253. Ortiz AET, Walker JB, Velez JCQ, Garces JC. COVID-19 in kidney transplant recipients: Experience from a large health system in Louisiana. Journal of the American Society of Nephrology. 2020;31:754.

254. Ossareh S, Bagheri M, Abbasi M, Abolfathi S, Bohlooli A. Role of Screening for COVID-19 in Hemodialysis Wards, Results of a Single Center Study. Iranian journal of Kidney Diseases. 2020;14(5):389-98.

255. Ozturk S, Turgutalp K, Arici M, CetInkaya H, Altiparmak MR, Aydin Z, et al. Impact of Hospital-acquired Acute Kidney Injury on Covid-19 Outcomes in Patients with and without Chronic Kidney Disease: A multicentre, retrospective cohort study. Turk J Med Sci. 2021.

256. Ozturk S, Turgutalp K, Arici M, Odabas AR, Altiparmak MR, Aydin Z, et al. Mortality analysis of COVID-19 infection in chronic kidney disease, haemodialysis and renal transplant patients compared with patients without kidney disease: a nationwide analysis from Turkey. Nephrology Dialysis Transplantation. 2020;35(12):2083-95.

257. Pakhchanian H, Raiker R, Mukherjee A, Khan A, Singh S, Chatterjee A. Outcomes of COVID-19 in CKD Patients: A Multicenter Electronic Medical Record Cohort Study. Clinical Journal of The American Society of Nephrology: CJASN. 2021;08:08.

258. Palaiodimos L, Kokkinidis D G, Li W, Karamanis D, Ognibene J, Arora S, et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism: Clinical & Experimental. 2020;108:154262-.

259. Palmieri L, Vanacore N, Donfrancesco C, Lo Noce C, Canevelli M, Punzo O, et al. Clinical Characteristics of Hospitalized Individuals Dying with COVID-19 by Age Group in Italy. J Gerontol A Biol Sci Med Sci. 2020.

260. Panagiotou OA, Kosar CM, White EM, Bantis LE, Yang X, Santostefano CM, et al. Risk Factors Associated With All-Cause 30-Day Mortality in Nursing Home Residents With COVID-19. JAMA Intern Med. 2021;04:04.

261. Pascual J, Melilli E, Jimenez-Martin C, Gonzalez-Monte E, Zarraga S, Gutierrez-Dalmau A, et al. COVID-19-related Mortality During the First 60 Days After Kidney Transplantation. Eur Urol. 2020.
262. Patel M, Gangemi A, Marron R, Chowdhury J, Yousef I, Zheng M, et al. Retrospective

analysis of high flow nasal therapy in COVID-19-related moderate-to-severe hypoxaemic respiratory failure. BMJ Open Respir Res. 2020;7(1):08.

263. Pena JE, Rascon-Pacheco RA, Ascencio-Montiel IJ, Gonzalez-Figueroa E, Fernandez-Garate JE, Medina-Gomez OS, et al. Hypertension, Diabetes and Obesity, Major Risk Factors for Death in Patients With COVID-19 in Mexico. Arch Med Res. 2020;16:16.

264. Peng S, Wang HY, Sun X, Li P, Ye Z, Li Q, et al. Early versus late acute kidney injury among patients with COVID-19-a multicenter study from Wuhan, China. Nephrology Dialysis Transplantation. 2020;35(12):2095-102.

265. Pereira MR, Mohan S, Cohen DJ, Husain SA, Dube GK, Ratner LE, et al. COVID-19 in solid organ transplant recipients: initial report from the US epicenter. American Journal of Transplantation. 2020.

266. Perez-Saez M J, Blasco M, Redondo-Pachon D, Ventura Aguilar P, Bada-Bosch T, Perez-Flores I, et al. Use of tocilizumab in kidney transplant recipients with COVID-19. Am J Transplant. 2020. 267. Petrilli C M, Jones S A, Yang J, Rajagopalan H, O'Donnell L, Chernyak Y, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369:m1966-m.

268. Petrulewicz A, Rydzewska-Rosolowska A, Fiderkiewicz B, Wasinska-Krawczyk A, Brzosko S, Walecki J, et al. The clinical course and short-term outcome of COVID-19 in a cohort of hemodialysis patients. Pol Arch Intern Med. 2020.

269. Pierrotti LC, Reusing Junior JO, Freire MP, Barros Machado DJ, Moreira RM, Ventura CG, et al. COVID-19 among kidney-transplant recipients requiring hospitalization: preliminary data and outcomes from a single-center in Brazil. Transplant International. 2020;15:15.

270. Pio-Abreu A, do Nascimento MM, Vieira MA, de Menezes Neves PDM, Lugon JR, Sesso R. High mortality of CKD patients on hemodialysis with Covid-19 in Brazil. Journal of Nephrology. 2020;33(5):875-7.

271. Pizarro-Sanchez MS, Avello A, Mas-Fontao S, Stock da Cunha T, Goma-Garces E, Pereira M, et al. Clinical Features of Asymptomatic SARS-CoV-2 Infection in Hemodialysis Patients. Kidney & Blood Pressure Research. 2021;46(1):126-34.

Plumb L, Benoy-Deeney F, Casula A, Braddon FEM, Tse Y, Inward C, et al. COVID-19 in children with chronic kidney disease: findings from the UK renal registry. Arch Dis Child. 2020;24:24.
Portoles J, Marques M, Lopez-Sanchez P, de Valdenebro M, Munez E, Serrano ML, et al. Chronic kidney disease and acute kidney injury in the COVID-19 Spanish outbreak. Nephrology Dialysis Transplantation. 2020;35(8):1353-61.

274. Previti A, Lentini P, Di Caprio A, Marchiori M, Dell'Aquila R. [The COVID-19 pandemic and hemodialysis: a multicentric experience]. Giornale Italiano di Nefrologia. 2020;37(6):07.

275. Priya S, Selva Meena M, Sangumani J, Rathinam P, Brinda Priyadharshini C, Vijay Anand V. "Factors influencing the outcome of COVID-19 patients admitted in a tertiary care hospital, Madurai.a cross-sectional study". Clin Epidemiol Glob Health. 2021;10:100705.

276. Quintaliani G, Reboldi G, Di Napoli A, Nordio M, Limido A, Aucella F, et al. Exposure to novel coronavirus in patients on renal replacement therapy during the exponential phase of COVID-19 pandemic: survey of the Italian Society of Nephrology. Journal of Nephrology. 2020.

277. Quiroga B, Munoz Ramos P, Giorgi M, de Santos A, Nunez A, Ortiz A, et al. Dynamic assessment of interleukin-6 during hemodialysis and mortality in coronavirus disease-19. Therap Apher Dial. 2021;26:26.

278. Rastad H, Ejtahed HS, Mahdavi-Ghorabi A, Arzaghi M, Safari A, Shahrestanaki E, et al. Factors associated with the poor outcomes in diabetic patients with COVID-19. Journal of Diabetes & Matabolic Disorders. 2020:1-10.

279. Rastad H, Ejtahed HS, Shafiee G, Safari A, Shahrestanaki E, Khodaparast Z, et al. The risk factors associated with COVID-19-Related death among patients with end-stage renal disease. BMC Nephrol. 2021;22(1):33.

280. Rincon A. The keys to control a coronavirus disease 2019 outbreak in a haemodialysis unit. Clinical Kidney Journal. 2020.

281. Rodrigo E. Silent COVID-19 in haemodialysis facilities in Cantabria, Spain: an ecological study. Clinical Kidney Journal. 2020;13:475–6-–6.

Roper T, Kumar N, Lewis-Morris T, Moxham V, Kassimatis T, Game D, et al. Delivering Dialysis During the COVID-19 Outbreak: Strategies and Outcomes. KI Reports. 2020;5(7):1090-4.
Ruiz M, Brzosko S, Serwanska-Swietek M, Kleophas W, Krueger T, Frazao JM, et al. Clinical symptoms in 44 hemodialysis patients who survived and recovered from a confirmed SARS-COV-2 infection and COVID-19 in relation to age and hospitalization: an international experience. Journal of the American Society of Nephrology. 2020;31:264.

284. Russo E, Esposito P, Taramasso L, Magnasco L, Saio M, Briano F, et al. Kidney disease and all-cause mortality in patients with COVID-19 hospitalized in Genoa, Northern Italy. J Nephrol. 2020. 285. Rustgi V, Makar M, Minacapelli CD, Gupta K, Bhurwal A, Li Y, et al. In-Hospital Mortality and Prediction in an Urban U.S. Population With COVID-19. Cureus. 2020;12(11):e11786.

286. Sachdeva M, Uppal NN, Hirsch JS, Ng JH, Malieckal D, Fishbane S, et al. COVID-19 in Hospitalized Patients on Chronic Peritoneal Dialysis: A Case Series. Am J Nephrol. 2020.

287. Salacup G, Lo KB, Gul F, Peterson E, De Joy R, Bhargav R, et al. Characteristics and clinical outcomes of COVID-19 patients in an underserved-inner city population: A single tertiary center cohort. Journal of Medical Virology. 2020;03:03.

288. Sanchez-Alvarez J E, Perez Fontan M, Jimenez Martin C, Blasco Pelicano M, Cabezas Reina C J, Sevillano Prieto A M, et al. [SARS-CoV-2 infection in patients on renal replacement therapy. Report of the COVID-19 Registry of the Spanish Society of Nephrology (SEN)]. Nefrologia. 2020;40(3):272-8.

289. Sankarasubbaiyan S, Gowda MGB, Husain MS, Puvvada SR, Sonawane VA, Kumar KK, et al. CKD patients on hemodialysis (HD) with COVID-19 infection: Characteristics and outcome. Journal of the American Society of Nephrology. 2020;31:805.

290. Santeusanio AD, Menon MC, Liu C, Bhansali A, Patel N, Mahir F, et al. Influence of patient characteristics and immunosuppressant management on mortality in kidney transplant recipients hospitalized with coronavirus disease 2019 (COVID-19). Clinical Transplantation. 2021:e14221.

291. Schonfeld D, Arias S, Bossio JC, Fernandez H, Gozal D, Perez-Chada D. Clinical presentation and outcomes of the first patients with COVID-19 in Argentina: Results of 207079 cases from a national database. PLoS ONE [Electronic Resource]. 2021;16(2):e0246793.

292. Seidel M, Holzer B, Appel H, Babel N, Westhoff TH. Impact of renal disease and comorbidities on mortality in hemodialysis patients with COVID-19: a multicenter experience from Germany. J Nephrol. 2020.

293. Shaikh A, Zeldis E, Campbell KN, Chan L. Prolonged SARS-CoV-2 Viral RNA Shedding and IgG Antibody Response to SARS-CoV-2 in Patients on Hemodialysis. Clinical journal of the American Society of Nephrology : CJASN. 2020;14.

294. Shi S, Qin M, Cai Y, Liu T, Shen B, Yang F, et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. European Heart Journal. 2020;41(22):2070-9.

295. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA cardiology. 2020;5(7):802-10. 296. Shrivastava P, Prashar R, Khoury N, Patel A, Yeddula S, Kitajima T, et al. Acute Kidney Jointy in a Predominantly African American Cohort of Kidney Transplant Recipients With COVID-19.

Injury in a Predominantly African American Cohort of Kidney Transplant Recipients With COVID-19 Infection. Transplantation. 2021;105(1):201-5.

Silberzweig JI, Barbar T, Liu Y, Kim K, Parker T, Levine DM. COVID-19 infections in a small dialysis organization in New York City. Journal of the American Society of Nephrology. 2020;31:265.
Silva F, Cipriano A, Cruz H, Tavares J, Fragoso J, Malheiro J, et al. SARS-CoV-2 infection in kidney transplant recipients: Early report of five cases. Transplant Infectious Disease. 2020:e13394-e.
Sim JJ, Huang CW, Selevan DC, Chung J, Rutkowski MP, Zhou H. COVID-19 and Survival in Maintenance Dialysis. Kidney Medicine. 2021;3(1):132-5.

300. Sipahi S, Dhelr H, Tocoglu A, Bekta SM, S.B AC, Gen CAC, et al. Characteristics and Mortality Determinants of COVID-19 Patients Undergoing Haemodialysis. Turkish journal of medical sciences. 2020;20.

301. Sosa R, Garcia P, Cipriano EO, Hernandez A, Hernandez EE, Chavez PI, et al. Coronavirus Disease 2019 in Patients with End-Stage Kidney Disease on Hemodialysis in Guatemala. KI Reports. 2021;29:29.

302. Sran K, Olsburgh J, Kasimatis T, Clark K, Gokmen R, Hilton R, et al. COVID-19 in Kidney Transplant Patients From a Large UK Transplant Center: Exploring Risk Factors for Disease Severity. Transplantation Proceedings. 2020;17:17.

303. Stefan G, Mehedinti AM, Andreiana I, Zugravu AD, Cinca S, Busuioc R, et al. Clinical features and outcome of maintenance hemodialysis patients with COVID-19 from a tertiary nephrology care center in Romania. Renal Failure. 2021;43(1):49-57.

304. Su K, Ma Y, Wang Y, Song Y, Lv X, Wei Z, et al. How we mitigate and contain COVID-19 outbreak in hemodialysis center (HD): Lessons and experiences. Infection Control and Hospital Epidemiology. 2020.

305. Suleyman G, Fadel R A, Malette K M, Hammond C, Abdulla H, Entz A, et al. Clinical Characteristics and Morbidity Associated With Coronavirus Disease 2019 in a Series of Patients in Metropolitan Detroit. JAMA Network Open. 2020;3(6):e2012270-e.

306. Taji L, Thomas D, Oliver MJ, Ip J, Tang Y, Yeung A, et al. COVID-19 in patients undergoing long-term dialysis in Ontario. Cmaj. 2021;04:04.

307. Tang H, Tian JB, Dong JW, Tang XT, Yan ZY, Zhao YY, et al. Serologic Detection of SARS-CoV-2 Infections in Hemodialysis Centers: A Multicenter Retrospective Study in Wuhan, China. American Journal of Kidney Diseases. 2020;76(4):490-9.e1.

308. Tayebi Khosroshahi H, Mardomi A, Niknafs B, Farnood F, Shekarchi M, Salehi S, et al. Current status of COVID-19 among hemodialysis patients in the East Azerbaijan Province of Iran. Hemodialysis International. 2020;04:04.

309. Thaunat O, Legeai C, Anglicheau D, Couzi L, Blancho G, Hazzan M, et al. IMPact of the COVID-19 epidemic on the moRTAlity of kidney transplant recipients and candidates in a French Nationwide registry sTudy (IMPORTANT). Kidney Int. 2020.

310. Tian M, Li H, Yan T, Dai Y, Dong L, Wei H, et al. Clinical features of patients undergoing hemodialysis with COVID-19. Semin Dial. 2020.

311. Torres Ortiz AE, Mohamed M, Mitchell VT, Velez JCQ. Clinical outcomes of patients with
ESKD hospitalized with COVID-19. Journal of the American Society of Nephrology. 2020;31:264.
312. Tortonese S, Scriabine I, Anjou L, Loens C, Michon A, Benabdelhak M, et al. COVID-19 in
Patients on Maintenance Dialysis in the Paris Region. KI Reports. 2020;5(9):1535-44.

Trivedi M, Shingada A, Shah M, Khanna U, Karnik ND, Ramachandran R. Impact of COVIDon maintenance haemodialysis patients: The Indian scenario. Nephrology. 2020;25(12):929-32.
Trujillo H, Caravaca-Fontan F, Sevillano A, Gutierrez E, Caro J, Gutierrez E, et al. SARSCoV-2 Infection in Hospitalized Patients with Kidney Disease. KI Rep. 2020.

315. Turgutalp K, Ozturk S, Arici M, Eren N, Gorgulu N, Islam M, et al. Determinants of mortality in a large group of hemodialysis patients hospitalized for COVID-19. BMC Nephrol. 2021;22(1):29. 316. Uribarri A, Nunez-Gil I J, Aparisi A, Becerra-Munoz V M, Feltes G, Trabattoni D, et al. Impact of renal function on admission in COVID-19 patients: an analysis of the international HOPE COVID-19 (Health Outcome Predictive Evaluation for COVID 19) Registry. J Nephrol. 2020.

317. Valeri A M, Robbins-Juarez S Y, Stevens J S, Ahn W, Rao M K, Radhakrishnan J, et al. Presentation and Outcomes of Patients with ESKD and COVID-19. Journal of the American Society of Nephrology. 2020;31(7):1409-15.

318. van Halem K, Bruyndonckx R, van der Hilst J, Cox J, Driesen P, Opsomer M, et al. Risk factors for mortality in hospitalized patients with COVID-19 at the start of the pandemic in Belgium: a retrospective cohort study. BMC Infect Dis. 2020;20(1):897.

319. Varnell C, Jr., Harshman LA, Smith L, Liu C, Chen S, Al-Akash S, et al. COVID-19 in pediatric kidney transplantation: The Improving Renal Outcomes Collaborative. American Journal of Transplantation. 2021;16:16.

320. Vaughan L, Veruttipong D, Shaw JG, Levy N, Edwards L, Winget M. Relationship of sociodemographics, comorbidities, symptoms and healthcare access with early COVID-19 presentation and disease severity. BMC Infect Dis. 2021;21(1):40.

321. Vigiola Cruz M, Bellorin O, Srivatana V, Afaneh C. Safety and Efficacy of Bedside Peritoneal Dialysis Catheter Placement in the COVID-19 Era: Initial Experience at a New York City Hospital. World Journal of Surgery. 2020;44(8):2464-70.

322. Vila-Corcoles A, Ochoa-Gondar O, Torrente-Fraga C, Vila-Rovira A, Satue-Gracia E, Hospital-Guardiola I, et al. [Evaluation of incidence and risk profile for suffering Covid-19 infection by underlying conditions among middle-aged and older adults in Tarragona.]. Rev Esp Salud Publica. 2020.

323. Virmani S, Gleeson SE, Girone GF, Malhotra D, Cohen EA, Klarman SE, et al. Identifying a Kidney Transplant Recipient COVID Phenotype to Aid Test Utilization in the Setting of Limited Testing Availability-Does One Exist? Transplantation Proceedings. 2020;52(9):2584-91.

324. Vistoli F, Furian L, Maggiore U, Caldara R, Cantaluppi V, Ferraresso M, et al. COVID-19 and kidney transplantation: an Italian Survey and Consensus. Journal of Nephrology. 2020.

325. Vlachos S, Wong A, Metaxa V, Canestrini S, Lopez Soto C, Periselneris J, et al. Hospital Mortality and Resource Implications of Hospitalisation with COVID-19 in London, UK: A Prospective Cohort Study. Crit Care Res Pract. 2021;2021:8832660.

326. Wagner J, Garcia-Rodriguez V, Yu A, Dutra B, DuPont A, Cash B, et al. Elevated D-Dimer Is Associated with Multiple Clinical Outcomes in Hospitalized Covid-19 Patients: a Retrospective Cohort Study. SN Compr Clin Med. 2020:1-7.

327. Wang H. Maintenance Hemodialysis and COVID-19: Saving Lives With Caution, Care, and Courage. Kidney Med. 2020.

328. Wang R, Liao C, He H, Hu C, Wei Z, Hong Z, et al. COVID-19 in hemodialysis patients: a report of 5 cases. American Journal of Kidney Diseases. 2020.

329. Wang Rui, He Hong, Liao Cong, Hu Hongtao, Hu Chun, Zhang Juan, et al. Clinical outcomes of hemodialysis patients infected with severe acute respiratory syndrome coronavirus 2 and impact of proactive chest computed tomography scans. Clinical Kidney Journal. 2020.

330. Wang Y, Hu M, Ye G, Zhao Y, Yin Q, Pi P, et al. Clinical characteristics of patients with uremia undergoing maintenance hemodialysis complicated with COVID-19. Medicine. 2020;99(32):e21547.

331. Weiss S, Bhat P, Del Pilar Fernandez M, Bhat JG, Coritsidis GN. COVID-19 Infection in ESKD: Findings from a Prospective Disease Surveillance Program at Dialysis Facilities in New York City and Long Island. Journal of the American Society of Nephrology. 2020;31(11):2517-21.

332. Working group for the s, control of C-iS, Members of the Working group for the s, control of C-iS. The first wave of the COVID-19 pandemic in Spain: characterisation of cases and risk factors for severe outcomes, as at 27 April 2020. Euro Surveill. 2020;25(50):12.

333. Wu J, Li J, Zhu G, Zhang Y, Bi Z, Yu Y, et al. Clinical Features of Maintenance Hemodialysis Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. Clin J Am Soc Nephrol. 2020.

334. Xiong F, Tang H, Liu L, Tu C, Tian J B, Lei C T, et al. Clinical Characteristics of and Medical Interventions for COVID-19 in Hemodialysis Patients in Wuhan, China. Journal of the American Society of Nephrology. 2020;31(7):1387-97.

335. Xu X, Nie S, Sun J, Kong Y, Liang M, Li D, et al. The Cumulative Rate of SARS-CoV-2 Infection in Chinese Hemodialysis Patients. KI Reports. 2020;5(9):1416-21.

336. Yamada T, Mikami T, Chopra N, Miyashita H, Chernyavsky S, Miyashita S. Patients with chronic kidney disease have a poorer prognosis of coronavirus disease 2019 (COVID-19): an experience in New York City. International Urology & Nephrology. 2020;52(7):1405-6.

337. Yan Y, Yang Y, Wang F, Ren H, Zhang S, Shi X, et al. Clinical characteristics and outcomes of patients with severe covid-19 with diabetes. BMJ Open Diabetes Research and Care. 2020;8(1). 338. Yang D, Xiao Y, Chen J, Chen Y, Luo P, Liu Q, et al. COVID-19 and chronic renal disease: clinical characteristics and prognosis. Qjm. 2020;113(11):799-805.

339. Yau K, Muller M P, Lin M, Siddiqui N, Neskovic S, Shokar G, et al. COVID-19 Outbreak in an Urban Hemodialysis Unit. American Journal of Kidney Diseases. 2020:epub ahead of print-epub ahead of print.

340. Yi S G, Rogers A W, Saharia A, Aoun M, Faour R, Abdelrahim M, et al. Early Experience With COVID-19 and Solid Organ Transplantation at a US High-volume Transplant Center. Transplantation. 2020.

341. Yu Y, Xu D, Fu S, Zhang J, Yang X, Xu L, et al. Patients with COVID-19 in 19 ICUs in Wuhan, China: A cross-sectional study. Critical Care. 2020;24(1).

342. Zapata CM, Rodriguez YE, Akande O, Ward L, Bhat P. Clinical characteristics and outcomes in ESKD patients with COVID-19 infection in an urban community hospital in Brooklyn, New York, during the global pandemic. Journal of the American Society of Nephrology. 2020;31:264.

343. Zeng X, Huang X, Xu L, Xiao J, Gu L, Wang Y, et al. Clinical outcomes of dialysis patients with COVID-19 in the initial phase of the COVID-19 outbreak in Wuhan, China. International Urology & Nephrology. 2021;53(2):353-7.

344. Zhang B, Zhou X, Qiu Y, Song Y, Feng F, Feng J, et al. Clinical characteristics of 82 cases of death from COVID-19. PLoS ONE [Electronic Resource]. 2020;15(7):e0235458-e.

345. Zhang H, Chen Y, Yuan Q XQXZXPPJT, et al. Identification of kidney transplant recipients with coronavirus disease 2019. European Urology. 2020;77(6):742-7.

346. Zhu L, Gong N, Liu B, Lu X, Chen S, Shu H, et al. Coronavirus Disease 2019 Pneumonia in Immunosuppressed Renal Transplant Recipients: A Summary of 10 Confirmed Cases in Wuhan, China. European Urology. 2020;77(6):748-54.

347. Ziehr D R, Alladina J, Petri C R, Maley J H, Moskowitz A, Medoff B D, et al. Respiratory Pathophysiology of Mechanically Ventilated Patients with COVID-19: A Cohort Study. American Journal of Respiratory & Critical Care Medicine. 2020;201(12):1560-4.

348. Zou R, Chen F, Chen D, Xu CL, Xiong F. Clinical characteristics and outcome of hemodialysis patients with COVID-19: a large cohort study in a single Chinese center. Renal Failure. 2020;42(1):950-7.

Item S4. Studies classified by World Health Organization (WHO) regions and World Bank Income Group

The 348 included studies were performed in the following WHO regions.

- Americas: 115 studies, 341,889 participants (USA, 99 studies; Brazil, 5 studies; Mexico, 4 studies; Canada, 3 studies; Argentina, 1 study; Colombia, 1 study; Dominican Republic, 1 study; Guatemala, 1 study)
- Europe: 139 studies, 31,384 participants (Spain, 31 studies; Italy, 30 studies; UK, 24 studies; France, 15 studies; Turkey, 14 studies; Belgium, 5 studies; Germany, 4 studies; Portugal, 2 studies; Romania, 2 studies; Sweden, 2 studies; Croatia, 1 study; Denmark, 1 study; Netherlands, 1 study; Norway, 1 study; Poland, 1 study; Russia, 1 study; Slovenia, 1 study; and two or more countries in Europe, 3 studies)
- Western Pacific: 54 studies, 2018 participants (China, 44 studies; Korea, 8 studies; Japan, 1 study; Philippines, 1 study)
- South East Asia: 8 studies, 576 participants (India, 7 studies; Bangladesh, 1 study)
- Eastern Mediterranean: 22 studies, 896 participants (Iran, 13 studies; Qatar, 3 studies; Pakistan, 2 studies; Oman, 1 study; Kuwait, 1 study; Saudi Arabia, 1 study; United Arabic Emirates, 1 study)
- Africa: 4 studies, 699 participants (South Africa, 2 studies; Democratic Republic of Congo, 1 study; Mauritania, 1 study)
- Two or more regions: 6 studies, 4945 participants (USA, Denmark, Greece, Germany in 1 study; USA, Spain, Italy in 1 study; UK, Ireland, Greece, Spain, Italy, Egypt, Iraq, Libya, Saudi Arabia, Sudan, Turkey, USA in 1 study; USA, UK, Germany, Italy, Spain, Russia, France, Macedonia, India, Iran, Pakistan, Peru in 1 study; UK, Sweden, Portugal, Poland, Brazil, Colombia, Saudi Arabia, Malaysia in 1 study; Spain, Italy, Germany, Ecuador in 1 study)

These studies classified by World Bank Income Groups (low, low middle, upper middle and high) are as follows:

- High income: 244 studies, 359,663 participants (USA, 99 studies; Canada, 3 studies; Spain, 31 studies; Italy, 30 studies; UK, 24 studies; France, 15 studies; Belgium, 5 studies; Germany, 4 studies; Portugal, 2 studies; Romania, 2 studies; Sweden, 2 studies; Croatia, 1 study; Denmark, 1 study; Netherlands, 1 study; Norway, 1 study; Poland, 1 study; Russia, 1 study; Slovenia, 1 study; Korea, 8 studies; Japan, 1 study; Qatar, 3 studies; Oman, 1 study; Kuwait, 1 study; Saudi Arabia, 1 study; United Arabic Emirates, 1 study; and multinational, 5 studies)
- High and upper middle income: 4 studies, 1360 participants (Italy, Spain, Canada, Cuba, Germany, China, Ecuador USA, Denmark, Greece, Germany in 1 study; USA, UK, Germany, Italy, Spain, Russia, France, Macedonia, India, Iran, Pakistan, Peru in 1 study; UK, Sweden, Portugal, Poland, Brazil, Colombia, Saudi Arabia, Malaysia in 1 study; Spain, Italy, Germany, Ecuador in 1 study)
- High, upper middle and low income: 1 study, 4424 participants (Ireland, Greece, Spain, Italy, Egypt, Iraq, Libya, Saudi Arabia, Sudan, Turkey, USA in 1 study)
- Upper middle income: 86 studies, 15,957 participants (China, 44 studies; Turkey, 14 studies; Iran, 13 studies; Brazil, 5 studies; Mexico, 4 studies; South Africa, 2 studies; Argentina, 1 study; Colombia, 1 study; Dominican Republic, 1 study; Mauritania, 1 study)
- Lower middle income: 12 studies, 996 participants (India, 7 studies; Pakistan, 2 studies Bangladesh, 1 study; Guatemala, 1 study; Philippines, 1 study)
- Low income: 1 study, 7 participants (Democratic Republic of Congo, 1 study

Item S5. Other COVID-19-attributable outcomes in people with COVID-19 and CKD

| Dyspnea in people with CKD and COVID-19 | Incidence per 1000 person weeks<br>(95% confidence interval (CI)) [95%<br>prediction interval [PrI]] | Number of studies | Number of participants | Evidence<br>certainty |
|-----------------------------------------|------------------------------------------------------------------------------------------------------|-------------------|------------------------|-----------------------|
| Overall CKD                             | 80 (66-95) [2-234]                                                                                   | 75                | 5767                   | Low                   |
| CKD without kidney replacement therapy  | 116 (78-161) [12-296] <sup>*</sup>                                                                   | 5                 | 904                    | Low                   |
| CKD treated by dialysis                 | 62 (48-79) [3-180] <sup>*</sup>                                                                      | 36                | 2585                   | Low                   |
| KTR                                     | 94 (71-119) [3-273] <sup>*</sup>                                                                     | 37                | 2278                   | Low                   |

\*There was evidence of statistical heterogeneity between CKD subgroups (p=0.006)

Recovery from COVID-19 was defined as significant clinical improvement with or without two consecutive negative RT-PCRs on throat swab in 3 studies and was unclear in the remaining studies.

| COVID-19 recovery in people with CKD and COVID-19 | Incidence per 1000 person weeks<br>(95% CI) [95% Prl] | Number of studies | Number of participants | Evidence<br>certainty |
|---------------------------------------------------|-------------------------------------------------------|-------------------|------------------------|-----------------------|
| Overall CKD                                       | 83 (52-120) [0-304]                                   | 21                | 3463                   | Very low              |
| CKD without kidney replacement therapy            | 24 (2-68) <sup>*</sup>                                | 5                 | 904                    | Very low              |
| CKD treated by dialysis                           | 71 (46-101) [7-188]*                                  | 9                 | 363                    | Very low              |
| KTR                                               | 107 (72-148) [15-256] <sup>*</sup>                    | 11                | 656                    | Very low              |

\*There was evidence of statistical heterogeneity between CKD subgroups (p=0.007)

| ICU admission in people with CKD and COVID-19 | Incidence per 1000 person weeks<br>(95% CI) [95% Prl] | Number of studies | Number of participants | Evidence<br>certainty |
|-----------------------------------------------|-------------------------------------------------------|-------------------|------------------------|-----------------------|
| Overall CKD                                   | 27 (24-30) [4-63]                                     | 109               | 76,532                 | Low                   |
| CKD without kidney replacement therapy        | 19 (15-23) [4-41]*                                    | 29                | 64,839                 | Low                   |
| CKD treated by dialysis                       | 25 (18-33) [0-90] <sup>*</sup>                        | 41                | 8431                   | Low                   |

| KTR | 38 (28-49) [0-127] <sup>*</sup> | 46 | 2843 | Low |  |
|-----|---------------------------------|----|------|-----|--|
|-----|---------------------------------|----|------|-----|--|

\*There was evidence of statistical heterogeneity between CKD subgroups (p=0.001)

| Hospital admission in people with CKD and COVID-19                 | Incidence per 1000 person weeks<br>(95% CI) [95% PrI] | Number of studies | Number of participants | Evidence<br>certainty |
|--------------------------------------------------------------------|-------------------------------------------------------|-------------------|------------------------|-----------------------|
| Overall CKD                                                        | 93 (82-104) [15-223]                                  | 92                | 286,176                | Low                   |
| CKD without kidney replacement therapy                             | 78 (53-106) [1-245] <sup>*</sup>                      | 20                | 266,313                | Low                   |
| CKD treated by dialysis                                            | 87 (69-108) [4-255]                                   | 44                | 17,613                 | Low                   |
| KTR                                                                | 116 (89-145) [5-329]*                                 | 36                | 2250                   | Low                   |
| There was no evidence of statistical heterogeneity between CKD sub | groups (p=0.11)                                       |                   |                        |                       |
| Need for supplemental oxygen in people with CKD and COVID-<br>19   | Incidence per 1000 person weeks<br>(95% CI) [95% Prl] | Number of studies | Number of participants | Evidence<br>certainty |
| Overall CKD                                                        | 96 (78-116) [4-272]                                   | 52                | 8996                   | Low                   |
| CKD without kidney replacement therapy                             | 116 (45-213) [0-670] <sup>*</sup>                     | 4                 | 778                    | Low                   |
| CKD treated by dialysis                                            | 73 (55-93) [6-197] <sup>*</sup>                       | 26                | 6714                   | Low                   |
| KTR                                                                | 133 (92-180) [0-411]*                                 | 25                | 1391                   | Low                   |

\*There was evidence of statistical heterogeneity between CKD subgroups (p=0.01)

| Hospital discharge in people with CKD and COVID-19 | Incidence per 1000 person weeks<br>(95% CI) [95% Prl] | Number of studies | Number of<br>participants | Evidence certainty |
|----------------------------------------------------|-------------------------------------------------------|-------------------|---------------------------|--------------------|
| Overall CKD                                        | 106 (90-123) [13-262]                                 | 63                | 5929                      | Low                |
| CKD without kidney replacement therapy             | 99 (69-132) [15-237] <sup>*</sup>                     | 11                | 2021                      | Low                |
| CKD treated by dialysis                            | 93 (69-121) [4-263] <sup>*</sup>                      | 27                | 2336                      | Low                |
| KTR                                                | 127 (92-166) [1-377]*                                 | 30                | 1268                      | Low                |

\*There was no evidence of statistical heterogeneity between CKD subgroups (p=0.24)

| Sepsis in people with CKD and COVID-19 | Incidence per 1000 person weeks<br>(95% CI) [95% PrI] | Number of studies | Number of participants | Evidence<br>certainty |
|----------------------------------------|-------------------------------------------------------|-------------------|------------------------|-----------------------|
| Overall CKD                            | 3 (0-8) [0-22]                                        | 10                | 1165                   | Low                   |
| CKD without kidney replacement therapy | 11 (0-91) <sup>*</sup>                                | 2                 | 525                    | Low                   |
| CKD treated by dialysis                | 13 (0-39) [0-197]*                                    | 4                 | 318                    | Low                   |
| KTR                                    | 1 (0-3) [0-7] <sup>*</sup>                            | 5                 | 322                    | Low                   |

\*There was no evidence of statistical heterogeneity between CKD subgroups (p=0.16)

## Item S6. Other kidney disease-specific outcomes in people with COVID-19 and CKD

AKI was defined using the KDIGO classification<sup>1</sup> in 30 studies, the Acute Kidney Injury Network definition<sup>2</sup> in three studies, rise in serum creatinine by 0.3 mg/dl or >50% increase from baseline in one study, rise in serum creatinine by 0.5 mg/dl or >30% increase from baseline in one study, >30% reduction in estimated glomerular filtration rate (eGFR) in one study, acute kidney allograft rejection in one study, and no definition in 31 studies.

| Acute kidney injury in people with CKD and COVID-19 | Incidence per 1000 person weeks<br>(95% CI) [95% Prl] | Number of studies | Number of participants | Evidence<br>certainty |
|-----------------------------------------------------|-------------------------------------------------------|-------------------|------------------------|-----------------------|
| Overall CKD                                         | 73 (60-87) [5-199]                                    | 59                | 6900                   | Low                   |
| CKD without kidney replacement therapy              | 80 (62-101) [18-179]*                                 | 16                | 4401                   | Low                   |
| KTR                                                 | 69 (54-86) [4-193] <sup>*</sup>                       | 43                | 2195                   | Low                   |

<sup>\*</sup>There was no evidence of statistical heterogeneity between CKD subgroups (p=0.57)

| Death-censored kidney allograft loss in COVID-19 | Incidence per 1000 person weeks<br>(95% CI) [95% Prl] | Number of studies | Number of<br>participants | Evidence<br>certainty |
|--------------------------------------------------|-------------------------------------------------------|-------------------|---------------------------|-----------------------|
| KTR                                              | 3 (1-6) [0-18]                                        | 13                | 1101                      | Low                   |

| Myocardial infarction in people with CKD and COVID-19            | Incidence per 1000 person weeks<br>(95% CI) [95% Prl] | Number of studies | Number of participants | Evidence<br>certainty |
|------------------------------------------------------------------|-------------------------------------------------------|-------------------|------------------------|-----------------------|
| Overall CKD                                                      | 9 (0-31) [0-101]                                      | 4                 | 108                    | Very low              |
| CKD without kidney replacement therapy                           | 15 (0-53) *                                           | 2                 | 243                    | Very low              |
| CKD treated by dialysis                                          | 9 (0-53) [0-983]*                                     | 3                 | 65                     | Very low              |
| KTR                                                              | Not applicable                                        | 0                 | 0                      | Very low              |
| There was no evidence of statistical heterogeneity between CKD s | subgroups (p=0.71)                                    |                   |                        |                       |
| Stroke in people with CKD and COVID-19                           | Incidence per 1000 person weeks<br>(95% CI) [95% Prl] | Number of studies | Number of participants | Evidence<br>certainty |
| Overall CKD                                                      | 4 (0-9) [0-28]                                        | 5                 | 430                    | Low                   |
| CKD without kidney replacement therapy                           | Not applicable                                        | 0                 | 0                      | Very low              |

| 5 (2-10) [0-53] <sup>*</sup>                          | 3                                                                                                                                                                                       | 199                                                                                                                                                                                                                                             | Low                                                                                                                                                                                                                      |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9 (0-69)*                                             | 2                                                                                                                                                                                       | 231                                                                                                                                                                                                                                             | Low                                                                                                                                                                                                                      |
| CKD subgroups (p=0.70)                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                          |
| Incidence per 1000 person weeks<br>(95% CI) [95% PrI] | Number of studies                                                                                                                                                                       | Number of<br>participants                                                                                                                                                                                                                       | Evidence<br>certainty                                                                                                                                                                                                    |
| 57 (41-75) [0-180]                                    | 33                                                                                                                                                                                      | 2017                                                                                                                                                                                                                                            | Low                                                                                                                                                                                                                      |
| 62 (0-275) <sup>*</sup>                               | 2                                                                                                                                                                                       | 25                                                                                                                                                                                                                                              | Very low                                                                                                                                                                                                                 |
| 57 (44-71) [15-121] <sup>*</sup>                      | 19                                                                                                                                                                                      | 1326                                                                                                                                                                                                                                            | Low                                                                                                                                                                                                                      |
| 58 (28-96) [0-236] <sup>*</sup>                       | 12                                                                                                                                                                                      | 666                                                                                                                                                                                                                                             | Low                                                                                                                                                                                                                      |
|                                                       | 9 (0-69)*         SKD subgroups (p=0.70)         Incidence per 1000 person weeks         (95% CI) [95% Prl]         57 (41-75) [0-180]         62 (0-275)*         57 (44-71) [15-121]* | 9 (0-69)*       2         EKD subgroups (p=0.70)         Incidence per 1000 person weeks<br>(95% CI) [95% PrI]       Number of<br>studies         57 (41-75) [0-180]       33         62 (0-275)*       2         57 (44-71) [15-121]*       19 | 9 (0-69)*     2     231       EKD subgroups (p=0.70)     Number of studies     Number of participants       57 (41-75) [0-180]     33     2017       62 (0-275)*     2     25       57 (44-71) [15-121]*     19     1326 |

<sup>\*</sup>There was no evidence of statistical heterogeneity between CKD subgroups (p=0.95)

### References:

1.

KDIGO. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care. 2013;17(1):204-. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes 2. in acute kidney injury. Crit Care. 2007;11(2):R31-R.

Item S7. Sensitivity analysis by study sample size, risk of bias, and studies reporting both the incidence of COVID-19 and death

## a) <u>Studies with large sample size</u>

All studies reporting on dyspnea, need for supplemental oxygen, hospital discharge, sepsis, acute dialysis, kidney allograft loss, myocardial infarction, stroke and fatigue included less than 1000 participants, preventing sensitivity analysis of the effect of sample size on these outcomes of interest in people with CKD and COVID-19. There was no evidence of statistical heterogeneity between studies based on study sample size for the incidence of acute dialysis. There was evidence of statistical heterogeneity between studies based on study sample size for the incidence of COVID-19 in people with CKD (p<0.0001).

- Large sample size (1000 or more participants): incidence 38 per 10,000 person-weeks (95% CI 30 to 47; 95% PrI 2 to 120); 41 studies; 9040 participants with COVID-19 and 432,238 participants with CKD.
- Small sample size (less than 1000 participants): incidence 127 per 10,000 person-weeks (95% CI 100 to 156; 95% PrI 6 to 382); 48 studies; 5877 participants with COVID-19 and 308,214 participants with CKD.

There was evidence of statistical heterogeneity between studies based on study sample size for the incidence of death in people with CKD (p=0.0003).

- Large sample size (1000 or more participants): incidence 25 per 1000 person-weeks (95% CI 19 to 31; 95% PrI 6 to 56); 13 studies; 42,231 participants.
- Small sample size (less than 1000 participants): incidence 35 per 1000 person-weeks (95% CI 31 to 39; 95% PrI 0 to 109); 218 studies; 28,691 participants.

There was evidence of statistical heterogeneity between studies based on study sample size for the incidence of respiratory failure in people with CKD (p<0.0001).

- Large sample size (1000 or more participants): incidence 11 per 1000 person-weeks (95% CI 7 to 17; 95% PrI 0 to 50); 3 studies; 56,142 participants.
- Small sample size (less than 1000 participants): incidence 36 per 1000 person-weeks (95% CI 29 to 44; 95% PrI 0 to 134); 98 studies; 12,698 participants.

There was evidence of statistical heterogeneity between studies based on study sample size for the incidence of ICU admission in people with CKD (p<0.0001).

- Large sample size (1000 or more participants): incidence 6 per 1000 person-weeks (95% CI 3 to 9; 95% Prl 0 to 23); 5 studies; 62,290 participants.
- Small sample size (less than 1000 participants): incidence 32 per 1000 person-weeks (95% CI 26 to 37; 95% Prl 0 to 102); 104 studies; 14,242 participants.

There was evidence of statistical heterogeneity between studies based on study sample size for the incidence of hospital admission in people with CKD (p=0.0002).

- Large sample size (1000 or more participants): incidence 47 per 1000 person-weeks (95% CI 28 to 72; 95% PrI 0 to 164); 8 studies; 275,291 participants.
- Small sample size (less than 1000 participants): incidence 99 per 1000 person-weeks (95% CI 87 to 112; 95% PrI 16 to 236); 84 studies; 10,885 participants.

There was evidence of statistical heterogeneity between studies based on study sample size for the incidence of AKI in people with CKD (p<0.0001).

- Large sample size (1000 or more participants): incidence 127 per 1000 person-weeks (95% CI 120 to 134); 1 study; 2119 participants.
- Small sample size (less than 1000 participants): incidence 71 per 1000 person-weeks (95% CI 59 to 84; 95% Prl 7 to 185); 58 studies; 4781 participants.

There was evidence of statistical heterogeneity between studies based on study sample size for the incidence of recovery from COVID-19 in people with CKD (p<0.0001).

- Large sample size (1000 or more participants): incidence 10 per 1000 person-weeks (95% CI 10 to 11); 1 study; 2340 participants.
- Small sample size (less than 1000 participants): incidence 84 per 1000 person-weeks (95% CI 63 to 108; 95% PrI 13 to 203); 20 studies; 1123 participants.

### b) Studies with high risk of bias

There was no evidence of statistical heterogeneity between studies based on risk of bias for the need for supplemental oxygen, hospital admission, ICU admission, hospital discharge, recovery, sepsis, acute dialysis, AKI, or fatigue. All studies reporting on myocardial infarction were deemed at high risk of bias. There was evidence of statistical heterogeneity between studies based on risk of bias for the incidence of COVID-19 in people with CKD (p=0.006).

- High risk of bias: incidence 61 per 10,000 person-weeks (95% CI 52 to 71; 95% PrI 5 to 170); 71 studies; 7856 participants with COVID-19, 343,714 participants with CKD.
- Low or unclear risk of bias: incidence 96 per 10,000 person-weeks (95% CI 74 to 122; 95% Prl 18 to 232); 17 studies; 7061 participants with COVID-19, 396,738 participants with CKD.

There was evidence of statistical heterogeneity between studies based on risk of bias for the incidence of death (p=0.04).

- High risk of bias: incidence 30 per 1000 person-weeks (95% CI 26 to 34; 95% Prl 0 to 93); 153 studies; 23,145 participants.
- Low or unclear risk of bias: incidence 38 per 1000 person-weeks (95% CI 34 to 43; 95% Prl 9 to 86); 76 studies; 47,777 participants.

There was evidence of statistical heterogeneity between studies based on risk of bias for the incidence of respiratory failure (p<0.0001).

- High risk of bias: incidence 23 per 1000 person-weeks (95% CI 19 to 28; 95% Prl 1 to 66); 74 studies; 48,721 participants.
- Low or unclear risk of bias: incidence 53 per 1000 person-weeks (95% CI 40 to 67; 95% Prl 2 to 159); 27 studies; 20,119 participants.

There was evidence of statistical heterogeneity between studies based on risk of bias for the incidence of dyspnea (p=0.004).

- High risk of bias: incidence 66 per 1000 person-weeks (95% CI 53 to 81; 95% Prl 2 to 194); 57 studies; 3475 participants.
- Low or unclear risk of bias: incidence 111 per 1000 person-weeks (95% CI 86 to 138; 95% Prl 19 to 260); 18 studies; 2292 participants.
- There was evidence of statistical heterogeneity between studies based on risk of bias for the incidence of kidney allograft loss (p=0.04).
  - High risk of bias: incidence 1 per 1000 person-weeks (95% CI 0 to 4; 95% Prl 0 to 11); 10 studies; 571 participants.
  - Low or unclear risk of bias: incidence 9 per 1000 person-weeks (95% CI 5 to 14; 95% Prl 0 to 108); 3 studies; 530 participants.

There was evidence of statistical heterogeneity between studies based on risk of bias for the incidence of stroke (p=0.04).

- High risk of bias: incidence 5 per 1000 person-weeks (95% CI 1 to 12; 95% Prl 0 to 36); 4 studies; 229 participants.
- Low or unclear risk of bias: incidence 2 per 1000 person-weeks (95% CI 0 to 5); 1 study; 201 participants.

### c) Studies reporting both the incidence of COVID-19 and death

In studies reporting both the incidence of COVID-19 and death, there was a higher incidence of death in people with <u>CKD treated by dialysis [CKD G5D]</u> (28 per 1000 person-weeks (95% CI 21 to 35; 95% PrI 0 to 93); 50 studies; 10,572 participants) and KTR (21 per 1000 person-weeks (95% CI 13 to 30; 95% PrI 0 to 72); 22 studies; 2734 participants), compared to people with CKD without kidney replacement therapy (KRT) (8 per 1000 person-weeks (95% CI 6 to 10); 2 studies; 121 participants) (p<0.0001 between subgroups).

Item S8. Subgroup analysis by WHO region, World Bank Income Group and age

a) By WHO region

There was no evidence of statistical heterogeneity between studies based on WHO region for sepsis, kidney allograft loss, myocardial infarction or stroke. The incidence of COVID-19 according to WHO region are shown below. There was evidence of statistical heterogeneity between subgroups (p<0.0001).

- Americas: incidence 68 per 10,000 person-weeks (95% CI 51 to 88; 95% PrI 9 to 178); 20 studies; 8461 participants with COVID-19 and 454,840 participants with CKD.
- European: incidence 86 per 10,000 person-weeks (95% CI 69 to 105; 95% PrI 5 to 255); 45 studies; 4820 participants with COVID-19 and 169,968 participants with CKD.
- Western Pacific: incidence 58 per 10,000 person-weeks (95% CI 39 to 81; 95% Prl 4 to 168); 13 studies; 519 participants with COVID-19 and 18,466 participants with CKD.
- Eastern Mediterranean: incidence 26 per 10,000 person-weeks (95% CI 7 to 56; 95% PrI 0 to 1142); 3 studies; 54 participants with COVID-19 and 3321 participants with CKD.
- South East Asia: incidence 18 per 10,000 person-weeks (95% CI 2 to 46; 95% Prl 0 to 281); 3 studies; 154 participants with COVID-19 and 20,461 participants with CKD.
- Africa: incidence 19 per 10,000 person-weeks (95% CI 0 to 63); 2 studies; 650 participants with COVID-19 and 62,941 participants with CKD.

The incidence of death according to WHO region are shown below. There was evidence of statistical heterogeneity between subgroups (p<0.0001).

- Americas: incidence 28 per 1000 person-weeks (95% CI 24 to 32; 95% PrI 4 to 69); 71 studies; 44,457 participants.
- European: incidence 42 per 1000 person-weeks (95% CI 36 to 48; 95% Prl 2 to 120); 101 studies; 23,185 participants.
- Western Pacific: incidence 34 per 1000 person-weeks (95% Cl 26 to 43; 95% Prl 6 to 80); 28 studies; 1078 participants.
- Eastern Mediterranean: incidence 25 per 1000 person-weeks (95% CI 16 to 35; 95% Prl 0 to 69); 16 studies; 680 participants.
- South East Asia: incidence 16 per 1000 person-weeks (95% CI 7 to 28; 95% Prl 0 to 73); 7 studies; 566 participants.
- Africa: incidence 10 per 1000 person-weeks (95% CI 8 to 12; 95% Prl 7 to 14); 4 studies; 699 participants.

The incidence of respiratory failure according to WHO region are shown below. There was evidence of statistical heterogeneity between subgroups (p<0.0001).

- Americas: incidence 32 per 1000 person-weeks (95% CI 26 to 38; 95% PrI 4 to 79); 33 studies; 61,198 participants.
- European: incidence 44 per 1000 person-weeks (95% CI 34 to 56; 95% PrI 0 to 141); 35 studies; 6344 participants.
- Western Pacific: incidence 13 per 1000 person-weeks (95% CI 7 to 21; 95% Prl 0 to 38); 11 studies; 628 participants.
- Eastern Mediterranean: incidence 25 per 1000 person-weeks (95% CI 16 to 35; 95% Prl 0 to 69); 4 studies; 149 participants.
- South East Asia: incidence 5 per 1000 person-weeks (95% CI 3 to 6); 1 study; 290 participants.
- Africa: incidence 0 per 1000 person-weeks (95% CI 0 to 3); 2 studies; 87 participants.

The incidence of ICU admission according to WHO region are shown below. There was evidence of statistical heterogeneity between subgroups (p<0.0001).

- Americas: incidence 25 per 1000 person-weeks (95% CI 20 to 30; 95% PrI 5 to 58); 35 studies; 65,509 participants.
- European: incidence 34 per 1000 person-weeks (95% CI 26 to 43; 95% PrI 0 to 120); 55 studies; 9940 participants.
- Western Pacific: incidence 6 per 1000 person-weeks (95% CI 1 to 13; 95% Prl 0 to 25); 7 studies; 174 participants.
- Eastern Mediterranean: incidence 47 per 1000 person-weeks (95% CI 30 to 68; 95% PrI 6 to 117); 8 studies; 324 participants.
- South East Asia: incidence 10 per 1000 person-weeks (95% CI 5 to 15; 95% Prl 0 to 140); 3 studies; 365 participants.
- Africa: incidence 2 per 1000 person-weeks (95% CI 0 to 6); 1 study; 76 participants.

The incidence of hospital admission according to WHO region are shown below. There was evidence of statistical heterogeneity between subgroups (p<0.0001).

- Americas: incidence 81 per 1000 person-weeks (95% CI 67 to 96; 95% Prl 12 to 200); 43 studies; 277,333 participants.
- European: incidence 117 per 1000 person-weeks (95% CI 96 to 138; 95% Prl 17 to 282); 43 studies; 7783 participants.
- Western Pacific: incidence 70 per 1000 person-weeks (95% CI 53 to 89); 1 study; 66 participants.
- Eastern Mediterranean: incidence 110 per 1000 person-weeks (95% CI 56 to 179); 2 studies; 63 participants.
- South East Asia: incidence 32 per 1000 person-weeks (95% CI 28 to 36); 1 study; 250 participants.
- Africa: incidence 31 per 1000 person-weeks (95% CI 22 to 41); 2 studies; 681 participants.

The incidence of acute dialysis according to WHO region are shown below. There was evidence of statistical heterogeneity between subgroups (p<0.0001).

- Americas: incidence 22 per 1000 person-weeks (95% CI 9 to 40; 95% Prl 0 to 130); 20 studies; 13,009 participants.
- European: incidence 16 per 1000 person-weeks (95% CI 9 to 23; 95% Prl 0 to 55); 19 studies; 2251 participants.
- Western Pacific: incidence 4 per 1000 person-weeks (95% CI 0 to 9); 1 study; 253 participants.
- Eastern Mediterranean: incidence 13 per 1000 person-weeks (95% CI 2 to 31; 95% Prl 0 to 79); 5 studies; 115 participants.
- South East Asia: incidence 3 per 1000 person-weeks (95% Cl 2 to 5); 2 studies; 290 participants.
- Africa: incidence 4 per 1000 person-weeks (95% CI 0 to 9); 1 study; 76 participants.

The incidence of AKI according to WHO region are shown below. There was evidence of statistical heterogeneity between subgroups (p<0.0001).

- Americas: incidence 80 per 1000 person-weeks (95% CI 62 to 101; 95% PrI 15 to 188); 19 studies; 3995 participants.
- European: incidence 72 per 1000 person-weeks (95% CI 56 to 90; 95% Prl 8 to 185); 30 studies; 2288 participants.
- Western Pacific: incidence 61 per 1000 person-weeks (95% CI 16 to 126; 95% PrI 0 to 343); 5 studies; 142 participants.
- Eastern Mediterranean: incidence 126 per 1000 person-weeks (95% CI 16 to 309); 2 studies; 41 participants.
- South East Asia: incidence 12 per 1000 person-weeks (95% CI 2 to 29); 2 studies; 290 participants.
- No studies reported the incidence of AKI in people with CKD in the African region.
- b) By World Bank Income Group

There was no evidence of statistical heterogeneity between studies based on World Bank Income Group for AKI, sepsis, myocardial infarction or stroke. The incidence of COVID-19 according to World Bank Income Group are shown below. There was evidence of statistical heterogeneity between subgroups (p<0.0001).

- High-income countries: incidence 76 per 10,000 person-weeks (95% CI 65 to 87; 95% PrI 12 to 189); 63 studies; 13,067 participants with COVID-19 and 631,169 participants with CKD.
- Upper middle-income countries: incidence 48 per 10,000 person-weeks (95% CI 34 to 65; 95% PrI 3 to 142); 19 studies; 1248 participants with COVID-19 and 84,844 participants with CKD.
- Lower middle-income countries: incidence 28 per 10,000 person-weeks (95% CI 5 to 67; 95% PrI 0 to 253); 5 studies; 487 participants with COVID-19 and 23,829 participants with CKD.

The incidence of death according to World Bank Income Group are shown below. There was evidence of statistical heterogeneity between subgroups (p<0.0001).

- High-income countries: incidence 36 per 1000 person-weeks (95% CI 32 to 41; 95% Prl 2 to 104); 159 studies; 48,226 participants.
- Upper middle-income countries: incidence 27 per 1000 person-weeks (95% CI 23 to 30; 95% Prl 9 to 51); 56 studies; 20,565 participants.

- Lower middle-income countries: incidence 14 per 1000 person-weeks (95% CI 7 to 23; 95% PrI 0 to 52); 11 studies; 938 participants.
- Low-income countries: incidence 28 per 1000 person-weeks (95% CI 6 to 62); 1 study; 7 participants.

The incidence of respiratory failure according to World Bank Income Group are shown below. There was evidence of statistical heterogeneity between subgroups (p<0.0001).

- High-income countries: incidence 38 per 1000 person-weeks (95% CI 32 to 44; 95% Prl 2 to 105); 73 studies; 60,202 participants.
- Upper middle-income countries: incidence 25 per 1000 person-weeks (95% CI 14 to 39; 95% PrI 0 to 120); 19 studies; 6939 participants.
- Lower middle-income countries: incidence 3 per 1000 person-weeks (95% Cl 2 to 5; 95% Prl 1 to 7); 4 studies; 626 participants.
- No studies reported the incidence of respiratory failure in people with CKD in low-income countries.

The incidence of ICU admission according to World Bank Income Group are shown below. There was evidence of statistical heterogeneity between subgroups (p<0.0001).

- High-income countries: incidence 28 per 1000 person-weeks (95% CI 24 to 32; 95% Prl 4 to 68); 83 studies; 65,768 participants.
- Upper middle-income countries: incidence 28 per 1000 person-weeks (95% CI 19 to 38; 95% Prl 1 to 85); 20 studies; 8994 participants.
- Lower middle-income countries: incidence 9 per 1000 person-weeks (95% CI 6 to 13; 95% Prl 1 to 24); 5 studies; 697 participants.
- No studies reported the incidence of ICU admission in people with CKD in low-income countries.

The incidence of hospital admission according to World Bank Income Group are shown below. There was evidence of statistical heterogeneity between subgroups (p<0.0001).

- High-income countries: incidence 101 per 1000 person-weeks (95% CI 83 to 121; 95% Prl 0 to 329); 81 studies; 267,423 participants.
- Upper middle-income countries: incidence 41 per 1000 person-weeks (95% CI 32 to 50; 95% Prl 16 to 76); 8 studies; 17,105 participants.
- Lower middle-income countries: incidence 42 per 1000 person-weeks (95% CI 28 to 68); 2 studies; 575 participants.
- No studies reported the incidence of hospital admission in people with CKD in low-income countries.

The incidence of acute dialysis according to World Bank Income Group are shown below. There was evidence of statistical heterogeneity between subgroups (p<0.0001).

- High-income countries: incidence 20 per 1000 person-weeks (95% CI 12 to 30; 95% PrI 0 to 98); 39 studies; 14,424 participants.
- Upper middle-income countries: incidence 7 per 1000 person-weeks (95% CI 1 to 16; 95% Prl 0 to 42); 5 studies; 200 participants.
- Lower middle-income countries: incidence 3 per 1000 person-weeks (95% CI 1 to 4; 95% PrI 0 to 18); 3 studies; 297 participants.
- No studies reported the incidence of acute dialysis in people with CKD in low-income countries.

The incidence of AKI according to World Bank Income Group are shown below. There was evidence of statistical heterogeneity between subgroups (p<0.0001).

- High-income countries: incidence 77 per 1000 person-weeks (95% CI 64 to 92; 95% Prl 12 to 188); 46 studies; 6007 participants.
- Upper middle-income countries: incidence 66 per 1000 person-weeks (95% CI 38 to 102; 95% PrI 0 to 215); 11 studies; 603 participants.
- Lower middle-income countries: incidence 12 per 1000 person-weeks (95% CI 2 to 29); 2 studies; 290 participants.
- No studies reported the incidence of AKI in people with CKD in low-income countries.

The incidence of kidney allograft loss according to World Bank Income Group are shown below. There was evidence of statistical heterogeneity between subgroups (p=0.03).

- High-income countries: incidence 4 per 1000 person-weeks (95% Cl 1 to 10; 95% Prl 0 to 26); 9 studies; 772 participants.
- Upper middle-income countries: incidence 2 per 1000 person-weeks (95% CI 0 to 11); 2 studies; 39 participants.
- Lower middle-income countries: incidence 2 per 1000 person-weeks (95% CI 1 to 28); 2 studies; 290 participants.

• No studies reported the incidence of kidney allograft loss in low-income countries.

The other clinical outcomes (dyspnea, need for supplemental oxygen, hospital discharge, recovery and fatigue) were deemed unlikely to be influenced by geographical location or country income group and were not explored in subgroup analyses.

c) By age (adult versus children with CKD)

Five studies reported on children (<18 years of age) with CKD and COVID-19, and the remaining studies reported on adults (≥18 years of age) with CKD and COVID-19. There was no evidence of statistical heterogeneity between studies based on age for ICU admission. None of the studies of children with CKD and COVID-19 reported on respiratory failure, COVID-19 recovery, sepsis, myocardial infarction, stroke or fatigue.

There was evidence of statistical heterogeneity between studies based on age for the incidence of COVID-19 in people with CKD (p<0.0001).

- Adult: incidence 68 per 10,000 person-weeks (95% CI 59 to 77; 95% PrI 10 to 171); 87 studies; 14,893 participants with COVID-19, 737,720 participants with CKD.
- Children: incidence 4 per 10,000 person-weeks (95% Cl 3 to 6); 1 study; 24 participants with COVID-19, 2732 participants with CKD.
- There was evidence of statistical heterogeneity between studies based on age for the incidence of death (p<0.0001).
  - Adult: incidence 33 per 1000 person-weeks (95% CI 30 to 36; 95% PrI 5 to 82); 225 studies; 70,773 participants.
  - Child: incidence 0 per 1000 person-weeks (95% CI 0 to 2; 95% PrI 0 to 6); 4 studies; 149 participants.

There was evidence of statistical heterogeneity between studies based on age for the incidence of dyspnea (p<0.0001).

- Adult: incidence 81 per 1000 person-weeks (95% CI 67 to 96; 95% PrI 3 to 236); 74 studies; 5743 participants.
- Child: incidence 4 per 1000 person-weeks (95% CI 0 to 12); 1 study; 24 participants.

There was evidence of statistical heterogeneity between studies based on age for the incidence of need for supplemental oxygen (p<0.0001).

- Adult: incidence 99 per 1000 person-weeks (95% CI 80 to 120; 95% Prl 4 to 279); 51 studies; 8883 participants.
- Child: incidence 14 per 1000 person-weeks (95% CI 9 to 20); 1 study; 113 participants.

There was evidence of statistical heterogeneity between studies based on age for the incidence of hospital admission (p<0.0001).

- Adult: incidence 94 per 1000 person-weeks (95% CI 83 to 106; 95% Prl 15 to 225); 92 studies; 286,152 participants.
- Child: incidence 15 per 1000 person-weeks (95% CI 6 to 28); 1 study; 24 participants.

There was evidence of statistical heterogeneity between studies based on age for the incidence of hospital discharge (p=0.005).

- Adult: incidence 107 per 1000 person-weeks (95% CI 91 to 125; 95% Prl 14 to 264); 62 studies; 5299 participants.
- Child: incidence 43 per 1000 person-weeks (95% CI 15 to 84); 1 study; 7 participants.

There was evidence of statistical heterogeneity between studies based on age for the incidence of acute dialysis (p=0.02).

- Adult: incidence 18 per 1000 person-weeks (95% CI 12 to 26; 95% PrI 0 to 84); 46 studies; 15963 participants.
- Child: incidence 1 per 1000 person-weeks (95% CI 0 to 15); 2 studies; 31 participants.

There was evidence of statistical heterogeneity between studies based on age for the incidence of AKI (p=0.03).

- Adult: incidence 76 per 1000 person-weeks (95% CI 62 to 90; 95% PrI 7 to 202); 57 studies; 6860 participants.
- Child: incidence 15 per 1000 person-weeks (95% CI 0 to 61); 2 studies; 40 participants.

There was evidence of statistical heterogeneity between studies based on age for the incidence of kidney allograft loss (p=0.02).

- Adult: incidence 4 per 1000 person-weeks (95% CI 1 to 8; 95% PrI 0 to 20); 12 studies; 1077 participants.
- Child: incidence 0 per 1000 person-weeks (95% CI 0 to 3); 1 study; 24 participants.
- d) <u>By study location (hospital or community)</u>

There was evidence of statistical heterogeneity between studies based on participant location for the incidence of COVID-19 in people with CKD (p=0.009).

- Hospital: incidence 46 per 10,000 person-weeks (95% CI 32 to 61; 95% PrI 0 to 157); 25 studies; 6195 participants with COVID-19, 443,935 participants with CKD.
- Community: incidence 86 per 10,000 person-weeks (95% CI 61 to 115; 95% PrI 12 to 228); 10 studies; 3928 participants with COVID-113,950 participants with CKD.

There was no evidence of statistical heterogeneity between studies based on participant location for the incidence of death (p=0.40).

- Hospital: incidence 41 per 1000 person-weeks (95% CI 35 to 47; 95% Prl 1 to 121); 122 studies; 15,020 participants.
- Community: incidence 36 per 1000 person-weeks (95% CI 22 to 54; 95% PrI 0 to 120); 9 studies; 4896 participants.

## e) <u>Diabetes</u>

Diabetes mellitus was not associated with a difference in the incidence of death in people with CKD and COVID-19, compared to those without comorbid diabetes: OR 0.98 (95% CI 0.78-1.22); 35 studies; 5387 participants.

- CKD without KRT: no study reported the incidence of death in people with CKD without KRT, COVID-19 and diabetes.
- <u>CKD G5D</u>: OR 0.97 (95% CI 0.75-1.27); 20 studies; 2519 participants.
- KTR: OR 0.99 (95% CI 0.66-1.48); 16 studies; 2868 participants.

## f) <u>Obesity</u>

Obesity was not associated with a difference in the incidence of death in people with CKD and COVID-19, compared to those without comorbid obesity: OR 1.09 (95% CI 0.73-1.65); 11 studies; 1524 participants.

- CKD without KRT: no study reported the incidence of death in people with CKD without KRT, COVID-19 and obesity.
- <u>CKD G5D</u>: OR 1.01 (95% CI 0.64-1.59); 6 studies; 765 participants.
- KTR: OR 1.57 (95% CI 0.60-4.11); 5 studies; 759 participants.

None of the included studies reported outcomes separately for probable and definite cases of COVID-19; therefore, subgroup analysis could not be performed based on different case definitions of COVID-19. There was also insufficient reporting of COVID-19 severity or stage of CKD in studies of people with CKD and COVID-19 to perform subgroup analyses.

| Study                    | Study design (setting:<br>hospitalized, community,<br>or unclear)       | Incidence ±<br>prognosis | Outcomes                                                       | Age<br>(variance) <sup>*</sup> | N <sup>*</sup>    | Mean<br>eGFR<br>(ml/min<br>per<br>1.73m <sup>2</sup> ) | Country (WHO<br>region)                    | World<br>Bank<br>Income<br>Group | Follow-<br>up<br>(days) |
|--------------------------|-------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------|--------------------------------|-------------------|--------------------------------------------------------|--------------------------------------------|----------------------------------|-------------------------|
| CKD with                 | nout KRT                                                                |                          | •                                                              | •                              |                   | •                                                      |                                            |                                  |                         |
| Aboham<br>r 2020         | Single centre retrospective<br>cohort study<br>(hospitalized)           | Prognosis                | Death, ICU admission                                           | NR                             | 104               | NR                                                     | Saudi Arabia<br>(Eastern<br>Mediterranean) | High<br>income                   | 85                      |
| Acar<br>2021             | Single centre retrospective<br>cohort study<br>(hospitalized)           | Prognosis                | Death                                                          | NR                             | 30                | NR                                                     | Turkey<br>(European)                       | Upper<br>middle<br>income        | 95                      |
| Aggarw<br>al 2020        | Single centre retrospective cohort study                                | Prognosis                | Hospital admission                                             | Median 67<br>(range 38-<br>95) | 6                 | NR                                                     | USA (Americas)                             | High<br>income                   | NR                      |
| Águila-<br>Gordo<br>2021 | Single centre retrospective<br>cohort study<br>(hospitalized)           | Prognosis                | Death                                                          | NŔ                             | 83                | NR                                                     | Spain<br>(European)                        | High<br>income                   | 107                     |
| Ahlstro<br>m 2021        | Multicentre case-control<br>study<br>(hospitalized in ICU)              | Prognosis                | Death                                                          | NR                             | 75                | NR                                                     | Sweden<br>(European)                       | High<br>income                   | 83                      |
| Aimen<br>2020            | Single centre cohort study<br>(hospitalized)                            | Prognosis                | Acute dialysis, death,<br>hospital discharge,<br>ICU admission | NR                             | 7                 | NR                                                     | Pakistan<br>(Eastern<br>Mediterranean)     | Lower<br>middle<br>income        | 139                     |
| Akchuri<br>n 2020        | Multicentre retrospective<br>cohort study<br>(hospitalized)             | Prognosis                | AKI, death, respiratory failure                                | Median 75<br>(IQR 65-84)       | 280               | 44                                                     | USA (Americas)                             | High<br>income                   | NR                      |
| Alamdar<br>i 2020        | Single centre retrospective<br>cohort study<br>(hospitalized)           | Prognosis                | Death, hospital<br>discharge                                   | NR                             | 99                | NR                                                     | Iran (Eastern<br>Mediterranean)            | Upper<br>middle<br>income        | 67                      |
| Alattar<br>2020          | Multicentre retrospective cohort study                                  | Prognosis                | ICU admission                                                  | NR                             | 4                 | NR                                                     | Qatar (Eastern<br>Mediterranean)           | High<br>income                   | 14                      |
| Arshad<br>2020           | Multicentre retrospective<br>cohort study                               | Prognosis                | Death                                                          | NR                             | 1,099             | NR                                                     | USA (Americas)                             | High<br>income                   | 53                      |
| Atkins<br>2020           | Multicentre retrospective<br>cohort study<br>(hospitalized + community) | Incidence                | NR                                                             | NR                             | 3,875 (23<br>with | NR                                                     | UK (European)                              | High<br>income                   | 42                      |

Table S1. Characteristics of each included study

|                             |                                                                         |                          |                            |    | COVID-<br>19)                        |    |                                          |                           |     |
|-----------------------------|-------------------------------------------------------------------------|--------------------------|----------------------------|----|--------------------------------------|----|------------------------------------------|---------------------------|-----|
| Ayed<br>2020                | Single centre retrospective<br>cohort study<br>(hospitalized in ICU)    | Prognosis                | Acute dialysis, death      | NR | 4                                    | NR | Kuwait (Eastern<br>Mediterranean)        | High<br>income            | 61  |
| Azam<br>2020                | Multicentre cohort study<br>(hospitalized)                              | Prognosis                | AKI                        | NR | 90                                   | NR | Multinational<br>(Americas,<br>European) | High<br>income            | NR  |
| Bhandar<br>i 2020           | Single centre retrospective<br>cohort study<br>(hospitalized)           | Prognosis                | Hospital admission         | NR | 10                                   | NR | India (South-<br>East Asia)              | Lower<br>middle<br>income | 56  |
| Bhatla<br>2020              | Single centre cohort study<br>(hospitalized)                            | Prognosis                | ICU admission              | NR | 80                                   | NR | USA (Americas)                           | High<br>income            | 74  |
| Boulle<br>2020              | Multicentre retrospective<br>cohort study<br>(hospitalized + community) | Incidence +<br>prognosis | Death, hospital admission  | NR | 62,272<br>(605 with<br>COVID-<br>19) | NR | South Africa<br>(Africa)                 | Upper<br>middle<br>income | 101 |
| Caliskan<br>2020            | Single centre retrospective<br>cohort study<br>(hospitalized)           | Prognosis                | Death, ICU admission       | NR | 12                                   | NR | Turkey<br>(European)                     | Upper<br>middle<br>income | 57  |
| Capak<br>2020               | Multicentre retrospective<br>cohort study<br>(hospitalized + community) | Prognosis                | Death, respiratory failure | NR | 54                                   | NR | Croatia<br>(European)                    | High<br>income            | 123 |
| Cecconi<br>2020             | Single centre retrospective<br>cohort study<br>(hospitalized)           | Prognosis                | Hospital admission         | NR | 20                                   | NR | Italy (European)                         | High<br>income            | 29  |
| Chan<br>2020 <sup>50</sup>  | Multicentre retrospective<br>cohort study<br>(hospitalized)             | Prognosis                | AKI                        | NR | 323                                  | NR | USA (Americas)                           | High<br>income            | 48  |
| Chang<br>2021               | Multicentre retrospective<br>cohort study<br>(hospitalized + community) | Prognosis                | Hospital admission         | NR | 235,813                              | NR | USA (Americas)                           | High<br>income            | 274 |
| Chen<br>2020 <sup>57</sup>  | Single centre retrospective<br>cohort study<br>(hospitalized)           | Prognosis                | Death                      | NR | 8                                    | NR | China (Western<br>Pacific)               | Upper<br>middle<br>income | 51  |
| Chen<br>2020a <sup>58</sup> | Single centre retrospective<br>cohort study<br>(hospitalized)           | Prognosis                | Hospital admission         | NR | 57                                   | NR | China (Western<br>Pacific)               | Upper<br>middle<br>income | 69  |

| Chen<br>2020b <sup>59</sup>  | Single centre retrospective<br>cohort study<br>(hospitalized)           | Prognosis | Death, hospital admission                           | NR | 21     | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | NR  |
|------------------------------|-------------------------------------------------------------------------|-----------|-----------------------------------------------------|----|--------|----|----------------------------|---------------------------|-----|
| Chen<br>2020c <sup>60</sup>  | Single centre retrospective<br>cohort study<br>(hospitalized)           | Prognosis | Death, hospital<br>discharge                        | NR | 5      | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | 46  |
| Cheng<br>2020 <sup>62</sup>  | Single centre retrospective<br>cohort study<br>(hospitalized)           | Prognosis | AKI                                                 | NR | 21     | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | 22  |
| Cheng<br>2020a <sup>63</sup> | Single centre prospective<br>cohort study<br>(hospitalized)             | Prognosis | Hospital admission                                  | NR | 14     | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | 30  |
| Chilimur<br>i 2020           | Single centre retrospective<br>cohort study<br>(hospitalized)           | Prognosis | Death                                               | NR | 51     | NR | USA (Americas)             | High<br>income            | 32  |
| Chishin<br>ga 2020           | Multicentre retrospective<br>cohort study<br>(hospitalized + community) | Prognosis | Death, hospital<br>admission, ICU<br>admission      | NR | 157    | NR | USA (Americas)             | High<br>income            | 91  |
| Cho<br>2021                  | Multicentre retrospective<br>cohort study<br>(hospitalized)             | Prognosis | Death                                               | NR | 36     | NR | Korea (Western<br>Pacific) | High<br>income            | 28  |
| Ciceri<br>2020               | Single centre cohort study<br>(hospitalized)                            | Prognosis | Death, hospital<br>admission, hospital<br>discharge | NR | 47     | NR | Italy (European)           | High<br>income            | 28  |
| Cipriani<br>2020             | Single centre retrospective<br>cohort study<br>(hospitalized)           | Prognosis | Death                                               | NR | 13     | NR | Italy (European)           | High<br>income            | 35  |
| Coca<br>2020                 | Multicentre cohort study<br>(hospitalized)                              | Prognosis | AKI, death, dyspnea,<br>ICU admission               | NR | 136    | NR | Spain<br>(European)        | High<br>income            | 28  |
| Dai<br>2021                  | Single centre retrospective<br>cohort study<br>(hospitalized)           | Prognosis | AKI                                                 | NR | 6      | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | 28  |
| De<br>Souza<br>2020          | Multicentre retrospective<br>cohort study<br>(community)                | Prognosis | Death                                               | NR | 111    | NR | Brazil<br>(Americas)       | Upper<br>middle<br>income | NR  |
| Di<br>Fusco<br>2021          | Multicentre retrospective<br>cohort study<br>(hospitalized)             | Prognosis | ICU admission, respiratory failure                  | NR | 42,178 | NR | USA (Americas)             | High<br>income            | 214 |

| Dochert<br>y 2020             | Multicentre prospective<br>cohort study<br>(hospitalized)               | Prognosis                | Hospital admission                             | NR                             | 2,830                           | NR | UK (European)                   | High<br>income            | 73  |
|-------------------------------|-------------------------------------------------------------------------|--------------------------|------------------------------------------------|--------------------------------|---------------------------------|----|---------------------------------|---------------------------|-----|
| Duanmu<br>2020                | Single centre cohort study (hospitalized)                               | Prognosis                | Hospital admission                             | NR                             | 6                               | NR | USA (Americas)                  | High<br>income            | 19  |
| Eshrati<br>2020               | Multicentre retrospective<br>cohort study<br>(hospitalized)             | Prognosis                | Death                                          | NR                             | 78                              | NR | Iran (Eastern<br>Mediterranean) | Upper<br>middle<br>income | 33  |
| Fidalgo<br>2021               | Multicentre retrospective<br>cohort study<br>(hospitalized + community) | Prognosis                | Death, hospital<br>admission, ICU<br>admission | Median 78<br>(IQR 70-86)       | 383                             | NR | Portugal<br>(European)          | High<br>income            | 27  |
| Fisher<br>2020 <sup>109</sup> | Multicentre retrospective<br>cohort study<br>(hospitalized)             | Prognosis                | AKI                                            | NR                             | 409                             | NR | USA (Americas)                  | High<br>income            | 57  |
| Forest<br>2021                | Single centre retrospective<br>cohort study<br>(hospitalized in ICU)    | Prognosis                | Acute dialysis                                 | NR                             | 81                              | NR | USA (Americas)                  | High<br>income            | 30  |
| Gao<br>2020                   | Single centre retrospective<br>cohort study<br>(hospitalized)           | Prognosis                | Death, hospital discharge                      | NR                             | 18                              | NR | China (Western<br>Pacific)      | Upper<br>middle<br>income | 37  |
| Garces<br>2020                | Single centre retrospective<br>cohort study<br>(unclear setting)        | Incidence                | NR                                             | NR                             | 44 (20<br>with<br>COVID-<br>19) | NR | Brazil<br>(Americas)            | Upper<br>middle<br>income | 98  |
| Giannou<br>chos<br>2020       | Multicentre retrospective<br>cohort study<br>(hospitalized + community) | Prognosis                | Hospital admission                             | NR                             | 2,064                           | NR | Mexico<br>(Americas)            | Upper<br>middle<br>income | NR  |
| Gok<br>2021                   | Single centre prospective cohort study (hospitalized)                   | Prognosis                | AKI, death                                     | Median 59<br>(range 21-<br>99) | 609                             | 74 | Turkey<br>(European)            | Upper<br>middle<br>income | NR  |
| Gonzale<br>z Diaz<br>2020     | Single centre retrospective cohort study (hospitalized)                 | Incidence +<br>prognosis | Death, hospital discharge, O2                  | 66 (NR)                        | 16 (6 with<br>COVID-<br>19)     | NR | Spain<br>(European)             | High<br>income            | 49  |
| Grando<br>ne 2021             | Multicentre retrospective<br>cohort study (hospitalized)                | Prognosis                | ICU admission                                  | NR                             | 49                              | NR | Italy (European)                | High<br>income            | 181 |
| Grimaldi<br>2020              | Multicentre prospective<br>cohort study (hospitalized<br>in ICU)        | Prognosis                | AKI, death                                     | NR                             | 33                              | NR | Multinational<br>(European)     | High<br>income            | 28  |

| Gu 2020                             | Multicentre retrospective<br>case-control study (unclear<br>setting)    | Prognosis | Death                                                                  | NR     | 12    | NR | China (Western<br>Pacific)                            | Upper<br>middle<br>income | 40  |
|-------------------------------------|-------------------------------------------------------------------------|-----------|------------------------------------------------------------------------|--------|-------|----|-------------------------------------------------------|---------------------------|-----|
| Guan<br>2020                        | Multicentre retrospective cohort study (hospitalized)                   | Prognosis | Death, dyspnea,<br>fatigue, ICU<br>admission, respiratory<br>failure   | 64 ±14 | 21    | NR | China (Western<br>Pacific)                            | Upper<br>middle<br>income | 51  |
| Gude-<br>Samped<br>ro 2020          | Multicentre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis | Death, hospital<br>admission, ICU<br>admission                         | NR     | 101   | NR | Spain<br>(European)                                   | High<br>income            | 63  |
| Gutierre<br>z 2020                  | Single centre prospective cohort study (hospitalized)                   | Prognosis | Death                                                                  | NR     | 29    | NR | Spain<br>(European)                                   | High<br>income            | 31  |
| Hachim<br>2021                      | Single centre case-control<br>study (hospitalized +<br>community)       | Prognosis | ICU admission                                                          | 46 ±15 | 112   | NR | United Arab<br>Emirates<br>(Eastern<br>Mediterranean) | High<br>income            | 61  |
| Hamilto<br>n 2020                   | Multicentre retrospective<br>cohort study (community)                   | Prognosis | AKI                                                                    | NR     | 144   | NR | UK (European)                                         | High<br>income            | 30  |
| Hansrivij<br>it 2021                | Single centre retrospective cohort study (hospitalized)                 | Prognosis | AKI                                                                    | NR     | 66    | NR | USA (Americas)                                        | High<br>income            | 92  |
| Harrison<br>2020                    | Multicentre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis | Death                                                                  | NR     | 2,735 | NR | USA (Americas)                                        | High<br>income            | 54  |
| He 2020                             | Single centre retrospective cohort study (hospitalized)                 | Prognosis | Death                                                                  | NR     | 8     | NR | China (Western<br>Pacific)                            | Upper<br>middle<br>income | 82  |
| Helms<br>2020                       | Multicentre prospective<br>cohort study (hospitalized)                  | Prognosis | ICU admission,<br>respiratory failure                                  | NR     | 6     | NR | France<br>(European)                                  | High<br>income            | 28  |
| Hernand<br>ez-<br>Galdam<br>ez 2020 | Multicentre prospective<br>cohort study (hospitalized +<br>community)   | Prognosis | Death, hospital<br>admission, ICU<br>admission, respiratory<br>failure | NR     | 4,581 | NR | Mexico<br>(Americas)                                  | Upper<br>middle<br>income | 121 |
| Hong<br>2020                        | Multicentre retrospective<br>cohort study (hospitalized)                | Prognosis | Hospital admission                                                     | NR     | 4     | NR | China (Western<br>Pacific)                            | Upper<br>middle<br>income | 57  |
| Hua<br>2020                         | Multicentre retrospective<br>cohort study (hospitalized)                | Prognosis | Respiratory failure                                                    | NR     | 42    | NR | China (Western<br>Pacific)                            | Upper<br>middle<br>income | 60  |

| Huang<br>2020                             | Single centre retrospective cohort study (hospitalized)                 | Prognosis | Death                                                                    | NR | 77  | NR | China (Western<br>Pacific)             | Upper<br>middle<br>income | 84 |
|-------------------------------------------|-------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------|----|-----|----|----------------------------------------|---------------------------|----|
| Hwang<br>2020                             | Multicentre retrospective cohort study (hospitalized)                   | Prognosis | Death                                                                    | NR | 17  | NR | Korea (Western<br>Pacific)             | High<br>income            | 54 |
| laccarin<br>o<br>2020 <sup>165</sup>      | Multicentre retrospective cohort study (hospitalized)                   | Prognosis | ICU admission                                                            | NR | 145 | NR | Italy (European)                       | High<br>income            | 52 |
| laccarin<br>o<br>2020a <sup>16</sup><br>6 | Multicentre retrospective cohort study (hospitalized)                   | Prognosis | Death                                                                    | NR | 88  | NR | Italy (European)                       | High<br>income            | 31 |
| lmam<br>2020                              | Multicentre retrospective cohort study (hospitalized)                   | Prognosis | Hospital admission                                                       | NR | 228 | NR | USA (Americas)                         | High<br>income            | 31 |
| Islam<br>2020                             | Multicentre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis | Death                                                                    | NR | 21  | NR | Bangladesh<br>(South-East<br>Asia)     | Lower<br>middle<br>income | 30 |
| Javania<br>n 2021                         | Multicentre retrospective cohort study (hospitalized)                   | Prognosis | Death                                                                    | NR | 21  | NR | Iran (Eastern<br>Mediterranean)        | Upper<br>middle<br>income | 51 |
| Jimenez<br>2020                           | Single centre retrospective cohort study (hospitalized)                 | Prognosis | Death, ICU admission, recovery                                           | NR | 104 | NR | Spain<br>(European)                    | High<br>income            | 89 |
| Kalyana<br>raman<br>2020                  | Multicentre retrospective cohort study (hospitalized)                   | Prognosis | Death, hospital<br>admission, hospital<br>discharge                      | NR | 809 | NR | USA (Americas)                         | High<br>income            | 43 |
| Khamis<br>2020                            | Multicentre retrospective cohort study (hospitalized)                   | Prognosis | Hospital admission,<br>hospital discharge,<br>ICU admission,<br>recovery | NR | 4   | NR | Oman (Eastern<br>Mediterranean)        | High<br>income            | 60 |
| Khan<br>2021                              | Multicentre retrospective cohort study (hospitalized)                   | Prognosis | Death                                                                    | NR | 29  | NR | Pakistan<br>(Eastern<br>Mediterranean) | Lower<br>middle<br>income | 61 |
| Kim<br>2020a <sup>19</sup><br>0           | Multicentre retrospective cohort study (hospitalized)                   | Prognosis | ICU admission                                                            | NR | 37  | NR | Korea (Western<br>Pacific)             | High<br>income            | NR |
| Kolhe<br>2020                             | Multicentre retrospective cohort study (hospitalized)                   | Prognosis | AKI                                                                      | NR | 224 | NR | UK (European)                          | High<br>income            | 70 |

| Laake<br>2021                      | Multicentre retrospective<br>cohort study (hospitalized<br>in ICU)        | Prognosis | Death                                          | NR | 18    | NR | Norway<br>(European)                        | High<br>income            | 89  |
|------------------------------------|---------------------------------------------------------------------------|-----------|------------------------------------------------|----|-------|----|---------------------------------------------|---------------------------|-----|
| Lagi<br>2020                       | Single centre retrospective cohort study (hospitalized)                   | Prognosis | Hospital admission                             | NR | 3     | NR | Italy (European)                            | High<br>income            | 30  |
| Lanini<br>2020                     | Single centre cohort study (hospitalized)                                 | Prognosis | Death                                          | NR | 19    | NR | Italy (European)                            | High<br>income            | 60  |
| Li<br>2020a <sup>20</sup><br>3     | Single centre retrospective cohort study (hospitalized)                   | Prognosis | Hospital admission                             | NR | 5     | NR | China (Western<br>Pacific)                  | Upper<br>middle<br>income | 20  |
| Ludwig<br>2020                     | Multicentre retrospective cohort study (hospitalized)                     | Prognosis | ICU admission,<br>respiratory failure          | NR | 436   | NR | Germany<br>(European)                       | High<br>income            | 156 |
| Marcolin<br>o 2021                 | Multicentre retrospective cohort study (hospitalized)                     | Prognosis | Death                                          | NR | 104   | NR | Brazil<br>(Americas)                        | Upper<br>middle<br>income | 203 |
| Mendy<br>2020                      | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis | Death, hospital<br>admission, ICU<br>admission | NR | 81    | NR | USA (Americas)                              | High<br>income            | 79  |
| Mikami<br>2020                     | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Prognosis | Death, hospital admission                      | NR | 525   | NR | USA (Americas)                              | High<br>income            | 36  |
| Moham<br>ed<br>2021a <sup>23</sup> | Single centre retrospective cohort study (hospitalized)                   | Prognosis | Death                                          | NR | 597   | NR | USA (Americas)                              | High<br>income            | 20  |
| Motta<br>2020                      | Single centre retrospective cohort study (hospitalized)                   | Prognosis | Death                                          | NR | 11    | NR | Colombia<br>(Americas)                      | Upper<br>middle<br>income | 75  |
| Munblit<br>2020                    | Multicentre retrospective cohort study (hospitalized)                     | Prognosis | Death                                          | NR | 164   | NR | Russia<br>(European)                        | Upper<br>middle<br>income | 51  |
| Murk<br>2021                       | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Prognosis | Hospital admission,<br>ICU admission           | NR | 9,856 | NR | USA (Americas)                              | High<br>income            | 61  |
| Nacheg<br>a 2020                   | Multicentre retrospective<br>cohort study (hospitalized)                  | Prognosis | Death                                          | NR | 7     | NR | Democratic<br>Republic of<br>Congo (Africa) | Low<br>income             | 144 |

| Ng 2021                   | Multicentre retrospective cohort study (hospitalized)                   | Prognosis | AKI                                                            | NR      | 492   | NR | USA (Americas)                   | High<br>income            | 58  |
|---------------------------|-------------------------------------------------------------------------|-----------|----------------------------------------------------------------|---------|-------|----|----------------------------------|---------------------------|-----|
| Nikpour<br>aghdam<br>2020 | Single centre retrospective cohort study (hospitalized)                 | Prognosis | Death                                                          | NR      | 18    | NR | Iran (Eastern<br>Mediterranean)  | Upper<br>middle<br>income | 56  |
| Nimkar<br>2020            | Single centre retrospective cohort study (hospitalized)                 | Prognosis | AKI                                                            | NR      | 40    | NR | USA (Americas)                   | High<br>income            | 65  |
| Okoh<br>2020              | Single centre retrospective cohort study (hospitalized)                 | Prognosis | Death                                                          | NR      | 46    | NR | USA (Americas)                   | High<br>income            | 31  |
| Omrani<br>2020            | Multicentre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis | Hospital admission,<br>ICU admission                           | NR      | 44    | NR | Qatar (Eastern<br>Mediterranean) | High<br>income            | 60  |
| Palaiodi<br>mos<br>2020   | Single centre retrospective cohort study (hospitalized)                 | Prognosis | Hospital admission                                             | NR      | 58    | NR | USA (Americas)                   | High<br>income            | 21  |
| Palmieri<br>2020          | Multicentre retrospective cohort study (hospitalized)                   | Prognosis | Death, hospital admission                                      | NR      | 618   | NR | Italy (European)                 | High<br>income            | NR  |
| Panagio<br>tou<br>2021    | Multicentre retrospective<br>cohort study (community)                   | Prognosis | Death                                                          | NR      | 1,385 | NR | USA (Americas)                   | High<br>income            | 30  |
| Peng<br>2020              | Multicentre retrospective cohort study (hospitalized)                   | Prognosis | AKI                                                            | NR      | 100   | NR | China (Western<br>Pacific)       | Upper<br>middle<br>income | 83  |
| Petrilli<br>2020          | Single centre prospective<br>cohort study (hospitalized +<br>community) | Prognosis | Hospital discharge                                             | NR      | 647   | NR | USA (Americas)                   | High<br>income            | 66  |
| Portoles 2020             | Single centre prospective cohort study (hospitalized)                   | Prognosis | Death                                                          | 78 ± 11 | 146   | NR | Spain<br>(European)              | High<br>income            | 60  |
| Priya<br>2021             | Single centre cohort study<br>(hospitalized)                            | Prognosis | Death                                                          | NR      | 104   | NR | India (South-<br>East Asia)      | Lower<br>middle<br>income | 184 |
| Rastad<br>2020            | Single centre retrospective cohort study (hospitalized)                 | Prognosis | Death                                                          | NR      | 101   | NR | Iran (Eastern<br>Mediterranean)  | Upper<br>middle<br>income | 68  |
| Russo<br>2021             | Single centre retrospective cohort study (hospitalized)                 | Prognosis | Acute dialysis, AKI,<br>death, dyspnea,<br>respiratory failure | 80 ±12  | 222   | NR | Italy (European)                 | High<br>income            | 35  |

| Rustgi<br>2020                                                       | Single centre retrospective cohort study (hospitalized)                   | Prognosis                | Death                                                    | NR                | 289                                 | NR | USA (Americas)                                               | High<br>income                        | 121 |
|----------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------|----------------------------------------------------------|-------------------|-------------------------------------|----|--------------------------------------------------------------|---------------------------------------|-----|
| Salacup<br>2020                                                      | Single centre retrospective cohort study (hospitalized)                   | Prognosis                | Death                                                    | NR                | 42                                  | NR | USA (Americas)                                               | High<br>income                        | 55  |
| Schonfe<br>Id 2021                                                   | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Prognosis                | Death, hospital<br>admission, ICU<br>admission, recovery | NR                | 2,340                               | NR | Argentina<br>(Americas)                                      | Upper<br>middle<br>income             | 214 |
| Shi<br>2020 <sup>294</sup>                                           | Single centre retrospective cohort study (hospitalized)                   | Prognosis                | Death                                                    | NR                | 28                                  | NR | China (Western<br>Pacific)                                   | Upper<br>middle<br>income             | 54  |
| Shi<br>2020a <sup>29</sup><br>5                                      | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis                | Hospital admission                                       | NR                | 14                                  | NR | China (Western<br>Pacific)                                   | Upper<br>middle<br>income             | 21  |
| Uribarri<br>2020                                                     | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Prognosis                | Hospital admission                                       | NR                | 59                                  | NR | Multinational<br>(European,<br>Americas,<br>Western Pacific) | High and<br>upper<br>middle<br>income | 20  |
| Vaugha<br>n 2021                                                     | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Prognosis                | Hospital admission                                       | NR                | 11                                  | NR | USA (Americas)                                               | High<br>income                        | 28  |
| Vigiola<br>2020                                                      | Single centre prospective<br>cohort study (hospitalized +<br>community)   | Prognosis                | Acute dialysis, hospital<br>admission, ICU<br>admission  | Median 65<br>(NR) | 6                                   | NR | USA (Americas)                                               | High<br>income                        | NR  |
| Vila-<br>Corcole<br>s 2020                                           | Multicentre retrospective<br>cohort study (community)                     | Incidence                | NR                                                       | NR                | 4476 (47<br>with<br>COVID-<br>19)   | NR | Spain<br>(European)                                          | High<br>income                        | 61  |
| Weiss<br>2020                                                        | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Death, hospital<br>admission                             | 64 ±14            | 2,178<br>(306 with<br>COVID-<br>19) | NR | USA (Americas)                                               | High<br>income                        | 44  |
| Working<br>group<br>for the<br>surveilla<br>nce and<br>control<br>of | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Prognosis                | Death, hospital<br>admission, ICU<br>admission           | NR                | 3,335                               | NR | Spain<br>(European)                                          | High<br>income                        | 88  |

| COVID-<br>19 in<br>Spain<br>2020 |                                                                           |                          |                                                                                                 |                                |                                  |    |                            |                           |    |
|----------------------------------|---------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------|----|----------------------------|---------------------------|----|
| Yamada<br>2020                   | Multicentre retrospective<br>cohort study (community)                     | Prognosis                | Death                                                                                           | NR                             | 210                              | NR | USA (Americas)             | High<br>income            | NR |
| Yan<br>2020                      | Single centre retrospective cohort study (hospitalized)                   | Prognosis                | Death                                                                                           | NR                             | 4                                | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | 46 |
| Zhang<br>2020 <sup>344</sup>     | Single centre retrospective cohort study (hospitalized)                   | Prognosis                | Death, dyspnea,<br>fatigue, ICU<br>admission, MI, O2,<br>respiratory failure,<br>sepsis         | 79 (NR)                        | 4                                | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | 31 |
| CKD G                            | <u>5D</u>                                                                 |                          |                                                                                                 |                                |                                  |    |                            |                           |    |
| Albalate<br>2020                 | Single centre cohort study<br>(hospitalized + community)                  | Incidence +<br>prognosis | Death, hospital<br>admission                                                                    | 68 ± 17                        | 90 (36<br>with<br>COVID-<br>19)  | NR | Spain<br>(European)        | High<br>income            | 35 |
| Alberici<br>2020 <sup>16</sup>   | Multicentre cohort study<br>(hospitalized + community)                    | Prognosis                | Death, dyspnea,<br>hospital admission,<br>hospital discharge,<br>respiratory failure,<br>sepsis | Median 72<br>(IQR 62-79)       | 94                               | NR | Italy (European)           | High<br>income            | 8  |
| Anisimo<br>va 2020               | Single centre retrospective<br>cohort study<br>(hospitalized)             | Prognosis                | Death, ICU admission, respiratory failure                                                       | NR                             | 24                               | NR | USA (Americas)             | High<br>income            | 65 |
| Apata<br>2020                    | Single centre retrospective<br>cohort study<br>(hospitalized + community) | Incidence +<br>prognosis | Death, hospital<br>admission                                                                    | Median 67<br>(range 43-<br>84) | 745 (18<br>with<br>COVID-<br>19) | NR | USA (Americas)             | High<br>income            | 44 |
| Arslan<br>2020                   | Single centre retrospective cohort study (community)                      | Incidence                | NR                                                                                              | Median 64<br>(range 18-<br>83) | 602 (7<br>with                   | NR | Turkey<br>(European)       | Upper<br>middle<br>income | NR |

|                             |                                                                           |                          |                                                                                                    |                                | COVID-<br>19)                       |    |                            |                           |    |
|-----------------------------|---------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------|----|----------------------------|---------------------------|----|
| Aydin<br>Bahat<br>2020      | Single centre retrospective<br>cohort study<br>(hospitalized)             | Prognosis                | Death, hospital<br>discharge, ICU<br>admission, O2,<br>respiratory failure                         | 60 ± 15                        | 25                                  | NR | Turkey<br>(European)       | Upper<br>middle<br>income | 63 |
| Bigelow<br>2020             | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>Prognosis | Death, hospital admission                                                                          | NR                             | 32 (15<br>with<br>COVID-<br>19)     | NR | USA (Americas)             | High<br>income            | 30 |
| Bousha<br>b 2020            | Single centre cohort study (hospitalized)                                 | Prognosis                | Death, recovery, respiratory failure                                                               | Median 51<br>(range 22-<br>70) | 11                                  | NR | Mauritania<br>(Africa)     | Lower<br>middle<br>income | 32 |
| Broseta<br>2020             | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>prognosis | Death, dyspnea,<br>hospital admission,<br>ICU admission, MI,<br>respiratory failure                | 72 ± 13                        | 429 (36<br>with<br>COVID-<br>19)    | NR | Spain<br>(European)        | High<br>income            | 73 |
| Carlson<br>2021             | Multicentre retrospective<br>cohort study (hospitalized)                  | Prognosis                | Death, ICU admission                                                                               | NR                             | 17                                  | NR | Denmark<br>(European)      | High<br>income            | 60 |
| Chan<br>2020a <sup>51</sup> | Multicentre retrospective cohort study (hospitalized)                     | Prognosis                | Death, ICU admission, respiratory failure                                                          | NR                             | 122                                 | NR | USA (Americas)             | High<br>income            | 85 |
| Chawki<br>2020              | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Prognosis                | Death, dyspnea,<br>hospital admission,<br>ICU admission, O2,<br>respiratory failure                | 67 ± 27                        | 248                                 | NR | France<br>(European)       | High<br>income            | 40 |
| Cho<br>2020                 | Multicentre cohort study<br>(hospitalized + community)                    | Prognosis                | Hospital admission                                                                                 | Median 57<br>(range 29-<br>63) | 11                                  | NR | Korea (Western<br>Pacific) | High<br>income            | 28 |
| Corbett<br>2020             | Single centre prospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Death                                                                                              | Median 67<br>(IQR 57-77)       | 1,530<br>(300 with<br>COVID-<br>19) | NR | UK (European)              | High<br>income            | 42 |
| Creput<br>2020              | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>prognosis | Death, dyspnea,<br>fatigue, hospital<br>admission, ICU<br>admission, vascular<br>access thrombosis | Median 67<br>(range 31-<br>89) | 200 (38<br>with<br>COVID-<br>19)    | NR | France<br>(European)       | High<br>income            | 34 |

| Cruzado<br>2020                 | Single centre cohort study (community)                                    | Incidence                | NR                                                           | NR                             | 167 (8<br>with<br>COVID-<br>19)    | NR | Philippines<br>(Western<br>Pacific) | Lower<br>middle<br>income | 62 |
|---------------------------------|---------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------|--------------------------------|------------------------------------|----|-------------------------------------|---------------------------|----|
| Daifi<br>2020                   | Single centre prospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Death, hospital<br>admission, respiratory<br>failure         | NR                             | 192 (97<br>with<br>COVID-<br>19)   | NR | USA (Americas)                      | High<br>income            | 60 |
| De La<br>Flor<br>Merino<br>2021 | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>prognosis | Death, dyspnea,<br>fatigue, hospital<br>admission            | 74 (NR)                        | 76 (9 with<br>COVID-<br>19)        | NR | Spain<br>(European)                 | High<br>income            | 26 |
| Depetri<br>2020                 | Single centre cohort study<br>(hospitalized + community)                  | Incidence +<br>prognosis | Death, hospital admission, recovery                          | NR                             | 74 (16<br>with<br>COVID-<br>19)    | NR | Italy (European)                    | High<br>income            | 61 |
| Deshpa<br>nde<br>2020           | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Death (including IRR),<br>ICU admission, O2,<br>recovery     | 54 (NR)                        | 1,113 (75<br>with<br>COVID-<br>19) | NR | India (South<br>East Asia)          | Lower<br>middle<br>income | 86 |
| Dian<br>2020                    | Single centre cohort study<br>(hospitalized + community)                  | Incidence +<br>prognosis | ICU admission                                                | NR                             | 181 (2<br>with<br>COVID-<br>19)    | NR | Italy (European)                    | High<br>income            | NR |
| Dina-<br>Batlle<br>2020         | Single centre cohort study<br>(hospitalized + community)                  | Incidence +<br>prognosis | Death, dyspnea, ICU<br>admission, O2,<br>respiratory failure | NR                             | 204 (18<br>with<br>COVID-<br>19)   | NR | Dominican<br>Republic<br>(Americas) | Upper<br>middle<br>income | NR |
| Du 2020                         | Single centre retrospective<br>cohort study (hospitalized)                | Prognosis                | Fatigue                                                      | Median 59<br>(range 36-<br>83) | 32                                 | NR | China (Western<br>Pacific)          | Upper<br>middle<br>income | 13 |
| Dudreuil<br>h 2020              | Single centre cohort study<br>(hospitalized + community)                  | Incidence +<br>prognosis | Hospital admission                                           | Median 56<br>(range 22-<br>82) | 664 (34<br>with<br>COVID-<br>19)   | NR | UK (European)                       | High<br>income            | NR |
| Esposito<br>2020                | Single centre cohort study<br>(hospitalized + community)                  | Incidence +<br>prognosis | Death, hospital<br>admission, ICU<br>admission, recovery     | NR                             | 260 (17<br>with                    | NR | Italy (European)                    | High<br>income            | NR |

|                                    |                                                                           |                          |                                                                                                         |                          | COVID-<br>19)                    |    |                        |                           |     |
|------------------------------------|---------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------|----|------------------------|---------------------------|-----|
| Fisher<br>2020a <sup>11</sup><br>0 | Multicentre retrospective<br>cohort study (hospitalized)                  | Prognosis                | Death, hospital<br>discharge, ICU<br>admission, respiratory<br>failure                                  | 63 (NR)                  | 114                              | NR | USA (Americas)         | High<br>income            | 35  |
| Fontana<br>2020                    | Single centre prospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Death, dyspnea,<br>hospital admission,<br>hospital discharge, MI,<br>O2, respiratory failure,<br>sepsis | 76 ± 11                  | 306 (15<br>with<br>COVID-<br>19) | NR | Italy (European)       | High<br>income            | 10  |
| Fuentes<br>2020                    | Single centre retrospective cohort study (community)                      | Incidence                | NR                                                                                                      | NR                       | 172 (16<br>with<br>COVID-<br>19) | NR | USA (Americas)         | High<br>income            | 54  |
| Fuentes<br>-<br>Mendez<br>2020     | Single centre retrospective cohort study (hospitalized)                   | Prognosis                | Death, dyspnea                                                                                          | 45 ± 14                  | 20                               | NR | Mexico<br>(Americas)   | Upper<br>middle<br>income | 53  |
| Galassi<br>2021                    | Multicentre prospective<br>cohort study (hospitalized +<br>community)     | Incidence +<br>prognosis | Death, hospital<br>admission, O2                                                                        | Median 67<br>(IQR 59-77) | 307 (21<br>with<br>COVID-<br>19) | NR | Italy (European)       | High<br>income            | 122 |
| Giaime<br>2020                     | Single centre retrospective cohort study (hospitalized)                   | Incidence +<br>prognosis | Death, dyspnea, O2, respiratory failure                                                                 | 68 ± 16                  | 270 (24<br>with<br>COVID-<br>19) | NR | France<br>(European)   | High<br>income            | 21  |
| Goicoec<br>hea<br>2020             | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>prognosis | Death, fatigue, hospital<br>admission, ICU<br>admission, O2,<br>respiratory failure                     | 71 ± 12                  | 282 (36<br>with<br>COVID-<br>19) | NR | Spain<br>(European)    | High<br>income            | 29  |
| Goupil<br>2020                     | Single centre retrospective cohort study (hospitalized)                   | Incidence +<br>prognosis | Death, hospital<br>admission, ICU<br>admission                                                          | 76 (NR)                  | 205 (34<br>with<br>COVID-<br>19) | NR | Canada<br>(Americas)   | High<br>income            | 52  |
| Gubens<br>ek 2020                  | Single centre retrospective cohort study (hospitalized)                   | Prognosis                | Death, hospital<br>admission, hospital<br>discharge                                                     | 74 (range 74-<br>75)     | 3                                | NR | Slovenia<br>(European) | High<br>income            | NR  |

| Hamad<br>2020    | Single centre prospective<br>cohort study (unclear<br>setting)            | Incidence                | NR                                                       | NR                       | 650 (8<br>with<br>COVID-<br>19)            | NR | Qatar (Eastern<br>Mediterranean) | High<br>income            | 86  |
|------------------|---------------------------------------------------------------------------|--------------------------|----------------------------------------------------------|--------------------------|--------------------------------------------|----|----------------------------------|---------------------------|-----|
| Harrison<br>2021 | Multicentre case-control<br>study (hospitalized +<br>community)           | Prognosis                | Death, hospital admission                                | 61 ± 14                  | 865                                        | NR | USA (Americas)                   | High<br>income            | 30  |
| Hendra<br>2021   | Multicentre retrospective<br>cohort study (community)                     | Incidence +<br>prognosis | Death, hospital<br>admission, O2,<br>respiratory failure | 64 ± 15                  | 746 (164<br>with<br>COVID-<br>19)          | NR | UK (European)                    | High<br>income            | 45  |
| Hsu<br>2021      | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Death (including IRR),<br>hospital admission             | 65 ± 13                  | 7,948<br>(438 with<br>COVID-<br>19)        | NR | USA (Americas)                   | High<br>income            | 90  |
| Hu 2020          | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>prognosis | Death                                                    | Median 65<br>(IQR 59-72) | 129 (6<br>with<br>COVID-<br>19)            | NR | China (Western<br>Pacific)       | Upper<br>middle<br>income | NR  |
| Hu 2021          | Multicentre retrospective<br>cohort study (community)                     | Prognosis                | Death                                                    | 62 ± 14                  | 88                                         | NR | China (Western<br>Pacific)       | Upper<br>middle<br>income | 80  |
| Ibernon<br>2021  | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Death, hospital<br>admission                             | NR                       | 243 (23<br>with<br>COVID-<br>19)           | NR | Spain<br>(European)              | High<br>income            | 61  |
| Islam<br>2021    | Single centre retrospective<br>cohort study (hospitalized)                | Incidence +<br>prognosis | Death, dyspnea,<br>fatigue, ICU admission                | 62 ± 13                  | 184 (34<br>with<br>COVID-<br>19)           | NR | Turkey<br>(European)             | Upper<br>middle<br>income | NR  |
| Izurieta<br>2021 | Multicentre retrospective<br>cohort study (hospitalized)                  | Incidence +<br>prognosis | Death, ICU admission,<br>O2                              | 65 (NR)                  | 292,302<br>(4,503<br>with<br>COVID-<br>19) | NR | USA (Americas)                   | High<br>income            | 38  |
| Jiang<br>2021    | Multicentre retrospective<br>cohort study (hospitalized)                  | Incidence +<br>prognosis | Death, dyspnea,<br>fatigue, recovery,                    | Median 55<br>(IQR 48-66) | 818 (8<br>with                             | NR | China (Western<br>Pacific)       | Upper<br>middle<br>income | 113 |

|                            |                                                                           |                          | respiratory failure,<br>stroke                                                                   |                          | COVID-<br>19)                       |    |                            |                           |     |
|----------------------------|---------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------|----|----------------------------|---------------------------|-----|
| Jung<br>2020               | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Prognosis                | Death, dyspnea,<br>hospital discharge,<br>ICU admission, O2,<br>recovery, respiratory<br>failure | 64 ± 15                  | 14                                  | NR | Korea (Western<br>Pacific) | High<br>income            | 90  |
| Keller<br>2020             | Multicentre prospective<br>cohort study (hospitalized +<br>community)     | Incidence +<br>prognosis | Death, hospital<br>admission, hospital<br>discharge, O2,<br>recovery, respiratory<br>failure     | Median 77<br>(IQR 68-83) | 1,346<br>(123 with<br>COVID-<br>19) | NR | France<br>(European)       | High<br>income            | 55  |
| Kikuchi<br>2020            | Multicentre retrospective<br>cohort study (community)                     | Prognosis                | Death, O2                                                                                        | NR                       | 99                                  | NR | Japan (Western<br>Pacific) | High<br>income            | 50  |
| Kim<br>2020 <sup>189</sup> | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Prognosis                | Death                                                                                            | NR                       | 62                                  | NR | Korea (Western<br>Pacific) | High<br>income            | NR  |
| Kular<br>2020              | Multicentre prospective<br>cohort study (hospitalized +<br>community)     | Incidence +<br>prognosis | Death, hospital<br>admission, respiratory<br>failure                                             | 66 (NR)                  | 1737 (224<br>with<br>COVID-<br>19)  | NR | UK (European)              | High<br>income            | 77  |
| La Milia<br>2020           | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis                | Death, hospital<br>admission, hospital<br>discharge, O2,<br>respiratory failure                  | NR                       | 209                                 | NR | Italy (European)           | High<br>income            | 17  |
| Lacson<br>2020             | Single centre cohort study<br>(hospitalized + community)                  | Prognosis                | Death, hospital<br>admission, hospital<br>discharge                                              | NR                       | 422                                 | NR | USA (Americas)             | High<br>income            | 103 |
| Lano<br>2020               | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Death, hospital<br>admission, ICU<br>admission, O2                                               | Median 74<br>(IQR 64-81) | 2336 (122<br>with<br>COVID-<br>19)  | NR | France<br>(European)       | High<br>income            | 65  |
| Li<br>2020 <sup>202</sup>  | Multicentre retrospective<br>cohort study (community)                     | Incidence +<br>prognosis | Death                                                                                            | NR                       | 6,621<br>(116 with<br>COVID-<br>19) | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | 61  |

| Luo<br>2020                     | Single centre retrospective cohort study (hospitalized)                   | Prognosis                | Death, dyspnea,<br>hospital discharge                                  | Median 61<br>(IQR 54-78) | 16                                   | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | 61 |
|---------------------------------|---------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------|--------------------------|--------------------------------------|----|----------------------------|---------------------------|----|
| Ma<br>2020                      | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>prognosis | Fatigue, ICU<br>admission                                              | Median 71<br>(IQR 54-76) | 230 (15<br>with<br>COVID-<br>19)     | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | 59 |
| Maldona<br>do 2020              | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>prognosis | Death, dyspnea,<br>hospital admission,<br>ICU admission, O2            | 62 ± 19                  | 79 (12<br>with<br>COVID-<br>19)      | NR | Spain<br>(European)        | High<br>income            | 67 |
| Manes<br>2020                   | Multicentre cohort study<br>(hospitalized + community)                    | Incidence +<br>prognosis | Hospital admission                                                     | 75 (range 64-<br>85)     | 83 (13<br>with<br>COVID-<br>19)      | NR | Italy (European)           | High<br>income            | 31 |
| Manley<br>2020                  | Multicentre retrospective<br>cohort study (community)                     | Incidence                | NR                                                                     | NR                       | 15,602<br>(351 with<br>COVID-<br>19) | NR | USA (Americas)             | High<br>income            | 75 |
| Mazzole<br>ni 2020              | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>prognosis | Death, hospital<br>admission, ICU<br>admission, respiratory<br>failure | Median 75<br>(IQR 65-83) | 62 (40<br>with<br>COVID-<br>19)      | NR | Belgium<br>(European)      | High<br>income            | 40 |
| McCaffe<br>rty 2020             | Multicentre cohort study<br>(community)                                   | Incidence +<br>prognosis | Death                                                                  | NR                       | 1253 (197<br>with<br>COVID-<br>19)   | NR | UK (European)              | High<br>income            | 29 |
| Medjeral<br>-<br>Thomas<br>2020 | Single centre cohort study<br>(hospitalized + community)                  | Prognosis                | Death, dyspnea,<br>hospital admission                                  | Median 65<br>(IQR 54-74) | 106                                  | NR | UK (European)              | High<br>income            | 28 |
| Michel<br>2020                  | Single centre cohort study (community)                                    | Incidence                | NR                                                                     | NR                       | 55 (2 with<br>COVID-<br>19)          | NR | France<br>(European)       | High<br>income            | NR |
| Min<br>2021                     | Single centre prospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Death, dyspnea,<br>fatigue                                             | Median 63<br>(IQR 57-72) | 627 (74<br>with<br>COVID-<br>19)     | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | NR |

| Monk<br>2020                         | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis                | Death                                                        | 67 (NR)                  | 18                                        | NR | USA (Americas)                  | High<br>income            | NR  |
|--------------------------------------|---------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------|--------------------------|-------------------------------------------|----|---------------------------------|---------------------------|-----|
| Mutinelli<br>-<br>Szyman<br>ski 2021 | Multicentre prospective<br>cohort study (hospitalized +<br>community)     | Prognosis                | Death, dyspnea,<br>fatigue, ICU<br>admission, recovery       | 63 ± 17                  | 62                                        | NR | France<br>(European)            | High<br>income            | 48  |
| Navarret<br>e 2020                   | Multicentre cohort study (hospitalized)                                   | Prognosis                | Death, ICU admission, respiratory failure                    | 63 (NR)                  | 43                                        | NR | USA (Americas)                  | High<br>income            | 87  |
| Ng 2020                              | Multicentre retrospective<br>cohort study (hospitalized)                  | Prognosis                | Death, respiratory failure                                   | Median 66<br>(IQR 55-75) | 419                                       | NR | USA (Americas)                  | High<br>income            | 88  |
| Noce<br>2020                         | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>prognosis | Death, hospital<br>admission, ICU<br>admission               | 54 (NR)                  | 269 (42<br>with<br>COVID-<br>19)          | NR | USA (Americas)                  | High<br>income            | 90  |
| Ossareh<br>2020                      | Single centre cohort study<br>(hospitalized + community)                  | Incidence +<br>prognosis | Death                                                        | 59 ± 17                  | 178 (27<br>with<br>COVID-<br>19)          | NR | Iran (Eastern<br>Mediterranean) | Upper<br>middle<br>income | 182 |
| Pena<br>2020                         | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Prognosis                | Death, hospital<br>admission                                 | NR                       | 9,378                                     | NR | Mexico<br>(Americas)            | Upper<br>middle<br>income | 260 |
| Petrule<br>wicz<br>2020              | Multicentre prospective<br>cohort study (hospitalized +<br>community)     | Incidence +<br>prognosis | Death, dyspnea,<br>fatigue, recovery,<br>respiratory failure | 66 ± 12                  | 3,286 (23<br>with<br>COVID-<br>19)        | NR | Poland<br>(European)            | High<br>income            | 16  |
| Pio-<br>Abreu<br>2020                | Multicentre retrospective<br>cohort study (community)                     | Incidence +<br>prognosis | Death                                                        | NR                       | 37,852<br>(1,291<br>with<br>COVID-<br>19) | NR | Brazil<br>(Americas)            | Upper<br>middle<br>income | 126 |
| Pizarro-<br>Sanche<br>z 2021         | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>prognosis | Death, dyspnea,<br>hospital admission                        | 73 ± 12                  | 200 (38<br>with<br>COVID-<br>19)          | NR | Spain<br>(European)             | High<br>income            | NR  |
| Previti<br>2020                      | Multicentre cohort study<br>(hospitalized + community)                    | Incidence +<br>prognosis | Death                                                        | NR                       | 211 (8<br>with                            | NR | Italy (European)                | High<br>income            | 63  |

|                               |                                                                         |                          |                                                                                 |                                | COVID-<br>19)                       |    |                                                                 |                                       |     |
|-------------------------------|-------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------|--------------------------------|-------------------------------------|----|-----------------------------------------------------------------|---------------------------------------|-----|
| Quiroga<br>2021               | Single centre prospective<br>cohort study (hospitalized +<br>community) | Prognosis                | Death, fatigue, hospital admission, O2                                          | 72 ± 15                        | 16                                  | NR | Spain<br>(European)                                             | High<br>income                        | 45  |
| Rastad<br>2021                | Single centre retrospective cohort study (hospitalized)                 | Prognosis                | Death, respiratory failure                                                      | 63 ± 15                        | 74                                  | NR | Iran (Eastern<br>Mediterranean)                                 | Upper<br>middle<br>income             | 67  |
| Rincon<br>2020                | Single centre prospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>prognosis | Death, dyspnea,<br>fatigue, hospital<br>admission, ICU<br>admission             | 74 ± 13                        | 192 (36<br>with<br>COVID-<br>19)    | NR | Spain<br>(European)                                             | High<br>income                        | 21  |
| Rodrigo<br>2020               | Multicentre prospective<br>cohort study (community)                     | Incidence                | NR                                                                              | NR                             | 226 (1<br>with<br>COVID-<br>19)     | NR | Spain<br>(European)                                             | High<br>income                        | NR  |
| Roper<br>2020                 | Single centre prospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>prognosis | Death, hospital<br>admission                                                    | Median 62<br>(range 23-<br>85) | 670 (76<br>with<br>COVID-<br>19)    | NR | UK (European)                                                   | High<br>income                        | 37  |
| Ruiz<br>2020                  | Multicentre cohort study<br>(community)                                 | Incidence                | NR                                                                              | NR                             | 610 (115<br>with<br>COVID-<br>19)   | NR | Multinational<br>(European,<br>Americas,<br>South-East<br>Asia) | High and<br>upper<br>middle<br>income | 52  |
| Sachde<br>va 2020             | Single centre retrospective cohort study (hospitalized)                 | Prognosis                | Death, dyspnea,<br>hospital discharge,<br>ICU admission,<br>respiratory failure | Median 54<br>(NR)              | 11                                  | NR | USA (Americas)                                                  | High<br>income                        | 107 |
| Sankara<br>subbaiy<br>an 2020 | Multicentre cohort study<br>(hospitalized)                              | Incidence +<br>prognosis | Death, hospital<br>discharge                                                    | 55 ± 15                        | 18,402<br>(39 with<br>COVID-<br>19) | NR | India (South-<br>East Asia)                                     | Lower<br>middle<br>income             | 67  |
| Seidel<br>2020                | Multicentre retrospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>prognosis | Death, hospital<br>admission, ICU<br>admission                                  | Median 76<br>(IQR 69-83)       | 755 (56<br>with<br>COVID-<br>19)    | NR | Germany<br>(European)                                           | High<br>income                        | 90  |

| Shaikh<br>2020       | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>prognosis | Death                                                                                                      | NR                             | 85 (22<br>with<br>COVID-<br>19)      | NR | USA (Americas)             | High<br>income            | NR  |
|----------------------|---------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------|----|----------------------------|---------------------------|-----|
| Silberzw<br>eig 2020 | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Death                                                                                                      | NR                             | 1,559<br>(241 with<br>COVID-<br>19)  | NR | USA (Americas)             | High<br>income            | 74  |
| Sim<br>2021          | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Death, hospital<br>admission                                                                               | Median 66<br>(IQR 52-74)       | 7,533<br>(133 with<br>COVID-<br>19)  | NR | USA (Americas)             | High<br>income            | 122 |
| Sipahi<br>2021       | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis                | Death, dyspnea,<br>hospital discharge                                                                      | Median 67<br>(range 35-<br>91) | 23                                   | NR | Turkey<br>(European)       | Upper<br>middle<br>income | 40  |
| Sosa<br>2021         | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Death, dyspnea,<br>hospital admission,<br>hospital discharge,<br>ICU admission, O2,<br>respiratory failure | 51 ± 15                        | 3,201<br>(325 with<br>COVID-<br>19)  | NR | Guatemala<br>(Americas)    | Lower<br>middle<br>income | 120 |
| Stefan<br>2021       | Single centre retrospective cohort study (hospitalized)                   | Prognosis                | Death, dyspnea,<br>fatigue, hospital<br>discharge, respiratory<br>failure, stroke                          | Median 64<br>(IQR 55-71)       | 37                                   | NR | Romania<br>(European)      | High<br>income            | 60  |
| Su 2020              | Single centre retrospective cohort study (community)                      | Incidence +<br>prognosis | Death                                                                                                      | NR                             | 230 (37<br>with<br>COVID-<br>19)     | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | NR  |
| Taji<br>2021         | Multicentre prospective<br>cohort study (hospitalized +<br>community)     | Incidence +<br>prognosis | Death, ICU admission, respiratory failure                                                                  | NR                             | 12,501<br>(187 with<br>COVID-<br>19) | NR | Canada<br>(Americas)       | High<br>income            | 162 |
| Tang<br>2020         | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Death, dyspnea                                                                                             | NR                             | 1,048 (52<br>with<br>COVID-<br>19)   | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | 122 |

| Tayebi<br>Khosros<br>hahi<br>2021 | Multicentre retrospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>prognosis | Death                                                                                           | Median 64<br>(range 22-<br>83) | 670 (44<br>with<br>COVID-<br>19) | NR | Iran (Eastern<br>Mediterranean) | Upper<br>middle<br>income | NR |
|-----------------------------------|-------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------|----|---------------------------------|---------------------------|----|
| Tian<br>2021                      | Single centre retrospective cohort study (hospitalized)                 | Prognosis                | Death, dyspnea,<br>fatigue, hospital<br>discharge                                               | Median 62<br>(range 23-<br>89) | 49                               | NR | China (Western<br>Pacific)      | Upper<br>middle<br>income | 49 |
| Torres<br>Ortiz<br>2020           | Single centre retrospective cohort study (hospitalized)                 | Prognosis                | Death, ICU admission                                                                            | Median 64<br>(range 38-<br>90) | 49                               | NR | USA (Americas)                  | High<br>income            | 49 |
| Tortone<br>se 2020                | Single centre retrospective<br>cohort study (hospitalized)              | Prognosis                | Death, dyspnea,<br>hospital discharge,<br>ICU admission, O2,<br>respiratory failure             | Median 61<br>(IQR 52-73)       | 44                               | NR | France<br>(European)            | High<br>income            | 32 |
| Trivedi<br>2020                   | Multicentre retrospective<br>cohort study (hospitalized)                | Prognosis                | Death, hospital<br>discharge                                                                    | Median 48<br>(range 20-<br>77) | 37                               | NR | India (South-<br>East Asia)     | Lower<br>middle<br>income | 29 |
| Turgutal<br>p 2021                | Multicentre retrospective<br>cohort study (hospitalized)                | Prognosis                | Death, dyspnea,<br>fatigue, ICU<br>admission, respiratory<br>failure                            | Median 63<br>(IQR 53-71)       | 567                              | NR | Turkey<br>(European)            | Upper<br>middle<br>income | 46 |
| Valeri<br>2020                    | Single centre retrospective cohort study (hospitalized)                 | Prognosis                | Death, dyspnea,<br>fatigue, hospital<br>discharge, ICU<br>admission, O2,<br>respiratory failure | Median 63<br>(IQR 56-78)       | 59                               | NR | USA (Americas)                  | High<br>income            | 52 |
| Wang<br>2020 <sup>327</sup>       | Single centre cohort study<br>(hospitalized + community)                | Incidence +<br>prognosis | Death                                                                                           | NR                             | 230 (37<br>with<br>COVID-<br>19) | NR | China (Western<br>Pacific)      | Upper<br>middle<br>income | 35 |
| Wang<br>2020a <sup>32</sup><br>8  | Single centre cohort study<br>(hospitalized + community)                | Incidence +<br>prognosis | Death, fatigue, ICU<br>admission                                                                | Median 61<br>(NR)              | 201 (5<br>with<br>COVID-<br>19)  | NR | China (Western<br>Pacific)      | Upper<br>middle<br>income | NR |
| Wang<br>2020b <sup>32</sup><br>9  | Single centre cohort study<br>(hospitalized + community)                | Incidence +<br>prognosis | Death, dyspnea,<br>hospital discharge, O2,<br>respiratory failure                               | Median 59<br>(IQR 47-67)       | 202 (7<br>with<br>COVID-<br>19)  | NR | China (Western<br>Pacific)      | Upper<br>middle<br>income | 86 |

| Wang<br>2020c <sup>330</sup> | Single centre cohort study<br>(hospitalized + community)                  | Incidence +<br>prognosis | Dyspnea                                                                                                    | NR                             | 350 (26<br>with<br>COVID-<br>19)    | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | 37 |
|------------------------------|---------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------|----|----------------------------|---------------------------|----|
| Wu<br>2020                   | Single centre retrospective cohort study (hospitalized)                   | Prognosis                | Death, dyspnea,<br>fatigue, hospital<br>discharge, ICU<br>admission, O2,<br>respiratory failure            | Median 62<br>(IQR 54-71)       | 49                                  | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | 50 |
| Xiong<br>2020                | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Death, dyspnea,<br>fatigue, respiratory<br>failure, stroke                                                 | 63 ± 13                        | 7,154<br>(154 with<br>COVID-<br>19) | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | 70 |
| Xu 2020                      | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Death, dyspnea, ICU<br>admission, respiratory<br>failure                                                   | 60 (NR)                        | 1,542 (5<br>with<br>COVID-<br>19)   | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | NR |
| Yau<br>2020                  | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>prognosis | Hospital admission,<br>ICU admission, O2                                                                   | Median 66<br>(IQR 63-72)       | 237 (11<br>with<br>COVID-<br>19)    | NR | Canada<br>(Americas)       | High<br>income            | 30 |
| Zapata<br>2020               | Single centre retrospective cohort study (hospitalized)                   | Prognosis                | Death, dyspnea,<br>hospital discharge,<br>respiratory failure                                              | NR                             | 29                                  | NR | USA (Americas)             | High<br>income            | 58 |
| Zeng<br>2021                 | Single centre retrospective cohort study (hospitalized)                   | Incidence +<br>prognosis | Death (including IRR),<br>dyspnea, fatigue                                                                 | Median 63<br>(IQR 44-65)       | 695 (36<br>with<br>COVID-<br>19)    | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | 48 |
| Ziehr<br>2020                | Multicentre retrospective<br>cohort study (hospitalized)                  | Prognosis                | Death, dyspnea,<br>fatigue, ICU<br>admission, respiratory<br>failure                                       | Median 58<br>(range 23-<br>87) | 66                                  | NR | USA (Americas)             | High<br>income            | 34 |
| Zou<br>2020                  | Single centre retrospective cohort study (hospitalized)                   | Incidence +<br>prognosis | Death, dyspnea,<br>fatigue, hospital<br>admission, ICU<br>admission, O2,<br>respiratory failure,<br>sepsis | Median 65<br>(IQR 57-72)       | 602 (66<br>with<br>COVID-<br>19)    | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | 85 |

| KTR                             |                                                                           |                          |                                                                                                                                                                |                                |                                     |    |                                 |                           |     |
|---------------------------------|---------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------|----|---------------------------------|---------------------------|-----|
| Abolgha<br>semi<br>2020         | Multicentre retrospective<br>cohort study<br>(hospitalized)               | Prognosis                | Acute dialysis, death,<br>dyspnea, hospital<br>discharge, ICU<br>admission, respiratory<br>failure                                                             | 49 (range 29-<br>64)           | 24                                  | NR | Iran (Eastern<br>Mediterranean) | Upper<br>middle<br>income | 62  |
| Akalin<br>2020                  | Single centre prospective<br>cohort study (hospitalized +<br>community)   | Prognosis                | Acute dialysis, death,<br>dyspnea, hospital<br>admission, hospital<br>discharge, O2,<br>respiratory failure                                                    | Median 60<br>(range 32-<br>77) | 36                                  | NR | USA (Americas)                  | High<br>income            | 21  |
| Akdur<br>2020                   | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Incidence                | NR                                                                                                                                                             | NR                             | 509 (1<br>with<br>COVID-<br>19)     | NR | Turkey<br>(European)            | Upper<br>middle<br>income | 61  |
| Al Azzi<br>2020                 | Single centre retrospective<br>cohort study<br>(hospitalized)             | Prognosis                | Acute dialysis, death,<br>ICU admission,<br>respiratory failure                                                                                                | NR                             | 75                                  | NR | USA (Americas)                  | High<br>income            | NR  |
| Alberici<br>2020a <sup>17</sup> | Single centre prospective cohort study (hospitalized)                     | Prognosis                | Acute dialysis, AKI,<br>death, dyspnea,<br>hospital discharge,<br>ICU admission, O2,<br>respiratory failure                                                    | Median 59<br>(IQR 51-64)       | 20                                  | 37 | Italy (European)                | High<br>income            | 7   |
| Azzi<br>2020                    | Single centre prospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Acute dialysis, death,<br>hospital admission,<br>respiratory failure,<br>sepsis, stroke                                                                        | NR                             | 1,475<br>(201 with<br>COVID-<br>19) | NR | USA (Americas)                  | High<br>income            | 140 |
| Bannerj<br>ee 2020              | Multicentre prospective<br>cohort study (hospitalized +<br>community)     | Incidence +<br>prognosis | Acute dialysis, AKI,<br>death, dyspnea, graft<br>loss, hospital<br>admission, hospital<br>discharge, ICU<br>admission, O2,<br>recovery, respiratory<br>failure | Median 54<br>(range 45-<br>69) | 2,082 (7<br>with<br>COVID-<br>19)   | 27 | UK (European)                   | High<br>income            | 42  |

| Benotm<br>ane<br>2020       | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis | Acute dialysis, AKI,<br>dyspnea, graft loss,<br>hospital admission,<br>hospital discharge,<br>ICU admission, O2,<br>respiratory failure | Median 64<br>(IQR 55-68) | 49                              | NR | France<br>(European)  | High<br>income | 58 |
|-----------------------------|---------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|----|-----------------------|----------------|----|
| Binda<br>2020               | Single centre cohort study<br>(hospitalized + community)                  | Incidence | NR                                                                                                                                      | 63 (NR)                  | 143 (1<br>with<br>COVID-<br>19) | 36 | Italy (European)      | High<br>income | 38 |
| Bosch<br>2020               | Single centre retrospective cohort study (hospitalized)                   | Prognosis | Acute dialysis, death,<br>hospital admission,<br>hospital discharge,<br>ICU admission, O2,<br>respiratory failure                       | Median 61<br>(NR)        | 3                               | NR | Germany<br>(European) | High<br>income | NR |
| Bossini<br>2020             | Multicentre cohort study<br>(hospitalized)                                | Prognosis | Acute dialysis, AKI,<br>death, fatigue, hospital<br>admission, hospital<br>discharge, ICU<br>admission, respiratory<br>failure, sepsis  | Median 60<br>(IQR 50-67) | 53                              | NR | Italy (European)      | High<br>income | 26 |
| Chaudhr<br>y 2020           | Multicentre retrospective<br>case-control study<br>(hospitalized)         | Prognosis | Acute dialysis, death,<br>dyspnea, fatigue,<br>hospital admission,<br>hospital discharge,<br>ICU admission,<br>respiratory failure      | Median 62<br>(IQR 52-70) | 38                              | NR | USA (Americas)        | High<br>income | 35 |
| Chavaro<br>t 2020           | Multicentre retrospective<br>case-control study<br>(hospitalized)         | Prognosis | AKI, death, dyspnea,<br>hospital discharge,<br>ICU admission, O2,<br>respiratory failure                                                | Median 65<br>(IQR 55-73) | 100                             | 43 | France<br>(European)  | High<br>income | 13 |
| Chen<br>2020d <sup>61</sup> | Single centre retrospective cohort study (hospitalized)                   | Prognosis | Acute dialysis, AKI,<br>death, dyspnea,<br>hospital discharge, O2,<br>respiratory failure,<br>stroke                                    | 56 ± 12                  | 30                              | 57 | USA (Americas)        | High<br>income | 13 |

| Cravedi<br>2020               | Multicentre retrospective<br>cohort study (hospitalized)                | Incidence +<br>prognosis | AKI, death, dyspnea,<br>ICU admission,<br>respiratory failure                                                         | Median 62<br>(IQR 52-69)       | 9,845<br>(144 with<br>COVID-<br>19) | NR | Multinational<br>(Americas,<br>European) | High<br>income            | 52  |
|-------------------------------|-------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------|----|------------------------------------------|---------------------------|-----|
| Crespo<br>2020 <sup>77</sup>  | Multicentre prospective<br>cohort study (hospitalized +<br>community)   | Prognosis                | Death, dyspnea,<br>hospital admission,<br>ICU admission,<br>recovery, respiratory<br>failure                          | Median 62<br>(IQR 52-71)       | 414                                 | NR | Spain<br>(European)                      | High<br>income            | 44  |
| Crespo<br>2020a <sup>78</sup> | Single centre prospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>prognosis | Acute dialysis, AKI,<br>death, dyspnea, ICU<br>admission, recovery,<br>respiratory failure                            | 74 ± 5                         | 803 (20<br>with<br>COVID-<br>19)    | NR | Spain<br>(European)                      | High<br>income            | 28  |
| Cucchia<br>ri 2020            | Single centre cohort study<br>(hospitalized + community)                | Prognosis                | Acute dialysis, AKI,<br>death, dyspnea,<br>hospital admission,<br>hospital discharge,<br>ICU admission                | Median 53<br>(IQR 46-68)       | 45                                  | NR | Spain<br>(European)                      | High<br>income            | 68  |
| Demir<br>2020                 | Multicentre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis                | AKI, death, dyspnea,<br>hospital admission,<br>ICU admission, O2,<br>respiratory failure                              | 45 ± 15                        | 40                                  | NR | Turkey<br>(European)                     | Upper<br>middle<br>income | 32  |
| Devress<br>e 2020             | Single centre prospective<br>cohort study (hospitalized +<br>community) | Prognosis                | AKI, death, dyspnea,<br>hospital admission,<br>hospital discharge,<br>ICU admission, O2,<br>respiratory failure       | Median 57<br>(IQR 41-73)       | 22                                  | 45 | Belgium<br>(European)                    | High<br>income            | 18  |
| Dhelr<br>2020                 | Single centre retrospective cohort study (hospitalized)                 | Incidence +<br>prognosis | Acute dialysis, AKI,<br>death, graft loss,<br>hospital discharge,<br>ICU admission,<br>respiratory failure,<br>sepsis | 48 ± 10                        | 380 (20<br>with<br>COVID-<br>19)    | NR | Turkey<br>(European)                     | Upper<br>middle<br>income | 135 |
| Elec<br>2021                  | Single centre retrospective cohort study (hospitalized)                 | Incidence +<br>prognosis | Acute dialysis, AKI,<br>death, hospital<br>discharge, ICU<br>admission, O2                                            | Median 52<br>(range 20-<br>72) | 1,467 (42<br>with<br>COVID-<br>19)  | 50 | Romania<br>(European)                    | High<br>income            | 193 |

| Elias<br>2020              | Single centre prospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Acute dialysis, AKI,<br>death, dyspnea,<br>hospital admission,<br>recovery, respiratory<br>failure                     | 56 ± 13                        | 1,216 (66<br>with<br>COVID-<br>19) | NR | France<br>(European)            | High<br>income            | 61  |
|----------------------------|---------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------|----|---------------------------------|---------------------------|-----|
| Felldin<br>2021            | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>prognosis | Death, hospital<br>admission, hospital<br>discharge, O2,<br>respiratory failure                                        | NR                             | 2,563 (31<br>with<br>COVID-<br>19) | NR | Sweden<br>(European)            | High<br>income            | 123 |
| Fernand<br>ez-Ruiz<br>2020 | Single centre cohort study<br>(hospitalized + community)                  | Prognosis                | Acute dialysis, AKI,<br>death, dyspnea,<br>hospital discharge, O2,<br>recovery, respiratory<br>failure, sepsis         | NR                             | 8                                  | NR | Spain<br>(European)             | High<br>income            | 18  |
| Gandolfi<br>ni 2020        | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis                | AKI, death                                                                                                             | 50 (NR)                        | 17                                 | NR | Italy (European)                | High<br>income            | 30  |
| Georger<br>y 2021          | Single centre retrospective cohort study (hospitalized)                   | Prognosis                | Death, ICU admission                                                                                                   | 63 (range 23-<br>88)           | 27                                 | 49 | Belgium<br>(European)           | High<br>income            | 21  |
| Ghaffari<br>2020           | Single centre cohort study<br>(hospitalized)                              | Incidence +<br>prognosis | Acute dialysis, AKI,<br>death, dyspnea, graft<br>loss, hospital<br>admission, ICU<br>admission, respiratory<br>failure | 48 ± 12                        | 2,493 (19<br>with<br>COVID-<br>19) | 50 | Iran (Eastern<br>Mediterranean) | Upper<br>middle<br>income | 24  |
| Gisondi<br>2020            | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Incidence                | NR                                                                                                                     | NR                             | 247 (1<br>with<br>COVID-<br>19)    | NR | Italy (European)                | High<br>income            | 19  |
| Hardest<br>y 2021          | Single centre case-control study (hospitalized)                           | Prognosis                | Acute dialysis, death,<br>O2, respiratory failure                                                                      | Median 55<br>(range 33-<br>68) | 11                                 | NR | USA (Americas)                  | High<br>income            | 79  |
| Hartzell<br>2020           | Single centre case-control<br>study (hospitalized +<br>community)         | Prognosis                | AKI, death, hospital<br>discharge, ICU<br>admission                                                                    | 55 ± 14                        | 18                                 | NR | USA (Americas)                  | High<br>income            | 48  |
| Husain<br>2020             | Single centre prospective<br>cohort study (hospitalized +<br>community)   | Prognosis                | Dyspnea, fatigue,<br>hospital admission,<br>recovery                                                                   | Median 49<br>(IQR 41-63)       | 41                                 | NR | USA (Americas)                  | High<br>income            | 19  |

| Hussain<br>2020                | Single centre retrospective<br>cohort study (unclear<br>setting)          | Prognosis                | Acute dialysis, AKI,<br>death, ICU admission,<br>respiratory failure                                                                                       | Median 61<br>(range 33-<br>84) | 25                               | NR | UK (European)               | High<br>income            | 52  |
|--------------------------------|---------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------|----|-----------------------------|---------------------------|-----|
| Jarrin<br>Tejada<br>2020       | Single centre retrospective cohort study (hospitalized)                   | Incidence +<br>prognosis | AKI, death, dyspnea,<br>fatigue, ICU<br>admission, O2,<br>respiratory failure                                                                              | Median 56<br>(IQR 47-66)       | 340 (25<br>with<br>COVID-<br>19) | NR | USA (Americas)              | High<br>income            | 62  |
| Katz-<br>Greenb<br>erg<br>2020 | Single centre cohort study<br>(hospitalized + community)                  | Prognosis                | Acute dialysis, AKI,<br>death, hospital<br>admission, respiratory<br>failure                                                                               | Median 54<br>(IQR 47-63)       | 20                               | NR | USA (Americas)              | High<br>income            | 25  |
| Khalid<br>2021                 | Single centre prospective<br>cohort study (hospitalized +<br>community)   | Prognosis                | Acute dialysis, death,<br>graft loss, hospital<br>admission, ICU<br>admission                                                                              | Median 57<br>(range 24-<br>69) | 13                               | NR | UK (European)               | High<br>income            | 31  |
| Kute<br>2020                   | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Prognosis                | Acute dialysis, AKI,<br>death, dyspnea,<br>fatigue, graft loss,<br>hospital admission,<br>hospital discharge,<br>ICU admission, O2,<br>respiratory failure | Median 43<br>(IQR 35-51)       | 250                              | NR | India (South-<br>East Asia) | Lower<br>middle<br>income | 177 |
| Lubetzk<br>y 2020              | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis                | Acute dialysis, AKI,<br>death, dyspnea, graft<br>loss, hospital<br>admission, hospital<br>discharge, O2,<br>respiratory failure                            | Median 57<br>(range 29-<br>83) | 54                               | NR | USA (Americas)              | High<br>income            | 37  |
| Lum<br>2020                    | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis                | Acute dialysis, AKI,<br>death, hospital<br>admission, ICU<br>admission, respiratory<br>failure,                                                            | 49 (NR)                        | 41                               | NR | USA (Americas)              | High<br>income            | 90  |
| Mahmo<br>ud 2020               | Single centre cohort study (hospitalized)                                 | Prognosis                | Acute dialysis, AKI,<br>death, ICU admission,<br>respiratory failure                                                                                       | NR                             | 23                               | NR | USA (Americas)              | High<br>income            | 48  |
| Marathi<br>2020                | Single centre retrospective cohort study (hospitalized)                   | Prognosis                | Acute dialysis, death, hospital discharge,                                                                                                                 | NR                             | 6                                | NR | USA (Americas)              | High<br>income            | 9   |

|                                    |                                                                           |           | ICU admission, O2, respiratory failure                                                                                                    |                                |    |    |                                 |                           |    |
|------------------------------------|---------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----|----|---------------------------------|---------------------------|----|
| Maritati<br>2020                   | Single centre retrospective<br>cohort study (hospitalized)                | Prognosis | Acute dialysis, AKI,<br>death, dyspnea,<br>fatigue, hospital<br>admission, hospital<br>discharge, O2,<br>recovery, respiratory<br>failure | 66 ± 10                        | 5  | NR | Italy (European)                | High<br>income            | NR |
| Mehta<br>2020                      | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis | Death, hospital<br>admission, hospital<br>discharge, recovery                                                                             | Median 59<br>(IQR 53-64)       | 35 | NR | USA (Americas)                  | High<br>income            | 28 |
| Merhi<br>2020                      | Single centre cohort study<br>(hospitalized + community)                  | Prognosis | Death, hospital admission                                                                                                                 | Median 54<br>(NR)              | 16 | NR | USA (Americas)                  | High<br>income            | 79 |
| Meziyer<br>h 2020                  | Single centre cohort study<br>(hospitalized)                              | Prognosis | AKI, death, dyspnea,<br>ICU admission,<br>respiratory failure                                                                             | Median 56<br>(IQR 49-72)       | 15 | 42 | Netherlands<br>(European)       | High<br>income            | 30 |
| Moham<br>ed<br>2021 <sup>230</sup> | Single centre cohort study<br>(hospitalized + community)                  | Prognosis | AKI, death, ICU<br>admission                                                                                                              | Median 57<br>(range 25-<br>72) | 28 | NR | UK (European)                   | High<br>income            | 51 |
| Molaei<br>2020                     | Single centre retrospective cohort study (hospitalized)                   | Prognosis | Death, ICU admission, respiratory failure                                                                                                 | 60 (range 46-<br>68)           | 10 | NR | Iran (Eastern<br>Mediterranean) | Upper<br>middle<br>income | 50 |
| Monfare<br>d 2020                  | Single centre retrospective<br>cohort study (hospitalized)                | Prognosis | AKI, death, dyspnea,<br>fatigue, hospital<br>discharge, O2,<br>respiratory failure                                                        | Median 52<br>(IQR 41-63)       | 22 | 60 | Iran (Eastern<br>Mediterranean) | Upper<br>middle<br>income | 60 |
| Montag<br>ud-<br>Marrahi<br>2020   | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis | AKI, death, hospital<br>admission, hospital<br>discharge, ICU<br>admission, respiratory<br>failure                                        | 57 ± 17                        | 33 | NR | Spain<br>(European)             | High<br>income            | NR |
| Nair<br>2020                       | Multicentre prospective<br>cohort study (hospitalized +<br>community)     | Prognosis | Acute dialysis, AKI,<br>death, dyspnea,<br>fatigue, hospital<br>admission, hospital<br>discharge, ICU                                     | Median 57<br>(IQR 47-67)       | 30 | NR | USA (Americas)                  | High<br>income            | 61 |

|                         |                                                                           |                          | admission, O2, respiratory failure                                                                                     |                                |                                      |    |                        |                           |     |
|-------------------------|---------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------|----|------------------------|---------------------------|-----|
| Ortiz<br>2020           | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Prognosis                | AKI, death, hospital<br>admission, ICU<br>admission                                                                    | NR                             | 33                                   | NR | USA (Americas)         | High<br>income            | 61  |
| Pascual<br>2020         | Multicentre prospective<br>cohort study (hospitalized)                    | Prognosis                | Death, dyspnea,<br>hospital admission,<br>ICU admission                                                                | NR                             | 24                                   | NR | Spain<br>(European)    | High<br>income            | 60  |
| Perez-<br>Saez<br>2020  | Multicentre prospective<br>cohort study (hospitalized)                    | Prognosis                | Acute dialysis, AKI,<br>death, dyspnea, ICU<br>admission, respiratory<br>failure                                       | 59 ± 12                        | 80                                   | NR | Spain<br>(European)    | High<br>income            | 25  |
| Pierrotti<br>2020       | Single centre retrospective cohort study (hospitalized)                   | Prognosis                | Acute dialysis, AKI,<br>death, ICU admission,<br>respiratory failure                                                   | Median 52<br>(range 17-<br>78) | 51                                   | 24 | Brazil<br>(Americas)   | Upper<br>middle<br>income | NR  |
| Santeus<br>anio<br>2021 | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>prognosis | Acute dialysis, AKI,<br>death, graft loss,<br>hospital admission,<br>hospital discharge, O2,<br>respiratory failure    | 54 ± 14                        | 2,126 (95<br>with<br>COVID-<br>19)   | 53 | USA (Americas)         | High<br>income            | 62  |
| Shrivast<br>ava<br>2021 | Single centre retrospective cohort study (hospitalized)                   | Prognosis                | Acute dialysis, AKI,<br>death, ICU admission,<br>respiratory failure                                                   | Median 62<br>(IQR 55-69)       | 39                                   | NR | USA (Americas)         | High<br>income            | 41  |
| Silva<br>2020           | Single centre retrospective cohort study (hospitalized)                   | Incidence +<br>prognosis | Death, dyspnea,<br>fatigue, hospital<br>admission, hospital<br>discharge, ICU<br>admission, recovery                   | Median 56<br>(range 35-<br>63) | 1,850 (5<br>with<br>COVID-<br>19)    | 48 | Portugal<br>(European) | High<br>income            | 20  |
| Thaunat<br>2020         | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Death                                                                                                                  | 57 ± 15                        | 42,812<br>(606 with<br>COVID-<br>19) | 53 | France<br>(European)   | High<br>income            | 93  |
| Varnell<br>2021         | Multicentre prospective<br>cohort study (hospitalized +<br>community)     | Incidence +<br>prognosis | Acute dialysis, AKI,<br>death, dyspnea, graft<br>loss, hospital<br>admission, ICU<br>admission, respiratory<br>failure | Median 15<br>(IQR 8-19)        | 2,732 (24<br>with<br>COVID-<br>19)   | NR | USA (Americas)         | High<br>income            | 151 |

| Vistoli<br>2020                   | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Death, hospital<br>admission, ICU<br>admission                                                                             | NR         | 261 (3<br>with<br>COVID-<br>19)     | NR | Italy (European)           | High<br>income            | 44  |
|-----------------------------------|---------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------|----|----------------------------|---------------------------|-----|
| Yi 2020                           | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Incidence +<br>prognosis | Hospital admission,<br>ICU admission                                                                                       | NR         | 64 (14<br>with<br>COVID-<br>19)     | NR | USA (Americas)             | High<br>income            | 113 |
| Zhang<br>2020a <sup>34</sup><br>5 | Single centre prospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | AKI, dyspnea, fatigue,<br>hospital discharge,<br>recovery                                                                  | 45 ± 11    | 743 (5<br>with<br>COVID-<br>19)     | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | 32  |
| Zhu<br>2020                       | Single centre retrospective cohort study (hospitalized)                   | Prognosis                | AKI, death, dyspnea,<br>fatigue, hospital<br>discharge, O2,<br>recovery, respiratory<br>failure                            | 45 (24-65) | 10                                  | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | 36  |
| KTR or S                          | PK                                                                        |                          |                                                                                                                            |            |                                     |    |                            |                           |     |
| Caillard<br>2020                  | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Prognosis                | Acute dialysis, AKI,<br>death, dyspnea, graft<br>loss, hospital<br>admission, ICU<br>admission, O2,<br>respiratory failure | NR         | 273                                 | NR | France<br>(European)       | High<br>income            | 58  |
| Fava<br>2020                      | Multicentre retrospective<br>cohort study (hospitalized)                  | Incidence +<br>prognosis | AKI, death, dyspnea,<br>hospital discharge,<br>ICU admission, O2,<br>respiratory failure                                   | 60 ± 12    | 7,092<br>(106 with<br>COVID-<br>19) | 48 | Spain<br>(European)        | High<br>income            | 15  |
| Mamod<br>e 2021                   | Multicentre retrospective cohort study (hospitalized)                     | Prognosis                | Acute dialysis, death,<br>fatigue, graft loss, ICU<br>admission, respiratory<br>failure                                    | 56 ± 13    | 121                                 | NR | UK (European)              | High<br>income            | 58  |
| Pereira<br>2020                   | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Prognosis                | Hospital admission                                                                                                         | NR         | 47                                  | NR | USA (Americas)             | High<br>income            | 20  |

| Sran<br>2020           | Multicentre retrospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Acute dialysis, AKI,<br>death, dyspnea,<br>fatigue, hospital<br>admission, ICU<br>admission | Median 58<br>(IQR 48-64)                                                                                | 2,848 (66<br>with<br>COVID-<br>19) | 39 | UK (European)                   | High<br>income            | 55 |
|------------------------|---------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------|----|---------------------------------|---------------------------|----|
| Virmani<br>2020        | Single centre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis                | Dyspnea, hospital admission                                                                 | 60 (NR)                                                                                                 | 20                                 | NR | USA (Americas)                  | High<br>income            | 31 |
| CKD wit                | hout KRT or <u>CKD G5D</u>                                                |                          |                                                                                             |                                                                                                         |                                    |    |                                 |                           |    |
| Abrisha<br>mi 2020     | Single centre cohort study (hospitalized)                                 | Prognosis                | Acute dialysis, death, hospital discharge                                                   | 61 ± 14                                                                                                 | 43                                 | NR | Iran (Eastern<br>Mediterranean) | Upper<br>middle<br>income | 54 |
| Altonen<br>2020        | Multicentre retrospective<br>cohort study<br>(hospitalized)               | Prognosis                | Death                                                                                       | NR                                                                                                      | 16                                 | NR | USA (Americas)                  | High<br>income            | 52 |
| Argenzi<br>ano<br>2020 | Single centre retrospective cohort study (hospitalized)                   | Prognosis                | Hospital admission,<br>ICU admission                                                        | NR                                                                                                      | 12                                 | NR | USA (Americas)                  | High<br>income            | 35 |
| Auld<br>2020           | Multicentre retrospective cohort study (hospitalized)                     | Prognosis                | Death                                                                                       | NR                                                                                                      | 58                                 | NR | USA (Americas)                  | High<br>income            | 42 |
| Dirim<br>2021          | Single centre case-control study (hospitalized)                           | Prognosis                | AKI, death, ICU<br>admission, O2,<br>respiratory failure                                    | Median 63<br>(IQR 50-74)                                                                                | 56                                 | NR | Turkey<br>(European)            | Upper<br>middle<br>income | 44 |
| Filardo<br>2020        | Single centre retrospective cohort study (hospitalized)                   | Prognosis                | Death, hospital<br>discharge, ICU<br>admission                                              | NR                                                                                                      | 32                                 | NR | USA (Americas)                  | High<br>income            | 31 |
| Flythe<br>2020         | Multicentre retrospective cohort study (hospitalized)                     | Prognosis                | Acute dialysis, death,<br>dyspnea, O2,<br>respiratory failure,<br>sepsis                    | CKD without<br>KRT: median<br>69 (IQR 60-<br>76) <u>CKD</u><br><u>G5D</u> :<br>median 65<br>(IQR 56-71) | 664                                | NR | USA (Americas)                  | High<br>income            | 28 |
| Fried<br>2020          | Multicentre retrospective cohort study (hospitalized)                     | Prognosis                | Respiratory failure                                                                         | NR                                                                                                      | 1854                               | NR | USA (Americas)                  | High<br>income            | 66 |
| Geriatric<br>Medicin   | Multicentre retrospective<br>cohort study (hospitalized)                  | Prognosis                | Death                                                                                       | NR                                                                                                      | 4,424                              | NR | Multinational (European,        | High,<br>upper            | NR |

| e<br>Researc<br>h<br>Collabor<br>ative<br>2021 |                                                                               |                          |                                                                      |                                                            |                                      |    | Eastern<br>Mediterranean,<br>Americas) | middle,<br>and low<br>income |     |
|------------------------------------------------|-------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------|----|----------------------------------------|------------------------------|-----|
| Gottlieb<br>2020                               | Multicentre retrospective cohort study (hospitalized)                         | Prognosis                | Hospital admission                                                   | NR                                                         | 504                                  | NR | USA (Americas)                         | High<br>income               | 110 |
| Gupta<br>2021 <sup>140</sup>                   | Multicentre retrospective cohort study (hospitalized)                         | Prognosis                | Death                                                                | NR                                                         | 134                                  | NR | USA (Americas)                         | High<br>income               | 210 |
| Jackson<br>2020                                | Multicentre retrospective<br>cohort study (hospitalized)                      | Prognosis                | Death, respiratory failure                                           | NR                                                         | 94                                   | NR | USA (Americas)                         | High<br>income               | 69  |
| Ji 2020                                        | Multicentre retrospective<br>case-control study<br>(hospitalized + community) | Incidence                | NR                                                                   | NR                                                         | 9,149 (72<br>with<br>COVID-<br>19)   | NR | Korea (Western<br>Pacific)             | High<br>income               | NR  |
| Kang<br>2020                                   | Multicentre retrospective<br>cohort study (hospitalized +<br>community)       | Prognosis                | Acute dialysis, MI, O2, respiratory failure                          | CKD without<br>KRT: $63 \pm 15$<br>CKD G5D:<br>$60 \pm 15$ | 253                                  | NR | Korea (Western<br>Pacific)             | High<br>income               | 24  |
| Muham<br>mad<br>2021                           | Single centre retrospective cohort study (hospitalized)                       | Prognosis                | Death                                                                | NR                                                         | 87                                   | NR | USA (Americas)                         | High<br>income               | 91  |
| Oetjens<br>2020                                | Multicentre retrospective<br>cohort study (hospitalized +<br>community)       | Incidence +<br>prognosis | Death, ICU admission, respiratory failure                            | NR                                                         | 81,255<br>(115 with<br>COVID-<br>19) | NR | USA (Americas)                         | High<br>income               | 74  |
| Orlando<br>2021                                | Multicentre case-control<br>(hospitalized + community)                        | Prognosis                | Death                                                                | NR                                                         | 67                                   | NR | Italy (European)                       | High<br>income               | NR  |
| Pakhch<br>anian<br>2021                        | Multicentre retrospective<br>cohort study (hospitalized +<br>community)       | Prognosis                | Acute dialysis, death,<br>hospital admission,<br>respiratory failure | NR                                                         | 9,383                                | NR | USA (Americas)                         | High<br>income               | 30  |
| Patel<br>2020                                  | Single centre retrospective cohort study (hospitalized)                       | Prognosis                | Respiratory failure                                                  | NR                                                         | 24                                   | NR | USA (Americas)                         | High<br>income               | 46  |
| Plumb<br>2020                                  | Multicentre retrospective cohort study (community)                            | Prognosis                | Death                                                                | Median 11<br>(IQR 8-12)                                    | 5                                    | NR | UK (European)                          | High<br>income               | 112 |
| Suleym<br>an 2020                              | Single centre retrospective cohort study (hospitalized)                       | Prognosis                | Hospital admission,<br>ICU admission                                 | NR                                                         | 208                                  | NR | USA (Americas)                         | High<br>income               | 30  |

| Van<br>Halem<br>2020 | Single centre retrospective cohort study (hospitalized)                       | Prognosis | Death, hospital<br>discharge          | NR                                                                                                      | 63  | NR | Belgium<br>(European)      | High<br>income            | 36  |
|----------------------|-------------------------------------------------------------------------------|-----------|---------------------------------------|---------------------------------------------------------------------------------------------------------|-----|----|----------------------------|---------------------------|-----|
| Vlachos<br>2021      | Single centre prospective cohort study (hospitalized)                         | Prognosis | ICU admission                         | NR                                                                                                      | 75  | NR | UK (European)              | High<br>income            | 36  |
| Wagner<br>2020       | Single centre retrospective cohort study (hospitalized)                       | Prognosis | Death                                 | NR                                                                                                      | 17  | NR | USA (Americas)             | High<br>income            | 30  |
| Yang<br>2020         | Multicentre retrospective cohort study (hospitalized)                         | Prognosis | Death                                 | CKD without<br>KRT: median<br>74 (IQR 65-<br>86) <u>CKD</u><br><u>G5D</u> :<br>median 58<br>(IQR 47-68) | 39  | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | 83  |
| Yu 2020              | Multicentre prospective<br>cohort study (hospitalized)                        | Prognosis | Hospital admission                    | NR                                                                                                      | 8   | NR | China (Western<br>Pacific) | Upper<br>middle<br>income | 26  |
| CKD with             | nout KRT, <u>CKD G5D</u> or KTF                                               | २         |                                       |                                                                                                         |     |    |                            |                           |     |
| Antoniu<br>s 2020    | Single centre retrospective<br>cohort study<br>(hospitalized)                 | Prognosis | Acute dialysis, death, recovery       | NR                                                                                                      | 37  | NR | UK (European)              | High<br>income            | NR  |
| Bhargav<br>a 2020    | Single centre retrospective cohort study (hospitalized)                       | Prognosis | Respiratory failure                   | NR                                                                                                      | 34  | NR | USA (Americas)             | High<br>income            | 31  |
| Chang<br>2020        | Multicentre retrospective<br>case-control study<br>(hospitalized + community) | Prognosis | Hospital admission                    | NR                                                                                                      | 141 | NR | USA (Americas)             | High<br>income            | 97  |
| Edler<br>2020        | Single centre cohort study (hospitalized)                                     | Prognosis | Death                                 | NR                                                                                                      | 26  | NR | Germany<br>(European)      | High<br>income            | 29  |
| Fominsk<br>iy 2020   | Single centre retrospective cohort study (hospitalized)                       | Prognosis | Acute dialysis, AKI,<br>ICU admission | NR                                                                                                      | 6   | NR | Italy (European)           | High<br>income            | 55  |
| Gaspari<br>ni 2020   | Multicentre retrospective<br>cohort study (hospitalized<br>in ICU)            | Prognosis | Acute dialysis, death                 | CKD without<br>KRT: median<br>60 (IQR 54-<br>66) <u>CKD</u>                                             | 48  | NR | UK (European)              | High<br>income            | 144 |

|                              |                                                                         |                          |                                                                             | <u>G5D</u> :<br>median 60<br>(IQR 57-68)       |                                     |    |                                                             |                                       |     |
|------------------------------|-------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------|------------------------------------------------|-------------------------------------|----|-------------------------------------------------------------|---------------------------------------|-----|
| Melgosa<br>2020              | Multicentre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis                | AKI                                                                         | Median 12<br>(range 1<br>month to 17<br>years) | 16                                  | NR | Spain<br>(European)                                         | High<br>income                        | 46  |
| Ozturk<br>2020               | Multicentre retrospective cohort study (hospitalized)                   | Prognosis                | Death, hospital<br>discharge, ICU<br>admission, respiratory<br>failure      | NR                                             | 760                                 | NR | Turkey<br>(European)                                        | Upper<br>middle<br>income             | 20  |
| Ozturk<br>2021               | Multicentre retrospective<br>cohort study (hospitalized)                | Prognosis                | AKI, death, hospital<br>discharge, ICU<br>admission, respiratory<br>failure | NR                                             | 304                                 | NR | Turkey<br>(European)                                        | Upper<br>middle<br>income             | 40  |
| CKD with                     | hout KRT or KTR                                                         |                          |                                                                             |                                                |                                     |    |                                                             |                                       |     |
| Gupta<br>2021a <sup>14</sup> | Multicentre retrospective<br>cohort study (hospitalized<br>in ICU)      | Prognosis                | Acute dialysis, AKI                                                         | NR                                             | 2,119                               | NR | USA (Americas)                                              | High<br>income                        | 28  |
| Marlais<br>2020              | Multicentre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis                | Death, O2                                                                   | Median 13<br>(NR)                              | 113                                 | NR | Multinational<br>(European and<br>Eastern<br>Mediterranean) | High and<br>upper<br>middle<br>income | 113 |
| CKD G                        | <u>5D</u> or KTR                                                        |                          |                                                                             |                                                |                                     |    |                                                             |                                       |     |
| Arenas<br>2020               | Cohort study<br>(hospitalized + community)                              | Incidence                | NR                                                                          | NR                                             | 1,023 (34<br>with<br>COVID-<br>19)  | NR | Spain<br>(European)                                         | High<br>income                        | NR  |
| Bell<br>2020                 | Multicentre retrospective<br>cohort study (hospitalized +<br>community) | Incidence                | NR                                                                          | NR                                             | 5,461<br>(110 with<br>COVID-<br>19) | NR | UK (European)                                               | High<br>income                        | 92  |
| Clarke<br>2021               | Single centre cohort study<br>(community)                               | Incidence +<br>prognosis | Death                                                                       | NR                                             | 1,433<br>(271 with<br>COVID-<br>19) | NR | UK (European)                                               | High<br>income                        | 68  |

| Corcillo<br>2020            | Single centre cohort study<br>(hospitalized)                            | Prognosis                | Death, ICU admission, respiratory failure                                                                                       | <u>CKD G5D</u> :<br>median 66<br>(range 23-<br>91)<br>KTR: median<br>58 (range 35-<br>82) | 39                                  | 38 (KTR) | UK (European)               | High<br>income                        | 61    |
|-----------------------------|-------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------|----------|-----------------------------|---------------------------------------|-------|
| Craig-<br>Schapir<br>o 2020 | Multicentre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis                | Acute dialysis, AKI,<br>death, dyspnea, graft<br>loss, hospital<br>admission, hospital<br>discharge, O2,<br>respiratory failure | <u>CKD G5D</u> :<br>median 60<br>(range 38-<br>86)<br>KTR: median<br>57 (range 28-<br>83) | 136                                 | NR       | USA (Americas)              | High<br>income                        | 77-78 |
| De<br>Meester<br>2020       | Multicentre prospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Death (including IRR)                                                                                                           | NŔ                                                                                        | 7,919<br>(280 with<br>COVID-<br>19) | NR       | Belgium<br>(European)       | High<br>income                        | 85    |
| Hillbran<br>ds 2020         | Multicentre prospective<br>cohort study (hospitalized +<br>community)   | Prognosis                | Acute dialysis, death,<br>hospital admission,<br>ICU admission,<br>respiratory failure                                          | <u>CKD G5D</u> :<br>67 ± 14<br>KTR:<br>60 ± 13                                            | 1,073                               | NR       | Multinational<br>(European) | High and<br>upper<br>middle<br>income | 28    |
| Jager<br>2020               | Multicentre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis                | Death                                                                                                                           | <u>CKD G5D</u> :<br>median 72<br>(IQR 61-81)<br>KTR: median<br>61 (IQR 51-<br>69)         | 4,298                               | NR       | Multinational<br>(European) | High<br>income                        | 28    |
| Jones<br>2021               | Multicentre prospective<br>cohort study (hospitalized +<br>community)   | Incidence +<br>prognosis | Acute dialysis, death,<br>hospital admission,<br>ICU admission,<br>recovery, respiratory<br>failure                             | <u>CKD G5D</u> :<br>39 ± 10<br>KTR:<br>46 ± 18                                            | 669 (76<br>with<br>COVID-<br>19)    | NR       | South Africa<br>(Africa)    | Upper<br>middle<br>income             | 128   |
| Kumare<br>san<br>2020       | Single centre retrospective cohort study (hospitalized)                 | Incidence +<br>prognosis | Acute dialysis, AKI,<br>death, dyspnea, graft<br>loss, ICU admission,                                                           | Median 55<br>(range 38-<br>64)                                                            | 946 (40<br>with                     | NR       | India (South-<br>East Asia) | Lower<br>middle<br>income             | 245   |

|                                 |                                                                         |                          | O2, respiratory failure, sepsis                                    |                                                                                   | COVID-<br>19)                            |    |                      |                |     |
|---------------------------------|-------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------|----|----------------------|----------------|-----|
| Lapalu<br>2021                  | Multicentre retrospective<br>cohort study (hospitalized +<br>community) | Prognosis                | Death                                                              | <u>CKD G5D</u> :<br>median 72<br>(IQR 60-81)<br>KTR: median<br>60 (IQR 50-<br>69) | 3,209                                    | NR | France<br>(European) | High<br>income | 218 |
| Mangan<br>aro<br>2020           | Multicentre retrospective<br>cohort study (hospitalized +<br>community) | Incidence                | NR                                                                 | NŔ                                                                                | 5,793<br>(128 with<br>COVID-<br>19)      | NR | Italy (European)     | High<br>income | 35  |
| Quintali<br>ani 2020            | Multicentre retrospective<br>cohort study (community)                   | Incidence +<br>prognosis | Death                                                              | NR                                                                                | 60,441<br>(1368<br>with<br>COVID-<br>19) | NR | Italy (European)     | High<br>income | 39  |
| Sanche<br>z-<br>Alvarez<br>2020 | Multicentre retrospective<br>cohort study (hospitalized)                | Prognosis                | Death                                                              | <u>CKD G5D</u> :<br>71 ± 15<br>KTR:<br>60 ± 13                                    | 868                                      | NR | Spain<br>(European)  | High<br>income | 24  |
| Trujillo<br>2020                | Single centre retrospective<br>cohort study (hospitalized)              | Prognosis                | AKI, death, dyspnea,<br>hospital discharge,<br>respiratory failure | 63 ± 15                                                                           | 51                                       | NR | Spain<br>(European)  | High<br>income | 13  |

CKD: chronic kidney disease; eGFR: estimated glomerular filtration rate; WHO: World Health Organization; NR: not reported; KTR: kidney transplant recipient; SPK: simultaneous pancreas kidney transplant recipient; USA: United States of America; UK: United Kingdom; AKI: acute kidney injury; ICU: intensive care unit; MI: myocardial infarction; O2: need for supplemental oxygen; SD: standard deviation; IQR: interquartile range; IRR: incidence rate ratio comparing death in people with CKD and COVID-19 compared to people with CKD without COVID-19.

\* Age reported as mean and standard deviation, unless otherwise specified

\*Number of participants with CKD