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1. Propagation of second-harmonic fields in inhomogenous media  

The propagation of the optical field in a static inhomogeneous medium, U, satisfies the 

nonlinear wave equation (see Chapter 2 in Ref. 1) 
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where n  is the refractive index (RI) of the inhomogeneous medium at temporal frequency ω; c is 

the speed of light in vacuum; 0  is the magnetic permeability of free space. In Eq. S1, U consists 

of the incident, second-harmonic, as well as the scattered fields produced by the RI and second-

order susceptibility inhomogeneities. Here, ( );n r  is considered slowly varying at both 

fundamental and harmonic frequencies. For second-harmonic generation (SHG), the nonlinear 

induced polarization can be written as 
(2) 2

0= ( ) ( , )NLP U t  r r , where 0 is the permittivity of free 

space, (2)  is the medium’s second-order susceptibility, assumed to be instantaneous, as the 

frequencies are away from electronic resonances.  

Taking the Fourier transform with respect to t, Eq. S1 can be expressed as 
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where ⓥ  is a convolution with respect to ω. For simplicity, a function shares the same symbol 

as its Fourier transform, but with different arguments (i.e., ( ) ( )f t f  , where   denotes the 

Fourier transform operation). Invoking the undepleted pump approximation1, we consider that the 

generation of second-harmonic is only due to the contribution of the incident light at the 

fundamental frequency, Ui . For an incident field at frequency 0 , 0( , ) = ( ) ( )i iU U   −r r ,  the 

right side of Eq. S2 can be simplified to 
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where 2 02 / c = , is the wavenumber of the second-harmonic light. In Eq. S3, we used the 

convolution property of the  -function, namely,2  
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        − − = −ⓥ . Separating Eq. S3 into two equations, one for 

the fundamental at 0  and one for SHG at 02 , we obtain 
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The superscript 0 or 02  denotes a field’s frequency, and 1 0 / c =  is the wavenumber for the 

fundamental field. Eq. S4a describes the linear scattering process, where the total field ( 0U


) is 

the sum of the incident and linear scattering components. The nonlinear scattering process 

described in Eq. S4b can be further split into two equations, describing the unscattered SHG field, 

02

SHGU
 , and its scattered components, 02

sU
 , such that 0 0 02 2 2

SHG sU U U
  
= + ,  
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where 2n  is the spatially averaged refractive index, ( )2

2 0, 2n n =
r

r ; ( ) r  is the scattering 

potential, 2 2

0 2( ) = ( ,2 )n n  −r r . Similarly to the linear scattering problem3-5, Eqs. S5a and S5b 

can be solved in the spatial frequency domain ( , )z⊥k , by applying the first-order Born 

approximation and selecting the forward-scattered field.  Under this approximation, the analytic 

expression of 02

SHGU
  and 02

sU
 can be written as  
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where ⊥k is the transverse spatial frequency, z indicates the axial translation, and 

( )
22

2 2 2n  ⊥= − k . Under the first-order Born approximation, the refractive index has weak 

spatial fluctuations relative to the mean at the second harmonic frequency, 

 2 0 2( ) 2 ( ,2 )n n n  −r r , meaning that 0 2( , 2 )n n −r  is very small for biological specimens 

(typically 0.05  6). Thus, in the spatial domain, the convolution in Eq. S6b takes the form   
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Equation S7 shows that the magnitude of 02

sU
  is small compared to that of 02

SHGU
 , which suggests 

the effect of scattering of the SHG signal can be neglected for single scattering samples, i.e., when 

the thickness of the specimen is below the transport mean free path. In addition, for an imaging 

system, the direction of the propagating field is limited by the system’s pupil function. Including 

this factor, the SHG field reaching the image plane becomes  
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where ( )oA ⊥k  is the aperture stop of the imaging optics, i.e., the objective.  

For an incident monochromatic plane wave, the fundamental field can be expressed as   

 ( ) ( ) ( )0

1( , )i z i i i zU k A k
   ⊥ ⊥ ⊥ ⊥= − −k k k k , [S9] 

where ( )i iA ⊥k  is the illumination amplitude at transverse spatial frequency i⊥k , governed by the 

condenser aperture, ( )
22

1 1 1n  ⊥= − k , and ( )2

1 0,n n =
r

r . Plugging the incident field (Eq. 

S9) into Eq. S6a, the resulting SHG field collected by the objective can be expressed as  
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Equation S10 implicitly reveals the phase-matching condition in inhomogeneous objects under 

non-collinear excitation. It is insightful to write (2)  in Eq. S10 as  
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where ' ''i i⊥ ⊥ ⊥ ⊥ = − −k k k k  and 2 1 1' ''    = − −  indicate the transverse and longitudinal 

momentum mismatch, respectively. The result of the integral in Eq. S11 dictates the output of the 

SHG signal, 02

SHG ( , )U z


⊥k . For a fixed pair of 'i⊥k  and ''i⊥k , if 0  (perfect phase matching), 

we have  
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Eq. S12 indicates that the fields emerging at each axial position z add up in phase (the complex 

exponential vanished), favoring SHG generation. At the same time, the particular ⊥k  at which 

(2)  is evaluated also affects the result: we can imagine particular media for which (2)( ) ⊥k  is 

very small or even vanishes at some particular values of ⊥k , even though axially the waves are 

matched, 0 . The ⊥k dependence of our case brings in some complexity and richness to the 

problem: axial-phase matching does not guarantee maximum SHG signal for an object with spatial 

variation in (2) . On the other hand, the diversity of ' , ''i i⊥ ⊥k k  from the open condenser aperture, 

broadens the availability of wavevectors to create phase matching. Integrating over the entire 

condenser aperture is likely to always find phase matched waves. This is the reason why SHG with 

focused beams tends to always yield a signal. Finally, note that, for crystals assumed to be 

homogeneous, the integrand in Eq. S12 becomes constant and the phase matching integral yields 

a sinc function in z direction (Fourier transform of a rectangular function), which is typically found 

in nonlinear optics textbooks (see, e.g., Section 2.3 in Ref 7). 

In the next section, we derive a relationship between the nonlinear susceptibility and image.  

 



2. Effective transfer function  

 In HOT, by recording an interferogram created by the SHG and a reference field, we extract 

the complex (phase and amplitude) SHG signal. The SHG reference field is expressed as 

( )( , ) ri z

r rU z e
⊥ ⊥ ⊥= −k k k  with unit amplitude, and thus, the cross spatial-frequency spectral 

density can be calculated  
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Since the reference is just the SHG of the incident field, ' ''r i i⊥ ⊥ ⊥ +k k k , and 1 1' ''r   + . 

Therefore, the cross-spectral density in Eq. S10 can be simplified to   
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 Next, performing a Fourier transform with respect to z , ( ),W z⊥k  can be presented in 

( ), zk⊥k space as   
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It is easy to see that Eq. S16 takes the form of a linear system response. By integrating over 

all the possible angles of illumination, the effective transfer function can be derived as 
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where   represents the correlation operator; P  is the 3-dimensional pupil function, 

( ) ( ) ( )2
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⊥ ⊥= −k k ; iU  is a collection of plane waves originating from the 

condenser plane, ( ) ( ) ( )1,i z i zU k A k ⊥ ⊥= −k k . In Eq. S17, the convolution takes into account 

the second-harmonic scattering, while the correlation takes into account the phase mismatch of 

SHG in the forward scattering process. When a broadband incident light source is used, we obtain 

the general description of the system transfer function.   
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where ( )0W   is the cross spectral density of the second harmonic reference and SHG scattered 

fields.  

 

3. Complex SHG field retrieval  

The procedure for SHG field retrieval is illustrated in Fig. 1 in the main text. Each SHG image 

recorded at a distinct z0 is loaded into Matlab where a two-dimensional fast Fourier transform (2D-

FFT) is applied to transform the image to the transverse spatial frequency ( ⊥k ) domain. The 

product of the SHG field and the complex conjugate of the reference beam appears at a distinct 

sideband centered at the incident transverse k-vector of the reference field. The relevant sideband 

is isolated by applying a band-pass filter. The isolated sideband is re-centered on the origin of the 



2D transverse spatial frequency plane and brought back into the spatial domain through a 2D-IFFT 

(two-dimensional inverse fast Fourier transform). 

 

4. Tomographic imaging with low condenser NA 

To demonstrate the impact of illumination aperture on tomographic reconstruction, 4 

biological specimens were prepared and measured by HOT with a 0.15 NA condenser lens, while 

the rest of the hardware settings were identical. The reconstructed results are shown in Fig. S1. 

Featured by elongated structures in the axial direction, these renderings suffered from poor 

sectioning capabilities while maintaining a similar resolution in the transverse plane.   

 

5. Third-harmonic generation  

The theoretical framework described in section 1 can be applied to study higher-order 

nonlinear processes. Take third-harmonic generation as an example, where the three fundamental 

photons are converted into a single photon with triple the frequency of the fundamental.  In this 

situation, the nonlinear induced polarization density takes the form 
(3) 3

0= ( ) ( , )NLP U t  r r . 

Following the same derivation procedure presented in Section 1, the analytical expression of the 

scattered third-harmonic field can be written as     
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where 3  is the wavenumber of the second-harmonic field, 3 03 / c = , 3n  the spatially 

averaged refractive index at the second-harmonic frequency ( )2

3 0,3n n =
r

r , 3  is the 

longitudinal wavenumber (
22 2

3 3 3n  ⊥= − k ).  
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Figure S1. HOT imaging of various biological samples using a low NA condenser lens. a. 

Pumpkin Stems; b. Ox motor neuron; c. Mammalian tongue tissue; d. Rabbit tendon. The 

samples are measured by 0.9 NA/100× objective and 0.15 NA condenser. Each 3D volume is 

approximately 30× 30×30 μm3  

 

 




