Electronic Supplementary Material (ESI) for RSC Chemical Biology. This journal is © The Royal Society of Chemistry 2020

Supplementary Materials

Fig. S1 : Molecular structures

a) PD-1 molecule and the targeting peptide designing a FRET-PD-1 substrate (human type; 123-140)

b) The structure of FRET-PD-1 (mouse type; 123-140)

c) The structure of FRET-Amyloid beta (A β , human type; 26–33)

d) The structure of FRET-Tau (human type; 391-408)

e) Reaction profile for the cleavage of FRET-PD-1(mouse; 123-140) by H34

Fig. S2 : Mass spectroscopic analysis for the peaks detected in HPLC

The peak appearing at the retention time of 29.6 min was analyzed by mass spectroscopy.
a) Former peak; The divalent mass was detected at 619.81 *m*/2*z*, which was identified as a fragment of NH₂-I-K-E-S-L-R-A-E-K(DNP)-NH₂, from the FRET-PD1 substrate.
b) Latter peak; The divalent mass was detected at 586.28 *m*/2*z*, which was identified as a fragment of 7-MCA-G-A-I-S-L-A-P-K-A-Q-OH.

Fig. S3 :AA sequences for PD-1, rPD-1 and two fragments of PD-1

a) AA sequence of human PD-1

b) Recombinant of human PD-1 (by ENZO Ltd.; aa 25-167): Easily to be dimer or trimer

c) Large molecule of fragmented PD-1

d) Small molecule of fragmented PD-1

Fig. S4: Molecular modelling

a) **H34;** Asp¹ in H34; ball & stick in pink, Arg⁹⁶ in H34; ball & stick in light blue, CDR-3; wire in light blue

b) H34-Pro⁹⁵(+); Asp¹ in H34-Pro⁹⁵(+); ball & stick in red, Arg⁹⁶ in H34-Pro⁹⁵(+); ball & stick in blue, Pro⁹⁵ in H34-Pro⁹⁵(+); ball & stick in cyan, CDR-3; wire in light blue

The residue Asp¹ (ball & stick in pink) in H34 orients the structure more toward the inner side than in H34-Pro⁹⁵ (+) mutant (ball & stick in red). The distance between the carboxyl oxygen of Asp¹ and the guanidinium nitrogen of the Arg⁹⁶ residue (ball & stick in light blue) in the CDR3 is shorter (9.65 Å) than in the mutant (13.54 Å) (ball & stick in blue) by a factor of ~4 Å.

c) Location of Zn (II); Arg²⁴ in H34; ball & stick in light blue, Glu⁷⁰ in H34; ball & stick in green, Asp¹ and CDR-3 are the same colour as used in H34.

H34 has no histidine residues. Of the basic amino acids (Arg²⁴ Arg⁶¹, Arg⁹⁶ and Lys⁵⁰), Arg²⁴ is located next to Glu⁷⁰, where the distance between C α for Glu⁷⁰ and for Arg²⁴ is 5.286 Å and between Glu⁷⁰ (O) - Arg²⁴ (N)) is 2.88 Å. This may be the optimal position for Zn(II) to coordinate with the oxygen of Glu⁷⁰ and the nitrogen of Arg²⁴, in analogy to the situation in carboxypeptidase. d) Structure of carboxypeptidase (PDB ID: 1M4L)

Fig. S5

AA sequence for H34 antibody light chain (full size) and a zinc finger motif.

Fig. S6

Brief explanation for making a protein bank of human light chains

AA sequence and structure of human PD-1

(The sequence of 123-140 was selected for the targeting)

Structure of human PD-1 (PBD id: 2m2d)

Amino acid sequence of human PD-1 (288mer)

MQIPQAPWPVVWAVLQLGWRPGWFLDSPDRPWNPPTFSPALLVVTEGD NATFTCSFSNTSESFVLNWYRMSPSNQTDKLAAFPEDRSQPGQDCRFR VTQLPNGRDFHMSVVRARRNDSGTYLCGAISLAPKAQIKESLRAELRV TERRAE VPTAHPSPSPRSAGQFQTLV VGVVGGLLGSLVLLVWVLAV ICSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPP VPCVPEQTEYAT IVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCS WPL

7-MCA-GAISLAPKAQIKESLRAE-K(DNP)-NH₂ (123-140 ;18 mer)

The structure of FRET-PD-1 (mouse type; 123-140)

7-MCA-GAISLHPKAKIEESPGAE-K(DNP)-NH₂

Fig. S1b

The structure of FRET-Amyloid beta (Aβ, human type; 26-33)

7-MCA-SNKGAIIG-K(DNP)-rrr-NH₂

Fig. S1c

The structure of FRET-Tau (human type; 391-408)

³⁹¹ 7-MCA-EIVYKpSPVVSGNVpSPRHL-K(DNP)

Fig. S1e

Mass spectroscopic analysis for the peaks detected in HPLC

Fig. S2a & 2b

a) AA sequence of human PD-1 (full size):

MQIPQAPWPVVWAVLQLGWRPGWFLDSPDRPWNPPTFSPALLVVTEGDNATFTCSFSNTSESFVLNWYRMSPSNQTDKLAAFPEDRSQPGQDCRFRVTQLPNGRDFHMSVVRARRNDSGTYLCGAISLAPKAQIKESLRAELRVTERRAEVPTAHPSPSPRSAGQFQTLVVGVVGGLLGSLVLLVWVLAVICSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPCVPEQTEYATIVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL

b) Recombinant of human PD-1 (by ENZO Ltd.; aa 25-167): Easily to be dimerized or trimerized

His-tag V5 epitope-tag FLAG-tag (HHHHHH-GKPIPNPLLGLDST-DYKDDDDK) ----DSPDR PWNPPTFSPA LLVVTEGDNA TFTCSFSNTS ESFVLNWYRM SPSNQTDKLA AFPEDRSQPG QDCRFRVTQL PNGRDFHMSV VRARRNDSGT YLCGAISLAP KAQIKESLRA ELRVTERRAE VPTAHPSPSP RSAGQFQ Cleaved bond

Fig. S3a and S3b

c) Fragmented PD-1 (detected as a dimer at~28kDa and a monomer at ~17kDa) His-tag V5 epitope-tag FLAG-tag (HHHHHH-GKPIPNPLLGLDST-DYKDDDDK) ----DSPDR PWNPPTFSPA LLVVTEGDNA TFTCSFSNTS ESFVLNWYRM SPSNQTDKLA AFPEDRSQPG QDCRFRVTQL PNGRDFHMSV VRARRNDSGT YLCGAISLAP KAO

d) Small fragmented PD-1 (not detected) MW; 3.8kDa IKESLRA ELRVTERRAE VPTAHPSPSP RSAGQFQ

Fig. S3c and 3d

a) H34 CDR-3 Arg96 Asp1 9.,<u>65</u>..... 48 Phe98

b)

Fig. S4a and b

c)

Fig. S4c

Fig. S4d

AA sequence for H34 antibody light chain (full size)

DIQMTQSPST LSASVGDRVT ITCRASQSIS SWLAWYQQKP GKAPKVLIYK ASTLESGVPL RFSGSGSGTE FTLTISSLQP DDFATYYCQQ YSTYRTFGQG TKVEIKRTVA APSVFIFPPS DEQLKSGTAS VVCLLNNFYP REAKVQWKVD NALQSGNSQE SVTEQDSKDS TYSLSSTLTL SKADYEKHKV YACEVTHQGL SSPVTKSFNR

GEC (LEHHHHHH)

Double underline indicates the zinc finger motif.

Red; CDR-1, Blue; CDR-2, Green; CDR-3

LE: aa sequence for Xho I **HHHHHH**: aa sequence for His tag

In the expressed H34, Methionine residue exists at 0th position

Fig. S5

Regarding the generation of the protein bank, the detail explanation is described in several references (Hifumi *et al.*, Vol. 4, Chapter 2 (pp28-57), Frontiers in Clinical Drug Research-Anti Infectives, 2017 (Bentham Science Publishers)); Hifumi *et al.*, *FASEB J.*, **26**, 1607-1615(2012)). The above figure describes about the brief flow chart for obtaining the soluble fraction of *E.coli* expressing human light chain. Each gene of antibody light chain from donors was cloned in DH5 α for sequencing. The DNA fragments were inserted in an expression vector pET20b(+). Then, each was transformed into each *E. coli* (BL21(DE3)pLysS). The cells were harvested and recovered by ultra-sonication. The soluble fraction exchange column, size exclusion column etc. After the purification, it was passed through 0.22um-filter for sterilize. After the determination of the protein concentration by a DC protein assay, it was stored at 4°C and/or frozen. Over hundreds of human antibody light chain have been stored for these ten years.

Fig. S6