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Microsimulation Model 

The transmission-dynamic stochastic microsimulation model follows individual residents and correctional staff 

within a prison. The model reflects the prison’s residential structure and we simulate different prisons by 

instantiating the model with prison-specific characteristics.  

Each day, for each incarcerated person and correctional staff member who is currently susceptible to infection, we 

compute the risk of infection using a set of transmission equations. 

Transmission Equations 

Equation 1 shows the transmission rate for resident 𝑖 who lives in room 𝑟, building 𝑏, and yard 𝑦 and who interacts 

with: 

• Other residents, 𝑟𝑒𝑠, in the same room 𝑟 (e.g., cell or dormitory [dorm]) 

• Other residents in the same building 𝑏 

• If individual 𝑖 participates in activities 𝑎, (labor 𝑙, school 𝑠, and/or other activities 𝑜), then he or she also 

interacts with other residents in the same yard 𝑦 who participate in labor, school, and/or other activities, 

with participation in each activity type noted with an indicator function 1{. } in Equation 1 

• Correctional staff, 𝑐𝑠, in the same prison 

 

[1]    𝑟𝑎𝑡𝑒𝑖 = 𝑟𝑎𝑡𝑒𝑟𝑁𝑒𝑓𝑓,𝑟 (
𝐼𝑟

𝑁𝑟

) + 𝑟𝑎𝑡𝑒𝑏𝑁𝑒𝑓𝑓,𝑏 (
𝐼𝑏

𝑁𝑏

) + 1{𝑙𝑎𝑏𝑜𝑟}𝑟𝑎𝑡𝑒𝑎𝑁𝑙,𝑦 (
𝐼𝑙,𝑦

𝑁𝑙,𝑦

) + 1{𝑠𝑐ℎ𝑜𝑜𝑙}𝑟𝑎𝑡𝑒𝑎𝑁𝑠,𝑦 (
𝐼𝑠,𝑦

𝑁𝑠,𝑦

)

+ 1{𝑜𝑡ℎ𝑒𝑟 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠}𝑟𝑎𝑡𝑒𝑎𝑁𝑜,𝑦 (
𝐼𝑜,𝑦

𝑁𝑜,𝑦

) + 𝛽𝑟𝑒𝑠,𝑐𝑠 (
𝐼𝑐𝑠

𝑁𝑐𝑠

) 

 

Equation 2 shows the transmission rate for correctional staff member j, who interacts with: 

• Residents, 𝑟𝑒𝑠, in the same prison 

• Other correctional staff, 𝑐𝑠, in the same prison 

 

[2]    𝑟𝑎𝑡𝑒𝑗 = 𝛽𝑐𝑠,𝑟𝑒𝑠 (
𝐼𝑟𝑒𝑠

𝑁𝑟𝑒𝑠

) + 𝛽𝑐𝑠,𝑐𝑠 (
𝐼𝑐𝑠

𝑁𝑐𝑠

) 

 

In both equations:  

• 𝑟𝑎𝑡𝑒 denotes the rate of infection per infected contact for each type of contact (room, building, or 

activities) 

• 𝛽 denotes the effective contact rate (between residents and correctional staff, correctional staff and 

residents, and correctional staff and other correctional staff) 
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• 𝑁 denotes the total number of individuals 

• 𝐼 denotes the total number of infectious individuals 

• 𝑁𝑒𝑓𝑓  denotes the number of effective contacts, in cases where it differs from the total number of individuals 

(room and building contacts only, details in next section) 
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Model Parameters 

Parameters used in the microsimulation model are displayed in Table S1. Several parameters are described in more 

detail in subsequent subsections of this appendix. 

Table S1: Prison microsimulation model parameters 

Parameter Value/Distribution Source & Notes 

Covid-19 Epidemiology 

Duration of Latent Period 
Gamma distributed (mean 3·0 days, standard 

deviation 1·0 days) 
Based on He et al., Lauer et al., 

Ashcroft et al., Li et al., Wölfel et al. 

(1–5); details in Appendix pages 11-

12 

 

Duration of Infectious Period 
Gamma distributed (mean 3·1 days, standard 

deviation 2·1 days) 

Duration of Incubation Period 
Gamma distributed (mean 5 days, standard 

deviation 2·9 days) 

Duration of Symptomatic Period 
Latent Period + Infectious Period – Incubation 

Period 

Calculated. This implies that 

approximately 60% of infections 

become symptomatic.  

Daily rate of transmission per infected 

roommate 

0·05 with dampening of effective contacts in 

high-occupancy rooms (details in Appendix) 

Calibrated  

(details in Appendix pages 5-10) 

Daily rate of transmission per infected non-

roommate building contact 
0·005 

Calibrated  

(details in Appendix pages 5-10) 

Daily rate of transmission per infected 

labor/activities contact 
0·025 

Calibrated  

(details in Appendix pages 5-10) 

Daily effective contact rate between residents 

and workers 
0·05 

Calibrated  

(details in Appendix pages 5-10) 

Daily effective contact rate between workers 0·15 
Calibrated  

(details in Appendix pages 5-10) 

Relative transmissibility of new Covid-19 

variants  
150% Based on CDC(6) 

Percent of individuals immune to wild-type 

infection that are immune to the variant 
80% Based on CDC(6) 

Probability of hospitalization (severe infection) 

conditional on symptomatic infection with wild 

type 

0·4%-27%; varies by age and comorbidities (see 

Appendix) 

Calculated from Verity et al.(7) and 

adjusted for CDCR hospitalization 

rates by comorbidities. 

Hospitalization is defined as a case 

with symptoms severe enough to 

require inpatient treatment and does 

not reflect capacity or identification of 

symptoms.  

Probability of death conditional on severe 

infection with wild type 
3·7%-52·3%; varies by age (see Appendix) Based on Verity et al.(7) 

Relative risk of hospitalization (severe 

infection) conditional on symptomatic infection 

with variant of concern (relative to wild type) 

1·63 Tuite et al.(8) 

Relative risk of death conditional on severe 

infection with variant of concern (relative to 

wild type) 

1·56 Tuite et al.(8) 

Vaccine Characteristics – Wild Type 

First dose efficacy against clinical infection 85% starting 15 days after receipt of first dose 
Observed effectiveness among 

healthcare workers in Israel(9) 

Second dose efficacy against clinical infection 
95% starting 10 days after receipt of second 

dose 
Pfizer phase III vaccine trial(10) 

Efficacy against transmissibility conditional on 

protection from clinical infection 
88% for both doses 

Observed effectiveness against sub-

clinical infection among healthcare 

workers in Israel(9) 

Vaccine Characteristics – Variant of Concern 

First dose efficacy against clinical infection 60% starting 15 days after receipt of first dose Assumed 

Second dose efficacy against clinical infection 
80% starting 10 days after receipt of second 

dose 
Assumed 
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Efficacy against transmissibility conditional on 

protection from clinical infection 
50% for both doses Assumed 

Vaccine Coverage and Refusal 

Resident acceptance at baseline – realistic 

scenario 

Varies by age; 36% among ages 18-29 up to 

76% among ages ≥ 70 

Based on CDCR data (Appendix page 

22) 

Resident acceptance at baseline – best-case 

scenario 
90% across all ages Assumed 

Correctional worker coverage at baseline 40% across all ages 
Based on CDCR data (Appendix page 

22) 

Dropout between first and second dose 0% 
Based on very low dropout observed 

in CDCR data 

Test Characteristics 

Test specificity 100% Assumed 

Test sensitivity 
Varies by day of infection (see Appendix page 

21) 
Kucirka et al.(11) 

Population Characteristics 

Resident joint age, sex, co-morbidity, security 

level, and room occupancy distribution 
Varies by prison CDCR data 

Resident participation in labor and other 

activities 
Varies by prison CDCR data 

Prison population size and structure (rooms, 

buildings, yards) 
Varies by prison CDCR data 

Resident background mortality Varies by age (see Appendix page 25) CDCR data 

Correctional staff population size Ratio of 6.1 residents to 1 correctional worker Department of Justice report(12) 

Correctional staff age distribution 
10% 18-29, 15% 30-39, 25% 40-49, 25% 50-59, 

25% 60-69  

American Community Survey 

data(13) 

Correctional worker background mortality Varies by age CDC life tables(14) 

Resident and correctional worker baseline 

immunity to wild-type infection 
0%, 25%, 50% Assumed, varies by scenario 
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Effective Contacts and Model Calibration 

Calibrated parameters are summarized in Table S2 and described in more detail below. 

Table S2: Calibrated transmission parameters 

Parameter Abbreviation Value 

Daily rate of infection per infectious room contact 𝑟𝑎𝑡𝑒𝑟 0.05 

Daily rate of infection per infectious building contact 𝑟𝑎𝑡𝑒𝑏 0.005 

Number of effective room contacts 𝑁𝑒𝑓𝑓,𝑟 min {4 + ∑
1

(1.1)𝑖

(𝑁𝑟−1)−4

𝑖=0

,  (𝑁𝑟 − 1)} 

Number of effective building contacts 𝑁𝑒𝑓𝑓,𝑏 
All rooms except medium dorms: 𝑁𝑏 

Medium dorms: min{100, 𝑁𝑏} 

Daily rate of infection per infectious activity contact 𝑟𝑎𝑡𝑒𝑎 0.025 

Effective contact rate between residents and correctional 

staff 
𝛽𝑟𝑒𝑠,𝑐𝑠, 𝛽𝑐𝑠,𝑟𝑒𝑠 0.05 

Effective contact rate between correctional staff 𝛽𝑐𝑠,𝑐𝑠 0.15 

 

The rate of infection per infectious room contact, 𝑟𝑎𝑡𝑒𝑟 , the rate of infection per infectious building contact, 

𝑟𝑎𝑡𝑒𝑏 , and the relationships between the room or building censuses, 𝑁𝑟 and 𝑁𝑏, and the effective room or building 

contacts, 𝑁𝑒𝑓𝑓,𝑟 and 𝑁𝑒𝑓𝑓,𝑏 , were calibrated to empirical estimates of the prison within-room secondary attack rate 

(SAR) among residents across California state prisons, which we estimated from primary CDCR data. We 

categorized rooms with at least two residents into four types: double cells (2 occupants), small dorms (3-10 

occupants), medium dorms (11-30 occupants), and large dorms (31 or more occupants). We simulated outbreaks in 

prisons with different room types and calculated the observed SAR from the model-predicted output (i.e., the 

number of subsequent detected secondary cases among roommates of the first case detected in a room, within 14 

days of the detection of the index case, divided by the number of occupants in that room), stratified by room type. 

We repeated these simulations across multiple combinations of values of 𝑟𝑎𝑡𝑒𝑟 and 𝑟𝑎𝑡𝑒𝑏 and functional forms for 

𝑁𝑒𝑓𝑓,𝑟 and 𝑁𝑒𝑓𝑓,𝑏. 

In many contexts, the number of contacts people have does not grow with constant proportionality to the total 

population size which is why many epidemic models use transmission terms like 𝛽
𝑆𝐼

𝑁
 instead of 𝛽𝑆𝐼 (15–17). In 

dormitories with tens or even hundreds of occupants, any individual may have contact with a fraction of the total 

occupants in any given day (in contrast to 2 person cells). Hence, we selected various functional forms for 𝑁𝑒𝑓𝑓,𝑟 to 

allow for effective contacts to rise more slowly than room census. Further informing this choice was that the 

empirical estimates of SAR do not strictly increase with room census.  

The number of effective building contacts, 𝑁𝑒𝑓𝑓,𝑏, was generally selected to be equal to building census (minus 

room census), except that we capped 𝑁𝑒𝑓𝑓,𝑏 for medium dorms (11-30 occupants). While there are generally few 

large dorms per building in CDCR prisons, there are often many medium dorms in one building, yielding a large 

number of building contacts if uncapped. However, those living in medium (and large) dorms are likely to interact 

more with their roommates and less with others in the building since bathrooms, recreational rooms, and other 

common facilities are often specific to a dorm and not shared across dorms. 

We compared the model-predicted SAR to corresponding empirical estimates of SAR, and selected parameters 

which yielded model output that fell within the 95% confidence bounds of the empirical estimates across room types 

(Figure S1). Based on these simulations, we selected a daily transmission rate per infected room contact of 0.05 

(which roughly corresponds to a transmission probability of 5%) and a daily transmission rate per infected building 

contact of 0.005 (which roughly corresponds to a transmission probability of 0.5%). We capped effective building 

contacts for medium dorms at 100 contacts and established the following functional form for effective room contacts 

(Table S2, equation 3, Figure S2): 

[3]    𝑁𝑒𝑓𝑓,𝑟𝑖
= min {4 + ∑

1

(1.1)𝑖

(𝑁𝑟𝑖
−1)−4

𝑖=0
,   (𝑁𝑟𝑖

− 1)} 



6 
 

Figure S1: Fit of modeled secondary attack rate to empirical estimates, with contact dampening 

 

Empirical estimates are shown in black (solid lines), with confidence intervals shown via dashed lines. The 0.5th and 

99.5th percentiles on modeled output are shown via colored shading, while the means are shown via colored lines. 
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Figure S2: Calibrated relationship between room census and effective room contacts 

 

 

The remaining transmission-related parameters (𝑟𝑎𝑡𝑒𝑎, 𝛽𝑟𝑒𝑠,𝑐𝑠, 𝛽𝑐𝑠,𝑟𝑒𝑠,  and 𝛽𝑐𝑠,𝑐𝑠) were selected after these initial 

four parameters (𝑟𝑎𝑡𝑒𝑟 , 𝑟𝑎𝑡𝑒𝑏 , 𝑁𝑒𝑓𝑓,𝑟 , and 𝑁𝑒𝑓𝑓,𝑏) were calibrated, since they were found to have relatively little 

influence on the within-room SAR. Transmission from activity-specific contacts and between residents and 

correctional staff are important in the model because they cause outbreaks that start in one building to spread to 

additional buildings and yards. This follows from considering a scenario in which an outbreak has already taken off 

in one part of the prison. In such a case, it can spread elsewhere in the prison even if the activity transmission rate 

and effective contact rates are minimal because it only requires one activity contact or staff member to be 

infected/infectious and then transmit to someone else from another part of the prison for the outbreak to then spread 

through building and room contacts in that other area. We selected the effective contact rates between staff and 

between staff and residents so that the average infected staff person would infect one other staff member and 1-2 

residents (Figure S3; 𝛽𝑟𝑒𝑠,𝑐𝑠 , = 𝛽𝑐𝑠,𝑟𝑒𝑠 = 0.05  and 𝛽𝑐𝑠,𝑐𝑠 = 0.15)), implying a basic reproductive number on the high 

end of estimates from free living populations (4,18). We selected the rate of transmission per infected 

labor/school/other activity contact, 𝑟𝑎𝑡𝑒𝑎 = 0.025, which is half of the room transmission rate, to reflect the fact 

that activity contacts are likely of shorter duration and proximity than in-room contacts, especially with non-

pharmaceutical interventions such as masking and attempts to physically distance are in place at activities. 

After selecting these transmission rates, we conducted validity checks by modeling cumulative detected infections 

across the five prison types with no vaccination, no resumption of in-person activities, and continued NPI usage, 

with a single importation of a wild type infection (Figure S4). We found that the distribution of modeled output 

across 500 simulations was generally consistent with actual detected infections trajectories from the CDCR prisons 

(Figure S4). In some cases, the model appears to slightly underestimate detected infections. This was expected given 

that many prisons likely experienced multiple infection importations, while the model conservatively assumed only 

a single imported infection on day 1, and because we model testing and surveillance protocols consistent with 

CDCR policy as of early 2021, but testing volumes were lower and more variable across prisons in mid-2020, when 

many large outbreaks occurred. One of the greatest discrepancies between the data and modeled output is observed 

for one of the women’s prisons. There are two quite different women’s prisons in CDCR, and the prison with the 

larger outbreak is one that consists of mostly dorms (while the modeled prison consists of mostly cells). We would 

expect the data from the women’s prison with dorms to look more like a mixture of the modeled output for the 

women’s prisons (with cells) and the prisons with mostly dorms.  
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Figure S3: Calibrated secondary infections from one index staff infection 

 

The figure shows the results of seeding one staff member infected with wild-type COVID-19 in a prison with no 

vaccination and no baseline immunity to infection. We simulated for 20 days, with all transmission between 

residents disabled to focus on staff-related transmission. Medians with interquartile ranges are shown. 
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Figure S4: Model validation – comparison of modeled detected case trajectories against empirical epidemic 

curves from CDCR prisons.
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Left panels show cumulative infections over time from CDCR prisons. Infections are shown for 200 days from the 

first day an infection was detected (day 1), which varies by prison. Each line in the left panels represents a single 

prison. Data cover all of 2020. Some prisons had outbreaks later in 2020 and thus data were not available for the full 

200 days. Two prisons are excluded from this analysis because their outbreaks are known to have been caused by 

multiple importations at once (via transfers from other prisons that had been undergoing large outbreaks). Prisons 

with 0 detected infections (these were mostly prisons with cells) are also excluded. 

Right panels show only those modeled infections that were detected (i.e., via testing and surveillance). Solid lines 

indicate averages across 500 simulations, dashed lines indicate the 25th and 75th percentiles, and shading indicates 

the 2.5th and 97.5th percentiles. Simulations were run without vaccination, without resumption of in-person activities, 

with NPIs, with 0% immunity at baseline, and with a single resident infection seeded on day 1.  
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Modeling the residential arrangement of prisons 

Our model replicates a prison’s residential arrangement, including the number of rooms by occupancy, within 

buildings, and in turn within yards. This allows the analysis to simulate the spread of infections across a prison. 

Supplemental videos demonstrating the simulated spread of COVID-19 infections in two prisons (the prison with 

mostly dorms and the high-security prison with mostly cells) are available at https://www.sc-cosmo.org/prisons-

microsimulation-paper-june-2021/.  

 

Latent, incubation, infectious, and symptomatic periods 

Our model incorporates: a latent period (time from infection to becoming infectious); an incubation period (time 

from infection to symptom onset); and an infectious period (time from becoming infectious to becoming recovered). 

For each individual who becomes infected, we draw the duration of his/her latent period, incubation period, and 

infectious period from gamma distributions parameterized to be consistent with previous literature. If an individual’s 

sampled duration of the incubation period is longer than the sum of their sampled latent and infectious periods, then 

the infection is asymptomatic. Otherwise, some individuals develop symptoms prior to becoming infectious and the 

rest become infectious prior to becoming symptomatic depending on whether the latent period is longer than the 

incubation period or vice versa, respectively.  

We estimated the parameters of these three duration distributions by synthesizing evidence from several published 

studies (1–5,19). We fit gamma distributions to the means and distributions of various durations and intervals 

reported in these studies (including probability density functions, cumulative distribution functions, and quantiles).  

For the incubation period, we estimated gamma distribution shape and rate parameters of (2.97, 0.59), which yield a 

mean duration of incubation of 5 days with 95% of durations between 1.0 and 12.0 days. These estimates closely 

match the mean (5.2 days) and upper bound (12.5 days) estimated in Li et al. (4) and used in He et al. (1,19), as well 

as the mean (5.1 days) and upper bound (11.5 days) reported in Lauer et al. (2).  

The durations of the latent and infectious periods are more difficult to estimate empirically and require additional 

assumptions. Infections are not typically observed from the date of infection and the date on which an individual 

starts and stops being infectious is also typically unknown. The latter can be proxied by viral test data, but there is a 

lack of evidence translating viral test results into conclusions regarding levels of infectiousness. We used data from 

He et al. and other sources (5,20) on the infectivity profile (infectiousness over time relative to the date of symptom 

onset) along with our incubation period parameters to estimate the parameters for the latent and infectious period 

distributions.  

The estimated shape and rate parameters of the fitted gamma distribution for the latent period are (9.00, 3.00). These 

parameters yield a mean duration of latency of 3 days, with 95% of latency durations between 1.5 and 4.9 days. 

These estimates result in 33% of transmission occurring prior to symptom onset for infections that develop 

symptoms, and 50% of all transmission (including pre-symptomatic and asymptomatic) occurring among infectors 

that are not at the time symptomatic. Although comparability is limited due to the study sample (which likely 

overrepresents symptomatic infections), this estimate is consistent with He et al. which reports that 30-57% of 

infections occurred prior to symptom onset.  

The estimated shape and rate parameters of the fitted gamma distribution for the infectious period were (2.18, 0.70), 

yielding a mean duration of infectiousness of 3.12 days, with 95% of infectious durations between 0.6 and 7.0 days. 

With the estimated durations of these three periods, we can describe the infectivity profile over time (infectiousness 

relative to date of symptom onset) and compare it to the literature: He et al. report that “infectiousness declines 

quickly within 7 days” (of symptom onset) and Wölfel et al. report no positive cultures after 8 days of symptom 

onset (5). In our model, 95% of infectors who eventually develop symptoms transmit between 4 days before 

developing symptoms and 7 days after.  

https://www.sc-cosmo.org/prisons-microsimulation-paper-june-2021/
https://www.sc-cosmo.org/prisons-microsimulation-paper-june-2021/
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The estimation of infectiousness over time is complicated by significant unknowns with respect to the relationship 

between RT-PCR viral load threshold cycle (Ct) values and transmissibility. Still, one benchmark is whether the 

samples can be cultured. For example, Jaafar et al. report that less than 3% of positive test samples with Ct values ≥ 

35 could be cultured (20). Applying this threshold to the He et al. data, the average infection had a Ct value ≥ 35 by 

around 4-5 days after symptom onset (see Figure 2 in He et al.). In our model, the average symptomatic infector is 

infectious for 3.8 days after symptom onset - a slightly shorter duration than He et al. We expect this difference 

given that we include very mild symptomatic cases (that are likely to be less infectious), while He et al. (and many 

other studies) are hospital-based and thus biased toward somewhat more severe (and potentially more infectious) 

cases. Note that the average duration of infectiousness after symptom onset (3.8 days, for infectors with symptoms) 

exceeds the average infectious duration (3.1 days) for all infectors in our model. This is because infectious durations 

are on average longer for those who develop symptoms, given that only those whose infectious periods last beyond 

the incubation period develop symptoms in our model. 

Together, these distributions yield a mean symptomatic serial interval of 5.4 days, with 95% of infector-infectee 

pairs having serial intervals between -0.2 and 12.1 days. These results closely match the serial interval distribution 

and mean of 5.8 days reported in He et al. (1,19) (see also the top panel of He et al.’s corrected Figure 1C). 

We also validated these model parameters against additional published literature that became available after we had 

initially fit the distributions. The US CDC has published assumptions for modeling and additional sources 

supporting these assumptions (21). For example, they report an average incubation period of approximately 6 days 

based on McAloon et al. and Ma et al. (2,22). McAloon et al., a meta-analysis of published studies, estimates an 

incubation period of 5.8 (95% CI 5.0 to 6.7) days. They also noted “that uncertainty increases towards the tail of the 

distribution: the pooled parameter estimates (95% CIs) resulted in a median incubation period of 5.1 (95% CI 4.5 to 

5.8) days, whereas the 95th percentile was 11.7 (95% CI 9.7 to 14.2) days.” Ma et al. point out heterogeneity in 

incubation durations in their Multimedia Appendix 5, with approximately a day shorter duration for individuals 

exposed for 2+ days compared to those exposed for only 1 day and for individuals who are household versus non-

household contacts. In general, these findings suggest a shorter incubation time for prison settings in which 

individuals are housed closely together for substantial periods of time and hence should generally have more intense 

exposures to viral particles. The CDC also assumes a serial interval of approximately 6 days, based on both He et al. 

and Saurabh et al. (1,19,23). All of these estimates comport well with the distributions that we use.  
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Testing, Quarantine, and Isolation 

Based on CDCR policy, we model four main types of case detection among residents: 

1. Background surveillance testing: CDCR developed a COVID-19 risk score to grade each resident’s 

probability of severe health outcomes following COVID-19 infection. Scores correspond to the presence of 

demographic and clinical characteristics identified in the scientific literature as risk factors for severe 

COVID-19-related illness (e.g., age >65 years, immunocompromised) (Table S3) (24). Residents are 

flagged as high-risk if their COVID-19 risk score is at least 4. Some prisons house older and more 

medically vulnerable individuals than others. If a prison houses fewer than 60 high-risk residents, we model 

testing for all high-risk residents every 2 weeks. Otherwise, a random selection of 15 high-risk residents in 

each yard is tested every 2 weeks. 

 

2. Reactive testing: When a case is detected (e.g., via surveillance testing), contacts of the infected resident 

are also tested. These contacts include everyone in the same room as the detected individual as well as 20% 

of residents in the same building (but different rooms). If reactive testing identifies additional cases, this 

could trigger outbreak-level testing (see below). 

 

3. Outbreak-level testing: A single case will only trigger reactive testing. However, if 2 or more cases are 

detected in the prison within a 14-day window, outbreak-level testing is triggered for all yards in which 

cases were detected. If all detected cases were in the same building, 80% of the residents of that building 

are tested. If cases were detected in multiple buildings in the same yard, 80% of the residents of that yard 

are tested.  

 

4. Testing of hospitalized patients: All infections that are severe enough to require hospitalization are detected 

and subsequently tested. Regardless of test result (i.e. even if the result is a false negative), these severely 

infected individuals are isolated and hospitalized.   

All detected cases are isolated for 14 days. All residents of a building with a detected case are put into quarantine, 

during which they continue to interact with others in the same building and with staff but they no longer interact 

with any residents outside of their building (e.g., via activities). Quarantine lasts for 14 days after the last day on 

which a case was detected. For buildings undergoing large outbreaks, quarantine could therefore last far longer than 

14 days. We include a 4-day lag between the day a test sample is taken and the day a detected case is isolated, and 

their building quarantined. 

Detection of staff infections is modeled in a simplified way. Correctional staff infections can only be detected via 

symptom screening, not via surveillance testing. Every staff member is screened daily. Symptomatic infected staff 

(regardless of infectious status) have a 50% chance of being detected for each day they are symptomatic. Thus, the 

probability of detection increases with duration of symptoms. Asymptomatic infected staff have a 0% chance of 

being detected. Detected staff isolate for 14 days from the day of detection.  
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Table S3: COVID-19 risk score criteria 

Condition Definition 
Weighted 

Score 

Age 65+ Chronologic age of 65 years or above 4 

Advanced liver disease Has advanced liver disease (cirrhosis/end stage liver disease) 2 

Asthma Persistent asthma (moderate or severe) as defined by the  

California Correctional Health Care Services (CCHCS) asthma condition specifications 
1 

Cancer High risk cancer as defined by the CCHCS cancer condition specifications (excludes most 

diagnoses of skin cancer and “personal history of” cancers”) 
2 

Chronic Lung Disease 

(other) 

Has cystic fibrosis, pneumoconiosis, or pulmonary fibrosis 
1 

Chronic Obstructive 

Pulmonary Disease 

(COPD) 

Has Chronic Obstructive Pulmonary Disease 

2 

Cardiovascular Disease 

(CVD) 

Has any of the following:” cerebrovascular disease, congestive heart failure, congenital 

heart disease, ischemic heart disease, peripheral vascular disease, thromboembolic disease, 
and valvular disease 

1 

Cardiovascular Disease 
(CVD; high risk) 

Is high risk for any of the following:” cerebrovascular disease, congestive heart failure, 
congenital heart disease, ischemic heart disease, peripheral vascular disease, 

thromboembolic disease, and valvular disease 

1 

Diabetes Has diabetes 1 

Diabetes (high risk) Meets the criteria for high risk diabetes as defined by the CCHS diabetes condition 
specifications 

1 

HIV  Has HIV  1 

HIV (poorly controlled) Has HIV with a CD4 count < 200 1 

Immunocompromised Has any of the following: aplastic anemia, histiocytosis, immunosuppressed, organ 

transplant, other transplant 
2 

Morbid Obesity Body Mass Index of 40 or above 1 

Other Chronic Conditions Has any of the following with a high-risk rating: hypertension, coccidiomycosis, connective 
tissue disorder, dementia/Parkinson’s disease, endocrine disorder, multiple sclerosis, 

myasthenia gravis, neurologic disorder, vasculitis 

1 

On Dialysis On hemodialysis 2 

Pregnant Actively pregnant 1 

Source: Chin et al. (24) 
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Prisons 

In the main text, we present analyses for five prisons: a minimum-to-medium security men’s prison in which most 

residents are housed in dormitories (“dorms”), a maximum-security men’s prison in which most residents are housed 

in cells (“cells”), a medium-security men’s prison that includes a mix of residents living in a mix of celled housing 

and dormitories (“mixed”), a medical prison that houses male residents requiring special medical care who tend to 

be older and sicker than residents in the main prisons (“medical”), and a women’s prison that combines female 

residents across security levels in yards of varying security levels (“women’s”, this prison has mostly cells and also 

has a smaller population). Details on the residential arrangement and populations of these prisons are shown in 

Table 1 and Appendix Figures S5-S9. 

The figures below show percentages of residents by various characteristics. The security level is based on CDCR’s 

security level system, where 1 is the lowest security level, and 4 is the highest security level. Room sizes are 

characterized by the number of occupants and include single cells (1 occupant), double cells (2 occupants), small to 

medium dorms (3-30 occupants), large dorms (31+ occupants). Comorbidities include advanced liver disease, 

asthma, cancer, COPD, chronic lung disease, cardiovascular disease, diabetes, HIV, immunocompromised, kidney 

disease (e.g., on dialysis). The activities panel shows the percent of residents that participated in any of the three 

types of activities out of their rooms (but still in the prison) in the past week with at least 1 other resident. On this 

panel, “Before Closures” indicates January 2020 (before closures due to COVID-19), and “With Closures” indicates 

November 2021 (with closures to due COVID-19 implemented). “Labor” includes both jobs that support the upkeep 

of the prison (resident workers at medical prisons, laundry, kitchen duty, etc.) and industries. “School” includes any 

educational activities. These are all set to 0% in the “post” period because CDCR has had residents participate in 

educational activities in their rooms to minimize transmission. “Other” includes several additional activities, 

including medical appointments, group therapy, and worship. 

  



16 
 

Figure S5: Low-to-medium security prison with mostly dorms 
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Figure S6: Medium/mixed security prison with a mix of cells and dorms 
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Figure S7: Higher security prison with mostly cells 
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Figure S8: Women’s prison with mixed security levels and mixed housing 
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Figure S9: Medical prison with older and more medically vulnerable residents 
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Additional Model Parameter Details 

This section describes several model parameters in more detail, including test sensitivity, hospitalization rates, and 

mortality rates. 

 

Test Sensitivity 

Test sensitivity by day of infection, based on (11), is described in Table S4. 

Table S4: Probability of testing negative by day of infection (false negative rate) 

Day Median [range] 

1 100% [100-100%] 

2 100% [95.5-100%] 

3 97.6% [56.9-99.9%] 

4 70.4% [29.1-94.0%] 

5 38.3% [18.3-63.6%] 

6 24.5% [14.1-39.4%] 

7 19.8% [12.5-30.3%] 

8 18.8% [12.1-28.4%] 

9 19.7% [12.9-29.3%] 

10 21.8% [14.6-31.8%] 

11 24.7% [16.9-35.3%] 

12 28.2% [19.7-39.4%] 

13 32.3% [23.0-43.8%] 

14 36.5% [26.5-48.4%] 

15 40.9% [30.2-52.7%] 

16 45.2% [34.0-57.0%] 

17 49.3% [37.9-61.0%] 

18 53.2% [41.4-64.6%] 

19 56.7% [45.1-67.8%] 

20 59.9% [48.5-70.8%] 

21 62.8% [51.5-73.3%] 
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Resident vaccine acceptance levels 

We model two vaccine coverage scenarios (Table S5). Realistic vaccine acceptance is based on empirical 

acceptance rates observed among residents of CDCR prisons (25). We calculated the probability of acceptance by 

age, and then adjusted all the age-based probabilities down by 15 percentage points. This adjustment was made 

because CDCR initially prioritized highest risk populations and acceptance rates tended to decrease over time as 

offers were expanded to higher fractions of their total population. 

Table S5: Resident vaccine acceptance by scenario 

Resident Age 

(years) 

Realistic Vaccine 

Acceptance 

Best-Case Vaccine 

Acceptance 

18-29 36% 90% 

30-39 46% 90% 

40-49 57% 90% 

50-59 66% 90% 

60-69 71% 90% 

70-79 76% 90% 

≥ 80 76% 90% 

 

Staff vaccine acceptance levels 

We model 40% vaccination among correctional staff, based on analysis of staff vaccination levels among CDCR 

staff (Figure S10).  

Figure S10: Staff vaccine acceptance  

 

Figure shows the average weekly percentage of CDCR prison staff who are fully vaccinated (2 doses of mRNA 

vaccine or 1 dose of Janssen vaccine). Coverage fluctuates slightly over time because of variation in which staff 

members work during any given week.  
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Resident COVID-19 hospitalization and mortality rates 

For residents, the probability of requiring hospitalization (conditional on having symptomatic COVID-19 infection) 

and the probability of dying from COVID-19 (conditional on requiring hospitalization) were based on residents’ age 

and comorbidities. We obtained hospitalization and mortality rates by age from published sources (7,26). We also 

calculated empirical hospitalization and mortality rates by age and COVID-19 risk score from CDCR data (Figure 

S11). As mentioned above, the COVID-19 risk score is a metric developed by CDCR to measure the presence of 

demographic and clinical characteristics identified in the scientific literature as risk factors for severe COVID-19-

related illness (Table S3). To adjust the published estimates to reflect prison-specific hospitalization and mortality 

rates and allow risks of severe outcomes to depend not just on age but also comorbidities, we applied COVID-19 

risk score-based multipliers to the published age-based hospitalization and mortality rates. This yielded 

hospitalization and mortality rates by both age and COVID-19 risk score that were consistent with empirical 

estimates from CDCR data. This also allows hospitalization and mortality rates to reflect any underdiagnosis of 

chronic conditions. The resulting COVID-19 hospitalization and mortality rates are shown in Table S6. Note that 

hospitalization is modeled as any case severe enough to require hospitalization and is not meant to reflect case 

detection or hospital capacity. 

 

Figure S11: COVID-19 hospitalization and mortality among CDCR residents by age and COVID-19 risk 

score 

 

  



24 
 

Table S6: Resident COVID-19 hospitalization and mortality rates 

Resident 

Age (years) 

Resident COVID-

19 Risk Score 

Probability of requiring 

hospitalization, conditional on 

symptomatic infection 

Probability of death, conditional 

on requiring hospitalization 

18-29 

0-2 0.4% 

3.7% 3-7 0.8% 

≥ 8 1.1% 

30-39 

0-2 1.0% 

3.8% 3-7 2.0% 

≥ 8 2.9% 

40-49 

0-2 1.7% 

5.0% 3-7 3.4% 

≥ 8 5.1% 

50-59 

0-2 3.3% 

9.3% 3-7 6.5% 

≥ 8 9.8% 

60-69 

0-2 5.5% 

19.7% 3-7 11.0% 

≥ 8 16.4% 

70-79 

0-2 8.1% 

31.3% 3-7 16.2% 

≥ 8 24.2% 

≥ 80 

0-2 9.0% 

52.3% 3-7 18.0% 

≥ 8 27.0% 

Table shows hospitalization and death probabilities with wild type infection. We model a 1.63 relative increase in 

the risk of hospitalization and a 1.56 relative increase in the risk of death with variant infection (8).  
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Resident background mortality rates 

We estimated background mortality among residents by age and sex based on empirical mortality data from CDCR 

covering residents of California prisons from November 1, 2016, through October 31, 2019. For males, we used 

unadjusted rates by age calculated from the CDCR data. For females, who make up less than 5% of the resident 

population of prisons in California, estimates were noisier because there were relatively fewer deaths. We therefore 

used background mortality rates from CDC life tables (14) (for females, by age), but adjusted these mortality rates 

using smoothed hazard rate ratios that reflect higher mortality among incarcerated women compared to the general 

population. The resulting mortality rates used in the model are shown in Figure S12. 

 

Figure S12: Unadjusted and adjusted CDCR background mortality rates and CDC background mortality 

rates 

 

Left panel shows adjusted background mortality rates used in the model (dashed lines) compared to CDC 

background mortality rates by age and sex. Right panel shows adjusted background mortality rates used in the model 

(triangles) compared to the raw unadjusted mortality rates (circles).  
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Correctional staff population age distribution and COVID-19 mortality rates 

The age and sex distributions of correctional staff were based on census data for correctional workers from the 

American Community Survey (13). We assumed that there are 6.1 residents per 1 correctional staff, based on data 

from the Department of Justice which determined the size of the correctional staff for each prison we modeled (12). 

Background mortality rates were consistent with age-sex-specific background mortality for the US population, 

obtained from CDC life tables (14).  

The probability of dying from COVID-19 (conditional on having symptomatic COVID-19 infection) was based on 

staff members’ age only and was obtained from public sources (7,26) (Table S7). Hospitalization for staff was not 

modeled.  

Table S7: Correctional staff parameters 

Staff Age (years) 
Percentage of staff 

population (total, by age) 

Percentage of age 

group that are males 

Annual background 

mortality rate 

Probability of death, 

conditional on 

symptomatic wild type 

COVID-19 infection 

18-29 10% 76.6% 0.0012 0.03% 

30-39 15% 79.7% 0.0019 0.08% 

40-49 25% 77.9% 0.0030 0.17% 

50-59 25% 79.3% 0.0070 0.64% 

60-69 25% 80.8% 0.0145 2.37% 

We model a 1.56 relative increase in the risk of death with variant infection (8). 
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EQUATOR network reporting guidelines 

Because EQUATOR has not published guidelines for mathematical modeling studies, we instead report the relevant 

features of a non-economic model-based policy analysis using the CHEERS checklist (Table S8) (27). 

Table S8: CHEERS Checklist 

Section/Item Recommendation Location 

Title and Abstract 

1. Title Identify the study as an economic evaluation 

or use more specific terms such as “cost-
effectiveness analysis”, and 

describe the interventions compared. 

Title – note that we identify the study as a 

mathematical modeling study in the title (as 
it is not an economic evaluation or cost-

effectiveness analysis)  

2. Abstract Provide a structured summary of objectives, 

perspective, setting, methods (including 
study design and inputs), results (including 

base case and uncertainty analyses), and 

conclusions. 

Abstract 

Introduction 

3. Background and Objectives Provide an explicit statement of the broader 

context for the study. 

Research in Context (Evidence before this 

study) 

Present the study question and its relevance 
for health policy or practice decisions. 

Introduction (last paragraph) 

Methods 

4. Target Population and Subgroups Describe characteristics of the base case 

population and subgroups analyzed, 
including why they were chosen. 

Methods (“model” subsection, “data” 

subsection), Table 1, Appendix pages 15-20  

5. Setting and Location State relevant aspects of the system(s) in 

which the decision(s) need(s) to be made 

Methods (“model” subsection, “data” 

subsection), Table 1, Appendix pages 15-20  

6. Study Perspective Describe the perspective of the study and 
relate this to the costs being evaluated. 

Not applicable to a non-economic evaluation 
modeling study 

7. Comparators Describe the interventions or strategies being 

compared and state why they were chosen. 

Methods (“resumption of activities and 

NPIs” subsection, “vaccination” subsection) 

8. Time Horizon State the time horizon(s) over which costs 
and consequences are being evaluated and 

say why appropriate. 

Methods (“outcomes” subsection) 

9. Discount Rate Report the choice of discount rate(s) used for 

costs and outcomes and say why appropriate. 

Not applicable to a non-economic evaluation 

modeling study 

10. Choice of Health Outcomes Describe what outcomes were used as the 

measure(s) of benefit in the evaluation and 

their relevance for the type of analysis 
performed. 

Methods (“outcomes” subsection) 

11. Measurement of Effectiveness Describe fully the design features of the 

single effectiveness study and why the single 
study was a sufficient source of clinical 

effectiveness data. 

Table S1, Methods (“vaccination” 

subsection, “resumption of activities and 
NPIs” subsection) 

12. Measurement and Valuation of 

Preference Based Outcomes 

If applicable, describe the population and 

methods used to elicit preferences for 
outcomes. 

Not applicable to a non-economic evaluation 

modeling study 

13. Estimating Resources and Costs Describe approaches used to estimate 

resource use associated with the alternative 
interventions. Describe primary or secondary 

research methods for valuing each resource 

item in terms of its unit cost. Describe any 
adjustments made to approximate to 

opportunity costs. 

Not applicable to a non-economic evaluation 

modeling study 

14. Currency, Price Data, and Conversion Report the dates of the estimated resource 
quantities and unit costs. Describe methods 

for adjusting estimated unit costs to 

the year of reported costs if necessary. 
Describe methods for converting costs into a 

common currency base and the exchange 

rate. 

Not applicable to a non-economic evaluation 
modeling study 

15. Choice of Model Describe and give reasons for the specific 
type of decision analytical model used. 

Providing a figure to show model structure is 

strongly recommended. 

Figure 1, Methods (“model” subsection) 
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16. Assumption Describe all structural or other assumptions 

underpinning the decision-analytical model. 

Methods (“model” subsection, “COVID-19 

epidemiology” subsection, “COVID-19 

variants and immunity” subsection), Table 

S1, Appendix pages 1-14, Appendix pages 
21-26 

17. Analytical Methods Describe all analytical methods supporting 

the evaluation. This could include methods 

for dealing with skewed, missing, or 
censored data; extrapolation methods; 

methods for pooling data; approaches to 

validate or make adjustments (such as half 
cycle corrections) to a model; and methods 

for handling population heterogeneity and 

uncertainty. 

Model (“technical details” subsection), 

Appendix pages 5-12, Appendix pages 22-26 

Results 

18. Study Parameters Report the values, ranges, references, and, if 

used, probability distributions for all 

parameters. Report reasons or sources for 
distributions used to represent uncertainty 

where appropriate. Providing a table to show 

the input values is strongly recommended. 

Table S1 

19. Incremental Costs and Outcomes For each intervention, report mean values for 

the main categories of estimated costs and 

outcomes of interest, as well as mean 
differences between the comparator groups. 

If applicable, report incremental cost-

effectiveness ratios. 

Figures 2-4 (outcomes only because this is a 

non-economic evaluation modeling study), 

Results (paragraphs 1-12) 

20. Characterizing Uncertainty Describe the effects on the results of 

uncertainty for all input parameters, and 

uncertainty related to the structure of the 
model and assumptions. 

Results (paragraphs 10-13), Appendix 

figures S13-S34 

21. Characterizing Heterogeneity If applicable, report differences in costs, 

outcomes, or cost-effectiveness that can be 

explained by variations between subgroups 
of patients with different baseline 

characteristics or other observed variability 

in effects that are not reducible by more 
information. 

All results (heterogeneity in prison types and 

populations), Figure S35 (stochastic 

variation) 

Discussion 

22. Study Findings, Limitations, 

Generalizability, and Current Knowledge 

Summarise key study findings and describe 

how they support the conclusions reached. 
Discuss limitations and the generalisability 

of the findings and how the findings fit with 

current knowledge. 

-Summary of study findings: Discussion 

(paragraphs 1-4) 
-Limitations and generalizability: Discussion 

(paragraphs 5-7) 

-Current knowledge: Discussion (paragraph 
2, paragraph 8) 

Other 

23. Source of Funding Describe how the study was funded and the 

role of the funder in the identification, 
design, conduct, and reporting of the 

analysis. Describe other non-monetary 

sources of support. 

Methods (“role of the funding source” 

subsection), Acknowledgements 

24. Conflicts of Interest Describe any potential for conflict of interest 

of study contributors in accordance with 

journal policy. In the absence of a journal 
policy, we recommend authors comply with 

International Committee of Medical Journal 

Editors recommendations. 

Declaration of Interests. All authors have 

submitted ICMJE forms to the journal.  
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Supplementary Results 

 

Figure S13: Cumulative resident cases requiring hospitalization per 1000 infections over 200 days by in-

person activity status, widespread use of NPIs, and baseline immunity, conditional on introduction of a single 

new variant infection 

 

Figure shows average cumulative severe cases (requiring hospitalization) among infected residents (not all residents) 

across 500 model simulations over 200 days for each scenario shown. “Idealized” vaccine acceptance is the same as 

“best-case” vaccine acceptance in the main text (90% across all ages). 
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Figure S14: Upper bound on cumulative resident cases requiring hospitalization over 200 days by in-person 

activity status, widespread use of NPIs, and baseline immunity, conditional on introduction of a single variant 

infection 

 

Figure shows the 95th percentile of cumulative severe cases (requiring hospitalization) among residents across 500 

model simulations over 200 days for each scenario shown. “Idealized” vaccine acceptance is the same as “best-case” 

vaccine acceptance in the main text (90% across all ages). 
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Figure S15: Median reduction in resident infections over 200 days from vaccination compared to no 

vaccination, by in-person activity status, widespread use of NPIs, and baseline immunity, conditional on 

introduction of a single new variant infection 

 

Figure shows the median reduction from vaccination (compared to no vaccination) in cumulative infections among 

residents across 500 model simulations over 200 days for each scenario shown. “Idealized” vaccine acceptance is 

the same as “best-case” vaccine acceptance in the main text (90% across all ages). 
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Figure S16: Median reduction in resident cases requiring hospitalization over 200 days from vaccination 

compared to no vaccination, by in-person activity status, widespread use of NPIs, and baseline immunity, 

conditional on introduction of a single new variant infection 

 

Figure shows the median reduction from vaccination (compared to no vaccination) in cumulative severe cases 

(requiring hospitalization) among residents across 500 model simulations over 200 days for each scenario shown. 

“Idealized” vaccine acceptance is the same as “best-case” vaccine acceptance in the main text (90% across all ages). 
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Figure S17: Cumulative resident infections over 200 days by in-person activity status, widespread use of 

NPIs, and baseline immunity, conditional on introduction of a single wild type infection 

 

Figure shows average cumulative infections among residents across 500 model simulations over 200 days for each 

scenario shown. “Idealized” vaccine acceptance is the same as “best-case” vaccine acceptance in the main text (90% 

across all ages). 
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Figure S18: Cumulative resident cases requiring hospitalization over 200 days by in-person activity status, 

widespread use of NPIs, and baseline immunity, conditional on introduction of a single wild type infection 

 

Figure shows average cumulative severe cases (requiring hospitalization) among residents across 500 model 

simulations over 200 days for each scenario shown. “Idealized” vaccine acceptance is the same as “best-case” 

vaccine acceptance in the main text (90% across all ages). 
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Figure S19: Cumulative resident infections over 200 days by in-person activity status, widespread use of 

NPIs, and baseline immunity, conditional on continual importation of variant infections 

 

Figure shows average cumulative infections among residents across 500 model simulations over 200 days with 0.1% 

daily incidence among susceptible staff members for each scenario shown. “Idealized” vaccine acceptance is the 

same as “best-case” vaccine acceptance in the main text (90% across all ages). 
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Figure S20: Cumulative resident cases requiring hospitalization over 200 days by in-person activity status, 

widespread use of NPIs, and baseline immunity, conditional on continual importation of variant infections 

 

Figure shows average cumulative severe cases (requiring hospitalization) among residents across 500 model 

simulations over 200 days with 0.1% daily incidence among susceptible staff members for each scenario shown. 

“Idealized” vaccine acceptance is the same as “best-case” vaccine acceptance in the main text (90% across all ages). 
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Figure S21: Cumulative resident infections over time with realistic vaccine coverage by in-person activity 

status, widespread use of NPIs, and baseline immunity, conditional on introduction of a single variant 

infection 

 

Figure shows average cumulative infections among residents across 500 model simulations over time for each 

scenario shown. In the realistic vaccine coverage scenario, coverage varies by age (see Table S5).   
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Figure S22: Cumulative resident infections over time with best-case vaccine coverage by in-person activity 

status, widespread use of NPIs, and baseline immunity, conditional on introduction of a single variant 

infection 

 

Figure shows average cumulative infections among residents across 500 model simulations over time for each 

scenario shown. In the best-case vaccine coverage scenario, coverage is 90%. 
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Figure S23: Cumulative resident infections over time with realistic vaccine coverage by in-person activity 

status, widespread use of NPIs, and baseline immunity, conditional on repeated introductions of a new 

variant infection 

 

Figure shows average cumulative infections among residents across 500 model simulations over time with realistic 

vaccine coverage (< 90% and varies by age, see Table S5) and 0.1% daily incidence among susceptible staff 

members for each scenario shown.  
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Figure S24: Cumulative resident infections over time with best-case vaccine coverage by in-person activity 

status, widespread use of NPIs, and baseline immunity, conditional on repeated introductions of a new 

variant infection 

 

Figure shows average cumulative infections among residents across 500 model simulations over time with best-case 

vaccine coverage (90%) and 0.1% daily incidence among susceptible staff members for each scenario shown.  
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Figure S25: Cumulative resident infections over 200 days by in-person activity status, widespread use of 

NPIs, and baseline immunity, conditional on introduction of a single new variant infection concurrent with 

vaccination scale-up 

 

Figure shows average cumulative infections among residents across 500 model simulations over 200 days for each 

scenario shown. Vaccination of residents is modeled as beginning on the same day that an infection is introduced to 

the prison (in the main analysis, vaccination is scaled-up prior to introduction). “Idealized” vaccine acceptance is the 

same as “best-case” vaccine acceptance in the main text (90% across all ages). 
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Figure S26: Cumulative resident cases requiring hospitalization over 200 days by in-person activity status, 

widespread use of NPIs, and baseline immunity, conditional on introduction of a single new variant infection 

concurrent with vaccination scale-up 

 

Figure shows average cumulative severe cases (requiring hospitalization) among residents across 500 model 

simulations over 200 days for each scenario shown. Vaccination of residents is modeled as beginning on the same 

day that an infection is introduced to the prison (in the main analysis, vaccination is scaled-up prior to introduction). 

“Idealized” vaccine acceptance is the same as “best-case” vaccine acceptance in the main text (90% across all ages). 
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Figure S27: Cumulative resident infections over 200 days by in-person activity status, widespread use of 

NPIs, and baseline immunity, conditional on introduction of a single new variant infection and 80% staff 

vaccination coverage 

 

Figure shows average cumulative infections among residents across 500 model simulations over 200 days for each 

scenario shown. Staff vaccination coverage is set at 80% (compared to 40% in the main analysis). “Idealized” 

vaccine acceptance is the same as “best-case” vaccine acceptance in the main text (90% across all ages). 
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Figure S28: Cumulative resident cases requiring hospitalization over 200 days by in-person activity status, 

widespread use of NPIs, and baseline immunity, conditional on introduction of a single new variant infection 

and 80% staff vaccination coverage 

 

Figure shows average cumulative severe cases (requiring hospitalization) among residents across 500 model 

simulations over 200 days for each scenario shown. Staff vaccination coverage is set at 80% (compared to 40% in 

the main analysis). “Idealized” vaccine acceptance is the same as “best-case” vaccine acceptance in the main text 

(90% across all ages). 
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Figure S29: Cumulative resident infections over 200 days with in-person activities opened and varying 

effectiveness of NPIs and baseline immunity, conditional on introduction of a single new variant infection  

 

Figure shows average cumulative infections among residents across 500 model simulations over 200 days for each 

scenario shown. In-person activities re-open in all scenarios, but the effectiveness of NPIs is varied (compared to 

75% in the main analysis). The 0% effective NPIs scenarios corresponds to the scenario with no NPIs in the main 

analysis. “Idealized” vaccine acceptance is the same as “best-case” vaccine acceptance in the main text (90% across 

all ages). 
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Figure S30: Cumulative resident cases requiring hospitalization over 200 days with in-person activities 

opened and varying effectiveness of NPIs and baseline immunity, conditional on introduction of a single new 

variant infection  

 

Figure shows average cumulative severe cases requiring hospitalization among residents across 500 model 

simulations over 200 days for each scenario shown. In-person activities re-open in all scenarios, but the 

effectiveness of NPIs is varied (compared to 75% in the main analysis). The 0% effective NPIs scenarios 

corresponds to the scenario with no NPIs in the main analysis. “Idealized” vaccine acceptance is the same as “best-

case” vaccine acceptance in the main text (90% across all ages). 
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Figure S31: Sensitivity analysis on daily infection importation rate: comparison of cumulative resident 

infections over 200 days for prisons with resumption of in-person activities and realistic vaccine coverage, 

varying baseline immunity, NPI usage, and whether variant infection is imported once or repeatedly 
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Figure shows average cumulative infections among residents across 500 model simulations over 200 days with no 

importations after day 1 (main analysis; single importation), 0.05% daily incidence among susceptible staff 

members (sensitivity analysis; 0.05% daily risk), and 0.1% daily incidence among susceptible staff members (main 

analysis; 0.1% daily risk) for each scenario shown. In the realistic vaccine coverage scenario, vaccine coverage 

varies by age (see Tables S1 and S5). Panels are distinguished by the type of prison modeled.  

 

Figure S32: Cumulative resident infections over 200 days by in-person activity status, widespread use on 

NPIs, and baseline immunity, conditional on continual importation of variant infections with 0.05% daily 

incidence 

 

Figure shows average cumulative infections among residents across 500 model simulations over 200 days with 

0.05% daily incidence among susceptible staff members for each scenario shown (compared to 0.1% daily incidence 

in the main continued importations analysis shown in Figure 4). “Idealized” vaccine acceptance is the same as “best-

case” vaccine acceptance in the main text (90% across all ages). 
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Figure S33: Cumulative resident infections over 200 days by in-person activity status, widespread use on 

NPIs, and baseline immunity, conditional on introduction of a single variant infection with reduced staff and 

activity transmission 

 

Figure shows average cumulative infections among residents across 500 model simulations over 200 days for each 

scenario shown. The probability of infection per infected activity contact and staff-staff and staff-resident effective 

contact rates are halved compared to the main analysis. “Idealized” vaccine acceptance is the same as “best-case” 

vaccine acceptance in the main text (90% across all ages). 
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Figure S34: Cumulative resident infections over 200 days by in-person activity status, widespread use on 

NPIs, and baseline immunity, conditional on continual importation of variant infections with reduced staff 

and activity transmission 

 

Figure shows average cumulative infections among residents across 500 model simulations over 200 days with 0.1% 

daily incidence among susceptible staff members for each scenario shown. The probability of infection per infected 

activity contact and staff-staff and staff-resident effective contact rates are halved compared to the main analysis. 

“Idealized” vaccine acceptance is the same as “best-case” vaccine acceptance in the main text (90% across all ages). 
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Figure S35: Distribution of cumulative resident infections over 200 days by in-person activity status, use of 

NPIs, and baseline immunity, conditional on introduction of a single variant infection 
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The results in this figure can be interpreted as possible outcomes given the base-case parameter values and model 

assumptions for a given scenario and prison that could occur due to randomness. In prisons with mostly dorms and 

low baseline immunity, large outbreaks occur when activities are re-opened absent NPIs in almost all 500 

simulations. There is more variation in cumulative infection risk in prisons with dorms and high immunity and in 

prisons with cells and low immunity, indicating that these types of prisons could experience more variation in 

outcomes. Across all settings except those with mostly cells and high baseline immunity, resumption of in-person 

activities without NPIs led to a substantial increase in cumulative infections in the vast majority of simulations.    

 

Figure shows average cumulative infections among residents across 500 model simulations over 200 days for each 

scenario shown. “Idealized” vaccine acceptance is the same as “best-case” vaccine acceptance in the main text (90% 

across all ages). 


