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Supplementary Note 1. Band structure calculation and valley Chern number

We calculate the band structure of tMBG using the standard continuum model. The Hamiltonian is

H = HMG +HBG +HM (1)

We have

HMG =
∑
k
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(2)

where k̃ = R(−θ/2)k, with twist angle θ. R(ϕ) is the transformation matrix for anticlockwise rotation with angle ϕ.

The Hamiltonian for the bilayer graphene is
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Ψ(k) (3)

where k̃ = R(θ/2)k and Ψ†(k) = (c†A1
(k), c†B1

(k), c†A2
(k), c†B2

(k)).

Finally the interlayer moiré tunneling term is

HM =
∑
k

∑
j=0,1,2

(c̃†A(k), c̃†B(k))

(
αtM tMe

−i 2π3 j

tMe
i 2π3 j αtM

)(
cA1

(k + Qj)
cB1

(k + Qj)

)
+ h.c. (4)

where Q0 = (0, 0), Q1 = 1
aM

(− 2π√
3
,−2π) and Q2 = 1

aM
( 2π√

3
,−2π), with aM as the moiré lattice constant.

We use parameters (t, γ1, γ3, γ4) = (−2610, 361, 283, 140) meV. For the interlayer tunneling, we use tM = 110 meV
and α = 0.5. δ is the potential difference, which is tuned by the displacement field, D.

The dispersion at δ = −40 meV and δ = 40 meV for twist angle θ = 1.16◦ is shown in Fig. 1. The valley Chern
numbers, Cv, for the conduction band are 1 and 2, respectively. Note that we take a convention in which δ > 0
corresponds to the electric field pointing from the monolayer to the bilayer graphene (similarly, this corresponds to
D > 0).

Supplementary Figure 1. Band structure of tMBG at twist angle θ = 1.16◦. a, δ = −40 meV and b, δ = 40 meV. The
valley Chern number of the lowest moiré conduction band (yellow) is Cv = 1 for δ = −40 meV, and Cv = 2 for δ = 40 meV.
The inset in a shows the relevant high symmetry points in the first Brillouin zone.
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Supplementary Note 2. Calculation of valley wave dispersion

For simplicity, we project the Hamiltonian to include only the conduction band. However, the other remote bands
still play a role in renormalizing the dispersion of the active conduction band from the interaction:

HV =
1

2

1

Ns

∑
q

V (q)
∑
k1

∑
k2

c†a;m1
(k1 + q)c†b;n1

(k2 − q)cb;n2
(k2)ca;m2

(k1)λa;m1m2
(k1,q)λb;n1n2

(k2,−q) (5)

where,

V (q) =
15nm

aM

1392meV

ε

1

qaM
tanh(qr0) (6)

Here r0 is the screening length from the metallic contact, which we use r0 = 5aM . In the above λa;mn(k,q) =
〈µa;m(k + q)|µb;n(k)〉 is the form factor. Here a, b = +,− is the valley index and m,n is the band index.

Let us fully fill all of the bands below the conduction band. Then the kinetic term of the conduction band is
renormalized:

HK = H0
K +

∑
k

ξH(k)c†(k)c(k) +
∑
k

ξF (k)c†(k)c(k) (7)

where c is the operator for the valley + of the conduction band. εH is from the Hartree term and εF is from the Fock
term.

We have

ξH(k) =
∑
GM

V (GM )ρ(GM )λ+(k,GM ) (8)

where,

ρ(GM ) = 4
1

Ns

∑
m∈O

λa;mm(k,GM ) (9)

Here the factor 4 comes from spin and valley degeneracy. O is the set of occupied bands.
The Fock term is

ξF (k) = − 1

Ns

∑
q

V (q)
∑
m∈O

|λa;mc(k,q)|2 (10)

where m ∈ O is the index of the occupied band. c is the index of the conduction band.
Next, we calculate the valley wave assuming that the ground state is spin-valley polarized at ν = 1. Without loss

of generality, we assume the ground state fully occupies +, ↓. A collective excitation with momentum q is generated
by a particle-hole boson bab;q(k)† = c†a;↑(k + q)cb;↓(k), where a, b = +,− labels the valley. Due to the SU(2)×SU(2)

symmetry, the dispersion of the exciton corresponding to c†+;σ(k+ q)c−;σ′(k) does not depend on the spin index σσ′.
In the following we will only consider the spin-singlet valley-flip exciton.

For a fixed momentum q, we can derive Hamiltonian for bab;q(k):

Hab(q) = HV
ab(q) +HK

ab(q) (11)

where,

HV
ab(q) = −

∑
k∈MBZ

∑
q̃

V (q̃)
(
λa(k + q, q̃)λb(k + q̃,−q̃)b†ab;q(k + q̃)bab;q(k)

+
∑
q̃

V (q̃)λb(k, q̃)λb(k + q̃,−q̃)b†ab;q(k)bab;q(k)

(12)
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and

HK
ab(q) =

∑
k∈MBZ

(ξa(k + q)− ξb(k))b†ab;q(k)bab;q(k) (13)

where ξa is the dispersion after including the renormalization from remote bands.
For a fixed momentum q, the ground state of Hab(q) gives the energy of the excitation, ωab(q). Here ω++(q) is

the spin wave excitation and ω+−(q) is the spin-valley wave excitation.
We focus on the intervalley exciton ω+−(q). As shown in Fig. 2c of the main text, when we increase the dielectric

constant ε, the minimum energy of the exciton becomes negative at momentum q = K ′ in the mini Brillouin Zone
(MBZ), suggesting an instability of the polarized ground state towards an intervalley coherent (IVC) state. As the
magnon dispersion has its minimum at a non-zero momentum, the resulting IVC order must also carry a non-zero
momentum, and is distinct from the IVC previously proposed in tBLG [1]. We denote this as a “Q-IVC” to emphasize
the non-zero momentum Q.

Supplementary Note 3. Symmetry analysis of Q-IVC order

As discussed above, the valley polarized ground state is unstable because the energy of the valley magnon (or
exciton) becomes negative when we increase the dielectric constant ε. The condensation of valley magnons will lead
to an IVC state. Here we perform a general symmetry analysis of the possible IVC states. Given that the minimum
of valley magnon dispersion is generically at non-zero momentum Q, the resulting IVC carries momentum Q.

We consider a general IVC ansatz described by a mean field theory:

HM = −
∑
k

[F (k)c†+(k +
1

2
Q)c−(k− 1

2
Q) + F ∗(k)c†−(k− 1

2
Q)c+(k +

1

2
Q)] (14)

where F (k) represents the profile of the intervalley exciton, similar to ∆(k) in Cooper pairing. Here we assume that
the exciton is condensed at momentum Q, which may not be zero.

Using Tc+(k)T−1 = c−(−k) and Tc−(k)T−1 = c+(−k), we find:

THMT
−1 = −

∑
k

[F ∗(k)c†−(−k− 1

2
Q)c+(−k +

1

2
Q) + F (k)c†+(−k +

1

2
Q)c−(−k− 1

2
Q) (15)

Then the time reversal symmetry HM = THMT
−1 requires

F (k) = F (−k) (16)

For an IVC state in the case of non-zero Cv, F (k) needs to acquire the Berry phase of the two bands with opposite
signs of the Chern number. A general argument shows that the complex field F (k) cannot be a constant in momentum
space, and should have total vorticity equal to 2Cv. As a result, one usually finds that F (k) 6= F (−k). This is reflected
in our direct calculation of the intervalley exciton wavefunction on top of the spin-valley polarized ground state (see
the inset of Fig. 2c of the main text). As a consequence, the Q-IVC order breaks the time reversal symmetry. Note
that there is always a degenerate IVC state with F̃ (k) = F (−k) as the time reversal partner of the IVC with F (k).
These two IVC states are degenerate at zero magnetic field, but split for |B| > 0. This degeneracy can also be broken
spontaneously at B = 0.

Let us also comment on the translation symmetry for the Q-IVC order. If only the IVC corresponding to one
momentum Q is condensed, the resulting phase still preserves the moiré translation symmetry because we can apply
a global phase generated by the valley charge. We call the IVC in this class a uniform Q-IVC. Note that the
non-zero Q can be gauged away by applying a constant gauge field Aτz, where τz is the Pauli matrix in valley
space and A = −Q. Theoretically the Q-IVC order can hence be treated in the same way as the usual IVC with
Q = 0, and a gap will be opened if the Q-IVC order is sufficiently strong at integer filling. Microscopically, however,
the momentum Q is still meaningful when considering the density profile at the atomic scale: ρ(r) = Ψ†K(r)ψK(r) +

Ψ†K′(r)ψK′(r)+(Ψ†K(r)ψK′(r)eik·r+h.c.), where ΨK/K′(r) is the electron operator for the valleyK andK ′ respectively.

If there is a Q-IVC order, 〈〈ψ†K(r)ψK′(r)〉 ∼ eiQ·r, and as a result the density profile will have a component ρ(r) =
ρ0 + A cos ((K + Q) · r). Such a density profile with momentum K + Q can in principle be observed with scanning
tunneling microscopy. Note here that |Q| ∼ 4π

3aM
where aM is the moiré lattice constant. On the other hand |K| = 4π

3a
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is much larger given that a is the original graphene lattice constant. Therefore the momentum K + Q of the density
profile is only slightly different from the Kekulé pattern with momentum K.

However, if the IVC with at least two distinct momenta Q1,Q2 condenses, the final state breaks the moiré translation
symmetry and there is a charge density wave order (CDW) at momentum Q1 −Q2. If there is a C3 symmetry, the
valley magnon dispersion should have minima at three Q related by the C3 rotation. However, when there is strain,
C3 is broken and one momentum will be selected and the final phase is likely to be the uniform Q-IVC order with
only one momentum Q.

Supplementary Note 4. Summary of observed correlated states in tMBG

Table 1 summarizes the correlated states observed at all integer ν in the conduction band of tMBG for both signs
of D in devices over a range of twist angles, 0.89◦ ≤ θ ≤ 1.385◦. The data are compiled from devices D1, D2, and D3
reported here, as well as from devices D1 and D2 of Ref. [2] and devices D1, D3, and D4 of Ref. [3]. The rotational
alignment of the tMBG to the top and bottom encapsulating BN is a latent parameter. We have no reliable estimate
of these twist angles for any of our devices, nor do we see obvious signatures of close rotational alignment, however
this may nevertheless play a role in driving variations between tMBG devices with otherwise comparable twist angles.

We now comment on a number of details of the collectively reported tMBG devices. First, we note that in principle it
possible that devices with θ ≥ 1.25◦ from Refs. [3] and [4] also exhibit weak AHE around ν = 1 and 3 for D < 0 states,
however such measurements are not reported in those manuscripts, so we are unable to make such a determination.
We also note that a second device with θ = 1.25◦ was also reported in Ref. [3], exhibiting a very similar phase diagram
to the first. However, measurements of the AHE are not shown, and we therefore omit it from the table. Finally,
we note that devices with larger twist angles up to ∼ 1.6◦ have exhibited signatures of symmetry broken states for
D > 0 [2, 4], however these states all exhibit metallic temperature dependence and have not been investigated in
detail. We also omit these devices from the table.

Although identical sets of measurements have not been performed for all devices, the table appears to reveal a
number of trends in the evolution of the correlated states with θ. For D > 0, the ν = 2 state is a robust trivial
insulator over a wide range of twist angles, and appears to be spin-polarized from measurements of the gap with
in-plane magnetic field, B|| [2]. A Chern insulator state at B = 0 appears to emerge around ν = 3 only for a small
range of twist angles near 1.25◦. The AHE appears to approach a quantization at h/2e2, suggesting the band has
Cv = 2 at this twist angle. For other twist angles, symmetry-broken states at ν = 3 are only observed at finite B.
The ν = 1 state exhibits more complicated behavior. A gapped state is observed in one device with θ = 0.89◦ [2],
but not in another at 0.90◦ [3]. In the former, a large AHE is observed, with quantization that appears to approach
h/e2, suggesting the band has Cv = 1 at this twist angle. This behavior is consistent with a theoretically anticipated
topological transition with twist angle around θ = 1.0◦ [5]. The gap closes as the twist angle increases to around
1.05◦, before reemerging again in devices with twist angles larger than 1.13◦. The unusual behavior surrounding this
state has been discussed at length in the main text, but in short appears to be consistent with a transition from an
IVC to VP state with increasing twist angle. The absence of a gapped state at slightly smaller twist angles of ∼ 1.05◦

is superficially consistent with this picture, understood collectively as a decrease in U/W as the twist angle grows
over this range of angles.

For D < 0, the behavior of the correlated states appears to be less sensitive to twist angle. Correlated states with
metallic temperature dependence are observed in devices within the approximate range 1.05◦ . θ . 1.25◦. The lone
exception is the ν = 1 state in device D2, which becomes weakly insulating at temperatures below 1 K. In all devices
for which there are suitable measurements, the correlated metallic states at ν = 1 and 3 have an associated AHE.
Although overlooked initially, we note that a retrospective analysis of the θ = 1.05 − 1.08◦ device from Ref. [2] also
reveals a similar AHE to the devices we report here. Gradual transitions to insulating behavior are observed upon
increasing B at ν = 1, whereas abrupt transitions (accompanied by hysteresis in device D2) are observed at ν = 2 and
3. Previous measurements from device D1 in Ref. [2] show that these states are nearly insensitive to B||, suggesting
that all of the phase transitions are driven by orbital effects.
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D > 0, ν = 1 D > 0, ν = 2 D > 0, ν = 3 D < 0, ν = 1 D < 0, ν = 2 D < 0, ν = 3

0.89◦ (Ref. [2]) Chern insulator
(approaching
quantization
with C = 1)

weakly
insulating

none none none none

0.90◦ (Ref. [3]) none none none none none none
1.05− 1.08◦

(Ref. [2])
none (weak

state emerges in
large B||)

trivial insulator
(gap grows with
B||, suggesting
spin-polarized)

none (weak
state emerges in

large B||)

metallic
resistive state

with AHE
(incipient
insulator
emerges

gradually with
B)

metallic
resistive state

(insulator
emerges

abruptly at
finite B)

metallic
resistive state

with AHE
(insulator
emerges

abruptly at
finite B)

1.13◦ (device
D1)

trivial insulator
(AHE upon

doping)

trivial insulator none metallic
resistive state

with AHE
(insulator
emerges

gradually with
B)

metallic
resistive state

(insulator
emerges

abruptly at
finite B)

metallic
resistive state

with AHE
(insulator
emerges

abruptly at
finite B)

1.14◦ (device
D3)

trivial insulator
(AHE upon

doping)

trivial insulator none metallic
resistive state

with AHE
(insulator
emerges

gradually with
B)

metallic
resistive state

(insulator
emerges

abruptly at
finite B)

metallic
resistive state

with AHE
(insulator
emerges

abruptly at
finite B)

1.19◦ (device
D2)

trivial insulator
(AHE upon

doping)

trivial insulator obscured by
poor contacts

trivial insulator
(AHE upon

doping)

metallic
resistive state

(insulator
emerges

abruptly at
finite B)

metallic
resistive state

with AHE
(insulator
emerges

abruptly at
finite B)

1.25◦ (Ref. [3]) Chern insulator
(approaching
quantization
with C = 2)

trivial insulator Chern insulator
(approaching
quantization
with C = 2)

metallic
resistive state

metallic
resistive state

metallic
resistive state

1.385◦ (Ref. [3]) metallic with
weak AHE

trivial insulator symmetry-
broken
metal

none none none

Supplementary Table 1. Summary of the properties of the correlated states in devices D1, D2, and D3, as well as in selected
devices from Refs. [2, 3]. Entries reading “none” indicate that no correlated state is clearly observed or reported.
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Supplementary Figure 2. Optical microscope images of the three tDMG devices. The twist angle of each device is
denoted at the top left corner of each image. Devices are encapsulated in BN flakes with thicknesses of 10-30 nm. All scale
bars are 10 µm.
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Supplementary Figure 3. Additional transport characterization and Landau fan diagrams for D < 0 in device
D1 (θ = 1.13◦). Maps of a, ρxx at B = 0 and b, ρxy antisymmetrized with |B| = 0.5 T, acquired at T = 300 mK. The
primary difference in ρxx at B = 0 compared with the symmetrized map at |B| = 0.5 T shown in Fig.1a of the main text is
the complete absence of a correlated insulating state at ν = 3. c-d, ρxx as a function of filling factor at D = −0.45 V/nm (c)
and D = −0.57 (d), acquired at different T below 1 K. All correlated states at ν = 1, 2, and 3 exhibit metallic temperature
dependence. e-j, Landau fan diagrams at D = −0.49 V/nm (e-g) and D = −0.57 V/nm (h-j), acquired at T = 300 mK.
The leftmost column shows ρxx, the central column shows ρxy, and the rightmost column schematically denotes the observed
states following the convention established in Fig.3 of the main text. In e-g, we observe a very strong (1, 3) state that emerges
and becomes quantized at very small B. This likely reflects the anticipated Cv = 1 of the band at D < 0, however we are
unable to determine this unambiguously in the absence of a QAH state at B = 0. We additionally observe a clear Landau fan
corresponding to the correlated state at ν = 2 at very low fields in (e-g). These gapped states close at the phase transition
(B ∼ 2.8 T) and immediately reopen at higher field along with a robust trivial insulating state, (0, 2). Although this implies a
first-order phase transition between two different correlated states, we are not able to unambiguously identify the ground state
order of either from our measurements.
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Supplementary Figure 4. Additional transport characterization and AHE in device D2 (θ = 1.19◦). Maps of a, ρxx
at B = 0 and b, ρxy antisymmetrized with |B| = 0.5 T, acquired at T = 15 mK and T = 500 mK respectively. Artifacts due
to poor contacts obscure a portion of the map in (a), preventing an analysis of the ν = 3 state for D > 0 in this device. c-d,
ρxx (top) and ρyx (bottom) acquired as B is swept back and forth at ν and D indicated by the labels and the associated gray
and purple markers in (a), acquired at T = 500 mK. Similar to device D1 shown in Fig.1 of the main text, we observe AHE
for D > 0 only within the “halo” region (ν < 1) associated with the correlated insulating state at ν = 1. No obvious AHE
signatures are observed precisely at ν = 1. e-f, ρyx acquired as B is swept back and forth at ν and D indicated by the labels
and the associated blue and red markers in (b). We observe a weak AHE in the correlated metallic states nearby both ν = 1
and 3, qualitatively similar to the behavior of device D1 as shown in Fig.1 of the main text. Data are acquired at T = 500 mK
for e and at T = 50 mK for f. g, ∆ρyx as a function of doping at D = −0.55 V/nm. In contrast to all other devices, we
observe a trivial insulating state precisely at ν = 1, with no clear signatures of an AHE (see also Supplementary Information
Figs. 8c-d). h, ∆ρxx as a function of doping at D = −0.55 V/nm. ∆ρxx is shown rather than ∆ρyx owing to mixing effects
observed in the latter for the specific contact pairs tested. Data in g-h is acquired at T = 300 mK.
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Supplementary Figure 5. Additional transport characterization and Landau fan diagrams in device D2 (θ = 1.19◦).
Maps of a, ρxx at B = 0 and b, ρxy antisymmetrized with |B| = 0.5 T, acquired at T = 15 mK and T = 500 mK respectively.
c-d, Landau fan diagram at D = 0.40 V/nm, acquired at T = 100 mK. Similar to device D1 shown in the main text, we
observe a trivial insulating state at ν = 1 for small B, which appears to cede to a (1, 1) Chern insulator state at higher field
(marked by dashed black line). States near ν = 3 are obscured by poor contacts, and are not shown. e-j, Landau fan diagrams
at D = −0.37 V/nm (g-h), D = −0.45 V/nm (i-j), and D = −0.50 V/nm (k-l), acquired at T = 100 mK. The left column
shows ρxx and the right column shows ρxy. We find that the critical fields, Bc, corresponding to the onset of insulating states
at ν = 1, 2, and 3 depend on D. All exhibit signatures of first-order phase transitions at or near ν = 2 and 3, but a continuous
onset of insulating behavior at ν = 1.
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Supplementary Figure 6. Transport characterization, AHE, and Landau fan diagrams in device D3 (θ = 1.14◦). a,
Map of ρxx at B = 0, acquired at T = 15 mK. This device did not have suitable working contacts to measure the corresponding
ρxy without large mixing with ρxx. b, AHE shown at different ν near ν = 1 with D = 0.46 V/nm. R is shown here due to
lack of proper ρyx contacts, it thus exhibits features of both ρxx and ρyx. Similar to devices D1 and D2, we observe the AHE
nearby ν = 1, but trivial insulating behavior at ν = 1. c, Landau fan diagram at D = 0.44 V/nm, acquired at T = 300 mK.
Similar to devices D1 and D2, we observe a trivial insulating state at ν = 1 for small B, which appears to cede to a sequence
of correlated Chern insulator states at higher field. Chern insulator states corresponding to ν = 3 emerge only at high field,
similar to device D1. d-e, ∆ρxx as a function of doping at D = −0.52 V/nm nearby ν = 1 (d) and D = −0.45 V/nm nearby
ν = 3 (e), acquired at T = 300 mK, as indicated by the black lines in a. We observe clear AHE for a wide range around ν = 3,
and signatures of a very weak AHE near ν ∼ 0.9.
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Supplementary Figure 7. Temperature dependence of correlated insulating states at ν = 1. a-b, Maps of ρxx for
D > 0 in device D1, acquired at T = 2 K (a) and T = 0.3 K (b). Over a small range of D, the resistivity at ν = 1 increases
with decreasing temperature, marking insulating behavior. c, ρxx as a function of filling factor at D = −0.47 V/nm in device
D2, measured at selected temperatures from 1 K to 200 mK, in steps of 200 mK. A correlated insulating state emerges precisely
at ν = 1, as indicated by the sharp peak in ρxx emerging as the temperature is lowered. All other correlated states remain
metallic down to base temperature.
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Supplementary Figure 8. Absence of the AHE precisely at ν = 1 for insulating states. a, ρxx and b, ρyx measured
as B is swept back and forth at ν = 1.03 for D = 0.47 V/nm in device D1. c, ρxx and d, ρyx measured as B is swept
back and forth at ν = 0.99 for D = −0.55 V/nm in device D2. In both cases, insulating behavior is observed at ν = 1 (see
Supplementary Information Fig. 7). Neither exhibit any clear signatures of AHE; most notably, we do not observe a hysteresis
loop encircling B = 0. The state at ν = 1 has very high resistance in device D1, and the measured ρyx appears to have large
mixing with ρxx. Owing to the noise in the measurements and the insulating behavior of the state, calculating ∆ρyx leads
to rapidly oscillating negative and positive values, as seen in Fig.1e of the main text. We observe abrupt but small jumps at
various values of |B| > 0 in (d). We do not know the origin of these features, and although they may potentially indicate some
form of disordered magnetism, they are distinct from the single hysteresis loops around B = 0 observed for ν < 1, as shown in
Supplementary Information Figs. 4e and g. We also observe negative magnetoresistance in a and c that is consistent with the
magnetic field-induced suppression of the insulating states detailed in Fig. 2 of the main text.
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Supplementary Figure 9. Absence of the AHE near ν = 1 and 3 in tDBG. a, Map of ρxx for a twisted double bilayer
graphene (tDBG) device with θ = 1.30◦. We observe a robust correlated insulating state at ν = 2, and very weakly developed
correlated insulating states at ν = 1 and 3. We also observe small “halo” features surrounding ν = 1 and 3, indicating the
formation of new symmetry-broken Fermi surfaces at each. b-c, Antisymmetrized ρxy measured as the field is swept back and
forth near ν = 1 (b) and ν = 3 (c), at ν and D indicated by the labels and the associated yellow and red markers in (a). We
do not observe any signatures of an AHE or hysteresis in these measurements, nor at any other measured value of ν and D.
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