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Abstract  

Multiple human behaviors improve early in life, peaking in young adulthood, and declining thereafter. Several properties of brain 
structure and function progress similarly across the lifespan. Cognitive and neuroscience research has approached aging primarily 
using associations between a few behaviors, brain functions, and structures. Because of this, the multivariate, global factors 
relating brain and behavior across the lifespan are not well understood. We investigated the global patterns of associations 
between 334 behavioral and clinical measures and 376 brain structural connections in 594 individuals across the lifespan. A 
single-axis associated changes in multiple behavioral domains and brain structural connections (r=0.5808). Individual variability 
within the single association axis well predicted the age of the subject (r=0.6275). Representational similarity analysis evidenced 
global patterns of interactions across multiple brain network systems and behavioral domains. Results show that global processes 
of human aging can be well captured by a multivariate data fusion approach. [147] 

 

Data availability 

The source data are provided by the Cambridge Aging Neuroscience Project https://camcan-archive.mrc-cbu.cam.ac.uk/. Brain 
data derived as part of this project and used as features for all the analyses are available on brainlife.io/pubs:  
brainlife.io/pubs:https://doi.org/10.25663/brainlife.pub.21 

 

Code availability 

Code is available on github at https://github.com/bcmcpher/cca_aging and as web services reproducing the analyes at  
brainlife.io/pubs:https://doi.org/10.25663/brainlife.pub.21 

 

Acknowledgments 
This research was supported by NSF OAC-1916518, NSF IIS-1912270, NSF IIS-1636893, NSF BCS-1734853, Microsoft 
Faculty Fellowship to F.P., NIH 5T32MH103213-05 to William Hetrick. We thank Soichi Hayashi, and Josh Faskowitz for 
contributing to the development of brainlife.io, Craig Stewart, Robert Henschel, David Hancock and Jeremy Fischer for support 
with jetstream-cloud.org (NSF ACI-1445604). 

 
 

 

 

mailto:pestilli@utexas.edu
https://camcan-archive.mrc-cbu.cam.ac.uk/
http://brainlife.io/pubs:https:/doi.org/10.25663/brainlife.pub.21
https://github.com/bcmcpher/cca_aging
http://brainlife.io/pubs:https:/doi.org/10.25663/brainlife.pub.21


2 

 

Supplemental Figure 1. Variation across age of behavioral and network measures. a. Behavior histograms and binned 
averages across age. Example histogram of the reaction times in the force matching task (top left; Shafto et al., 2014), the 
accuracy of matching the force (top center; Shafto et al., 2014), and the mini-mental state exam (MMSE; Shafto, et al., 2014; top 
right) are shown from the sample. Average and ±1 s.d. for each behavioral task, respectively. Data was binned in decades of 
subjects’ age (bottom row). b. Network histograms and binned averages across age. Example histogram of the graph density 
(bottom left), the graph efficiency (bottom center), and the maximum node degree (bottom right) are shown from the sample. The 
average values and variance are binned for each decade, showing the mean and 2 units of standard error for the respective 
measure (bottom row). 
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Supplemental Figure 2a, b, c, and d. The flow of data through the analysis. a. Behavioral domains for tasks and questionnaires. 
Variables estimates by the CAN consortium from multiple behavioral domains (left, blue and orange) were collected for each subject and 
organized into a matrix (D1) with 594 (n) subjects and 334 variables (m1). Node degree was estimated for each subject’s brain network 
matrix (right, black and orange). An example pair of nodes and an edge is shown, along with a ball and stick diagram showing the values 
of node degree. The measures of node degree are a vector of 376 entries per subject. The node degree vectors for each subject were 
stacked to build the Brain Network Data matrix (D2). D1 and D2 were normalized by computing the z-scores by columns. b. Principal 
component analysis for dimensionality reduction. The matrices D1 and D2 have size 594 X 334 and 594 X 376, respectively. A 
principal component analysis was performed independently for D1 and D2 to reduce the large sets of variables into a smaller set of 
components that still predicted most of the variance in the data (Smith et al., 2015). We estimated Eigenvalues and Eigenvectors from D1 
and D2, and used the eigenvector matrices as data for a canonical correlation analysis (CCA, see next). We note that we performed 
multiple PCAs, with different numbers of principal components and used the number of principal components to tune the model prediction 
of the subjects age (See Supplemental Figure 2e-g). c. Performing the canonical correlation. The eigenvectors matrices obtained via 
PCA (E1 and E2) were used as input data to a CCA analysis. CCA estimated the inner weights (a and b) and canonical factors (F1 and F2) 
simultaneously using the behavioral and brain network eigenvectors that maximized the correlation between the two input matrices (E1 and 
E2). The correlation from the first component, second and subsequent components estimated in F1 and F2 and the focus of analysis (See 
Figure 2 and 3 and associated Supplemental Figures). d. Plotting the CCA axis. Example of first canonical axis (light orange) and 
second canonical axis (dark orange) estimated from the CCA. 
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Supplemental Figure 2e. Approach to repeated 5-fold cross-validation for the canonical correlation analysis (CCA). We used 5-fold 
cross-validation to find the CCA model that simultaneously best predicted the brain networks and behavioral data. To do so, we split the data 
into 5 groups of subjects ([1] dark and light gray). Eighty percent of the data ([1] dark gray) was used to estimate the inner weights of the CCA 
model for both the behavioral and the brain network data – [2] a and b (see also Supplementary Figure 2c). The estimated weights were 
then used to estimate the CCA factors for the remaining, left-out 20% of the data ([3] cyan and light grey). The canonical factors for the 
complete set of subjects were estimated by repeating this process five times shifting the subjects utilized during each cross-validation fold 
(compare [1], [2], [3] and [4]). The predicted scores for each subject were then combined into a single estimate of all the predicted factors for 
every subject [4]. This 5-fold cross-validation process [1-4] was repeated 15,000, each time utilizing different 80/20 splits of the subjects. This 
resulted in 15,000 estimates of each canonical factor [5]. Finally, the median (red line) and standard deviation of the estimated canonical 
factors were computed for each distribution of 15,000 estimates [6]. Blue stars represent the example factor used to build the distributions.  
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Supplemental Figure 2f, g and h. CCA Model selection via 
cross-validated grid search of PCs.  
 
f. A conceptual diagram of the PCA tuning space. A simplified 
diagram illustrates the grid search that was performed to test 
different numbers of principal components. Every pair of PCA 
components between 2 and 100 was estimated during the 
processing of the data. The resulting canonical correlation and 
the correlation of the canonical axis with age are reported. The 
highest correlation, at 38 x 40 was selected for interpretation.  
 
g. The entire search space of the parameter tuning. This 
shows the correlation of age for every parameter combination 
tested in the grid search. Yellow values indicate a high correlation 
with age while blue indicates the correlation between the datasets 
is low. We selected the PCA pair with the highest correlation.  
 
h. The standard error estimate of the correlation. The 
standard error estimate of the correlation with age. The darker 
blue the value, the lower the standard error and the more 
confidence in the estimate.  
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Supplemental Figure 2i and j. All canonical correlations and all axis correlations with age for M1.  
 
i. All correlations estimated for each canonical axis for the final tuned PCA selection. Each circle (blue) represents the cross-
validated correlation estimated along the canonical axis. Each error bar represents 2 units of standard error for the estimate obtained via 
cross-validation. The gray band represents the 5th and 95th percentiles of a bootstrapped null distribution.  
  
j. Correlation with age for each canonical axis for the final tuned PCA selection. Each circle (red) represents the correlation of age to 
the estimated canonical axis of each canonical factor. Each error bar represents 2 units of standard error for the estimate obtained via 
cross-validation. The gray band represents the 5th and 95th percentiles of a bootstrapped null distribution.  
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Supplemental Figure 2k and l. All canonical correlations and all axis correlations with age for M2.  
 
k. All correlations estimated for each canonical axis for the final tuned PCA selection. Each circle (blue) represents the cross-validated 
correlation estimated along the canonical axis. Each error bar represents 2 units of standard error for the estimate obtained via cross-
validation. The gray band represents the 5th and 95th percentiles of a bootstrapped null distribution.  
  
l. Correlation with age for each canonical axis for the final tuned PCA selection. Each circle (red) represents the correlation of age to 
the estimated canonical axis of each canonical factor. Each error bar represents 2 units of standard error for the estimate obtained via cross-
validation. The gray band represents the 5th and 95th percentiles of a bootstrapped null distribution.  
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Components of brain and behavior contributing to the CCA results. 

 

Supplemental Figure 3a. The recovery of variables loadings. To interpret how individual variables contribute to the CCA axis (L, 
purple), a correlation is taken between the original variables (D, blue) and the estimated canonical factors (F, red). By finding the 
correlation between each variable in D to a single factor in F, the loadings for every variable to the factor are recovered. By finding the 
correlation between a variable in D to every factor in F, the loading of the variables onto every factor is recovered. All variables by factor 
loadings were organized into matrix (L). These steps are performed for the brain and behavioral domain data (D1 and D2) independently to 
generate two variable loading matrices, L1 and L2. 
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Supplemental Figure 3b. Loadings for the second canonical axis (CA2) of M1. The arrows represent the strength of the correlation of the 
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variable to the second canonical axis. Blue and red arrows represent positive and negative loadings significantly different from 0 while cyan 
and pink represent positive and negative loadings that are not significantly different from 0. Error bars represent mean±2 standard errors 
(s.e.). Despite CA2 being marginally outside the range of the null distribution (Supplemental Figure 2k), there are no cross-validated 
loadings that are significantly different from zero that contributed to this finding. Due to the lack of significantly contributing variable loadings 
in CA2 we focused on the single factor solution for our presented findings. 
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Supplemental Figure 3c. Loadings for the first canonical axis (CA1) of M2. The arrows represent the strength of the correlation of the 
variable to the second canonical axis. Blue and red arrows represent positive and negative loadings significantly different from 0 while cyan 
and pink represent positive and negative loadings that are not significantly different from 0. Error bars represent mean±2 standard errors 
(s.e.). Despite CA1 being marginally outside the range of the null distribution (Supplemental Figure 2k), there are no cross-validated 
loadings that are significantly different from zero that contributed to this finding. Due to the lack of significantly contributing variable 
loadings in CA1 we focused on the single factor solution for our presented findings. 

 

The reader can compare the loadings for M1 and M2 by comparing Figure 3a and b and Supplemental Figure 3b 

and c. Figure 3a and b reports the loadings for M1 CA1. Supplementary Figure 3b reports the loadings for M1 CA2 

and Supplementary Figure 3c reports the loadings for M2 CA1. See the table below for additional clarification. 

 

 CA1 CA2 

M1 Figure 3a and b Supp Figure 3b 

M2 Supp Figure 3c not reported (extremely small loadings) 

Supplementary Table 1. References to Figures containing Models and CCA axes. 

 

The results show that whereas the weights for M1 CA1 are large and reliable, the weights for both M1 CA2 and M2 CA1 

are much smaller and more variable. This comparison supports the hypothesis that a single axis predicts the quadratic 

trends across the lifespan (i.e.,  M1 CA1); hence when the CCA model is built without removing the participants’ age. 

Opposite to that, if the participants' age is removed as in the case of M2 the CCA model fails in predicting a substantial 

portion of the variance in the data from the two domains. 

 

  



13 

 

 

Supplemental Figure 4a. The relationship of the rich club to the CCA loadings. a. Rich club participation compared to CCA loading. 
Each symbol in the scatter plot represents a cortical region. Blue symbols are part of the core rich club. Gray symbols are part of the rich-club 
periphery. Error bars represent 2 s.e. estimated via cross-validation of the CCA loadings.   

 

Supplemental Figure 4b. Cortical regions sorted by 
CCA loading magnitude.  
 
Each symbol in the scatter plot represents a cortical 
region (mean CA1 loading ±2 s.e.). The loadings for all 
regions were sorted from highest to lowest. Core rich 
club nodes are blue and periphery nodes are gray 
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Supplemental Figure 5a and b. Representational Similarity Analysis from Variables Loadings.  
 
a. Estimating representational factor dissimilarity matrix (S1). To estimate the representational factor dissimilarity matrix (S1) all 
variable loadings for each estimated canonical factor are required (L1 and L2). A dissimilarity between any pair of variables in the model 
(for example, x and y) is estimated by first computing the correlation (r) between the loadings of the variables across all the estimated 
factors (f) and computing 1 - |r|, (Eq. 4). This value describes how dissimilar these variables are with each other across all estimated 
factors (f). By estimating these values for every pair of variables in the analysis, a full estimate of the dissimilarities is created (yellow and 
blue matrix).   
 
b. Grouping variables by domain. We compute the mean of the RSA values within each behavioral domain (Shafto et al., 2014) and 
within major functional brain networks (Yeo et al. 2011). Behavioral domains are presented in orange around a blue star (from Figure 1b, 
left) and the nodes from the network parcellation were assigned to the Yeo atlas labels (right) based on the proportion overlap of the 
nodes in an atlas image. The dorsal attention network (DA, green), the default mode network (DMN, red), and the memory tasks (blue) 
are highlighted in the center dissimilarity matrix. 

 

The RSA approach used here (Supplemental Figure 5) in turn allowed us to describe the simultaneous contributions of each 

variable to multiple other variables. The CCA variables loadings (L1 and L2) were used as inputs for a RSA. More specifically, 

every variable loading in M1 (376 network and 334 behavior variables) was first correlated with the loadings of all the other 

variables. After that, the dissimilarity was then computed as 1-r, see Eq. 4. This process generated a square, symmetric matrix, 

S1 of size 710x710 (Supplemental Figure 5c, top).  

 

Within this RSA framework, a low dissimilarity between the loadings of two variables would indicate that the variables contribute 

coherently to the CCA factors. Conversely, a high dissimilarity between two variable loadings would indicate that the variables 

contribute differently to the CCA. Because the CCA factors within each data domain (brain or behavior) are organized in 

descending order, the correlation within a single data domain is expected to be larger than that between data domains. S1 allowed 

us to capture the coherence among the loadings of the variables and explore the cross-domain associations contributing to the 

CCA model. Furthermore, because S1 was constructed using model M1, in which the majority of the variance was explained by 

subject’s age (see Figure 2 and associated text), it was assumed that S1 also depended on subject age. 
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Supplemental Figure 5c, d, and e. Comparing the difference between RSA with age not accounted for as a covariate and age accounted 
for as a covariate. 
 
c. The dissimilarity between the brain and behavior modules. The individual dissimilarity values between the variables can be averaged into 
the predefined behavior domains (Shafto et al., 2014) and brain networks (Yeo, et al., 2011) to simplify their interpretation. This panel shows the 
averaged dissimilarity within the modules for S1 (left), S2 (right).  
 
d. The dissimilarity of the brain-behavior interaction. The off-diagonal modules that represent the brain-behavior interaction are emphasized 
for S1 (left), S2 (right). This is the novel information contributed by running the CCA analysis between the brain and behavior datasets.  
 
e. Chord plots for visualizing the flow of contribution between brain-behavior domains. The chord plots represent the data displayed in d 
after thresholding to show the strongest 25th percentile and squaring the values. The sides of the plot represent the overall contribution to the 
strongest domain relationships. The bands are scaled so that the larger the colored bands the more similar the domains are in their contributions 
to the CCA. The left panel represents S1 and the right panel represents S2. The difference between S1 and S2 (Sd) is reported in Figure 5c. 

 

The dissimilarity values for brain network nodes and behavioral variables (Supplemental Figure 5c) were averaged within the 10 

brain networks  of Y2011 and 7 behavioral domains (Supplemental Figure 5d). This procedure identifies three portions of S1. The 

brain-brain dissimilarity, the behavior-behavior dissimilarities and the brain-behavior dissimilarities. The final analysis was 

focussed on describing the pattern of results in the brain-behavior interactions (Supplemental Figure 5e) 

 

The results for the brain-behavioral dissimilarity matrix were also visualized using a modified chord plot (Supplementary Figure 

5e; see also Methods). The plot allowed us to show how multiple associations between brain and behavior load onto M1 

simultaneously (Supplementary Figure 5f). Two aspects of the plot should be noted: (A) The individual associations between 

each functional network and behavioral domains are described by the chords. (B) The number of domains (networks) that each 

network (domain) contributes to is described by the size of the peripheral segments for each network and domain. The more 
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chords, the more contributions of a network (domain) to the various domains (networks). In other words, the larger the segments 

of a network (domain) the stronger its overall multivariate association.   

 

As an illustrative example, it is convenient to describe the results in S1 by taking the perspective of the behavioral domains and 

look at how each domain was associated with the various brain network domains. Results show that in the behavioral domains, 

memory, language, emotion, and attention dominated the association with the brain networks over clinical scores, motor, and 

social variables (compare the chord edge size in Supplementary Figure 5f). In the brain network domains, the frontoparietal, 

amygdala, hippocampus, subcortical, and dorsal attention domains dominated S1.  

 

Next, the influence of subjects’ age was evaluated more specifically by computing the RSA using M2. A dissimilarity matrix S2 was 

computed repeating the procedure explained above and then S1 and S2 compared. 
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Behavior Strongest Associated Brain Network Modules (Strongest -> Weakest) 

Attention Hippocampus Amygdala Frontoparietal Subcortical Dorsal 
Attention 

Somatomotor Visual Ventral 
Attention 

DMN Limbic 

Clinical 
Scores 

Hippocampus Frontoparietal Amygdala Subcortical Dorsal 
Attention 

Visual Somatomotor DMN Ventral 
Attention 

Limbic 

Emotion Hippocampus Frontoparietal Amygdala Subcortical Dorsal 
Attention  

Visual Somatomotor DMN Ventral 
Attention 

Limbic 

Language Hippocampus Frontoparietal Amygdala Subcortical Dorsal 
Attention 

Visual Somatomotor Ventral 
Attention 

DMN Limbic 

Memory Hippocampus Subcortical Frontoparietal Amygdala Dorsal 
Attention 

Visual Somoatomotor Ventral 
Attention 

DMN Limbic 

Motor Hippocampus Frontoparietal Amygdala Subcortical Dorsal 
Attention 

Somatomotor Visual DMN Ventral 
Attention 

Limbic 

Social Dorsal 
Attention 

Frontoparietal Hippocampus Visual  Amygdala Subcortical Somatomotor DMN Ventral 
Attention 

Limbic 

Supplemental Table 1. The ranked order of the dissimilarity between behavior domains to network modules. 
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