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BOX SCALING IN EQUILIBRIUM

Characteristic Length behavior: The relation between r0 and W observed in our numerical experiments can be understood
in the case of a physical system in equilibrium, where one can relate the connected correlation function (CCF) computed with
space averages (as we do here) to the usual time-averaged connected correlation function. We show here how to adapt the
argument of [1, Sec. 2.3.3] to the case of W < L in a system of d dimensions. We start with the relation between CW (r) and the
correlation Ctime(r), which is1:

c0CW (r) =Ctime(r)−
〈
[V −〈V 〉]2

〉
. (1)

The variance of V computed over a volume W d can be written in terms of Ctime(r),〈
[V −〈V 〉]2

〉
=

1
W d

∫
W d

ddrCtime(r)g(r), (2)

where g(r) is the radial distribution function describing the density correlations of the lattice, and arises here because the
definition of the CCF includes a denominator which is essentially rd−1g(r). The definition of r0 is CW (r0) = 0, so that

Ctime(r0) =
1

W d

∫
W d

ddr Ctime(r)g(r). (3)

This equation is useful because, for equilibrium physical systems near a critical point, we know the scaling form of Ctime(r),
which we can use to obtain the relationship we seek.

We must distinguish two cases:
(i) ξ �W < L: In this case we can write Ctime(r) = r−d+2−η e−r/ξ . For large r, the system is homogeneous, and we can

approximate g(r)≈ 1. Clearly r0 will depend on ξ and W but not on L. Due to the short range of Ctime(r) the integral in Eq. 3
can be extended to infinity, so that

r−d+2−η

0 e−r0/ξ =
1

W d ξ
2−η

∫
∞

dxx1−η e−x, (4)

which gives to leading order

r0 ∼ ξ log(W/ξ ). (5)

(ii) ξ � L�W . This is the critical case, where Ctime(r) = r−d+2−η h(r/L)2. For L→ ∞, the scaling function h(x) goes to
a constant and the decay is a pure power law, but for finite L the decay is modulated by the scaling function. Plugging into
Eq. 3 and using again g(r)≈ 1 we get

r−d+2−η

0 h(r0/L) =W−dL2−η

∫ W/L
h(u)u1−η du. (6)

If W = L the integral reduces to some constant, and we see that r0 ∼ L is a solution, justifying the claim that the zero of CW (r)
is proportional to L when the correlation is computed over the whole sample. If W < L (i.e. if CW (r) is computed over a box
smaller than the whole system), then in general r0 will depend on both L and W . However if W � L we are in a regime where
CW (r) should decay almost as a pure power law, because the modulating effects of h(x) will be noticeable only for r ≈ L. This
means that we can replace h(u) with a constant inside the integral, so that

r−d+2−η

0 h(r0/L)∼W−dL2−η

∫ W/L
u1−η du∼W−d+2−η , (7)

which gives r0 ∼W .
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Re-scaling of the connected correlation function: For the 2D Ising model at criticality, correlations can be described
as Ctime(r) = f (r/L)× r−η , which can be rewritten as Ctime(r) = g(r/L,r/W )×W−η . Also,

〈
[V −〈V 〉]2

〉
=
〈
[m−〈m〉]2

〉
=

T χ/W d , where χ is the susceptibility calculated on a window. When simulations are performed as a function of system size,
χL ∝ Lγ−d , where γ is a critical exponent, and χL is the standard susceptibility, measured over all the spins of a system of size
L. For the 2D Ising model, γ = 7/4. When calculations are performed as a function of window size W , we find that χ follows
the same behavior as χL, both at and away from criticality, see Supp. Fig. 1. In particular, at criticality, χ ∝ W γ ′−d with γ ′ ' γ

(this can also be observed from the rescaling of m and ξ at criticality, Supp. Fig. 5 ). We remark that, despite this similarity
rigorous results proving the γ ′ = γ relation, for the Ising or any other model, are lacking. Considering Fisher scaling relation3

η = 2− γ/ν , and ν = 1 for Ising model with d = 2, we get

c0CW (r) = h(r/L,r/W )W−η ,

where h is some smooth function. So, for r� L, c0CW (r)×W η should collapse into a single curve as a function of r/r0 (see
Fig. 5 in main text). Since our estimate of ν for the neuronal model (see Supp. Fig. 5) is close to 1, the same rescaling was
attempted for that model (shown in Fig. 5 of main text).
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Figure 1. Scaling of magnetization fluctuations for the ferromagnetic 2D Ising model: Magnetization fluctuations〈
[m−〈m〉]2

〉
, calculated on windows of size W or systems of size L, as a function of W , or L, for subcritical (circles, T = 2.2),

critical (squares, T = 2.27), and supercritical (triangles, T = 3) temperatures. Full lines and filled symbols stand for W = L,
while dashed lines and empty symbols stand for L = 600 and variable W , lines with

〈
[m−〈m〉]2

〉
∝ W γ−2 =W−0.25 and〈

[m−〈m〉]2
〉

∝ W−2 have been added as a guide to the eye. Other simulation parameters as in Fig. 3 of the main text.

METHOD’ ROBUSTNESS

To account for potential concerns about the robustness of our calculations, we reproduced the procedure described in the
main text for the 2D Ising model, for two alternative cases. First we recalculated CW (r) on relatively short simulations, using
only 1% of the data presented in the main text. Second, we replicated the calculations for a system with open–boundary
conditions. As described in the next paragraphs, in both cases, we find results that are very similar to the results reported in the
main text, obtained with periodic-boundary conditions and relatively long simulations. Finally, we have plotted the correlation
length as a function of window size, extracted from already published fMRI data4 on human brains, where typical limitations of
experimental setups are present.

Results with relatively short statistics: We have repeated simulations and computation of the connected correlation
function for the ferromagnetic 2D Ising model as a function of W (Fig. 3 d-f of main text), using less data than in the results
presented in the main text. Results are shown in Supp. Fig. 2a-c. Using this data, we computed the zero crossings of the
CCF, and plotted them in different axis scales, in Supp. Fig. 2d-f. Simulations were performed for 5 samples per temperature,
considering one window of each size for each sample. Simulations lasted 50.000 MC steps, and results where taken once every
100 MC steps (i.e. 500 system snapshots where used for calculation). This is 1% of the simulation time shown in main text. We
can see from Supp. Fig. 2 that, although results are noisier, the behavior at the critical point is still clearly distinguishable from
the deeply sub/supercritical regime, and also from the slightly sub/supercritical one. Similar results where found for Neuronal
model (not shown).

Results with open–boundary conditions: We have repeated the simulations of Fig. 3 d-f (connected correlation function
for the ferromagnetic 2D Ising model as a function of W ) of main text, using open–boundary conditions, and all other parameters
as in the main text. The window, of size W < L is centered with the system. The results shown in Supp. Fig. 3 are very
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Figure 2. Connected correlation function, and characteristic length r0 for the ferromagnetic 2D Ising model
computed from 1% of the data points used in the results presented in the main text. Panels a-c: Typical results for three
temperatures T = 2.00 (panel a); T = 2.27 (panel b) and T = 3.0 (panel c) and various window sizes, computed from 1% of
the data used in Fig. 3 d-f of main text. Panels d-f: Characteristic length (r0), computed using 1% of the data in Fig. 4 d-f of
main text, in linear-linear (panel d), log-linear (panel e), and log-log (panel f) axis, for different values of temperature T ,
denoted in the legends. All simulations parameters are as in Fig. 3 and 4 of the main text.

similar to those obtained using periodic–boundary conditions. Identical behavior was obtained for the neuronal model using
open–boundary conditions (data not shown).

fMRI results: We have reproduced already published human fMRI data4, where the instantaneous connected correlation
function is calculated over 35 clusters, of different sizes, and 8 resting state networks, in Supp. Fig. 4. Although the window
sizes (computed here as the cubic root of the number of voxels) cover roughly one order of magnitude, and limitations common
to experimental setups (finite time series, inhomogeneities and several sources of error) are present, it is straightforward to find,
from linear-linear and linear-log plots, that results are compatible with critical regime.

ORDER PARAMETER AND SUSCEPTIBILITY BOX-SCALING

Order parameter and fluctuations: For the sake of consistency, here we illustrate how the finite-size behavior of other
system’ quantities are captured by the box-scaling approach. The results in Supp. Fig. 5 show the order parameter (i.e.,
magnetization |〈m〉|, where m = 1

W 2 ∑i si(t)) and the magnetic susceptibility, estimated as χ = W 2

T [〈m2〉−〈m〉2], as a function
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Figure 3. Connected correlation function for the ferromagnetic 2D Ising model with open–boundary conditions.
Typical results for three temperatures T = 2.00 (panel a); T = 2.27 (panel b) and T = 3.0 (panel c) and window sizes,
computed with open–boundary conditions. All simulations parameters are equal to the used in Fig. 3 of main text.
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Figure 4. Scaling of the characteristic length r0 with window length for previoulsy reported fMRI experimental data.
Characteristic length as a function of window size is plotted in linear-linear (a), linear-log (b) and log-log (c) axis, where the
symbols correspond to the zero crossings of the CCF and the dashed line to a linear fit (r0 = a+W ×b with a =−2.5,
b=1.5±0.07, correlation coefficient r = 0.97). Notice that a semilogarithmic scaling, which must be seen as a straight line in
panel b, can be easily rejected. For completeness we show also the log-log plot in panel c. Window sizes and correlation
lengths are measured in terms of voxel length, where each voxel represents a 2mm side cube of a standardized brain. Further
details can be found in the original artice4.

of temperature T , for T close to Tc, for system of L = 600, and several values of W (panels a and d respectively). It can be seen
that the curves collapse on a single function after rescaling, in the same manner as when performed as a function of system
size. Explicitly, we plot |〈m〉|×W β/ν , and χ×W−γ/ν as a function of (T −Tc)×W 1/ν , in Fig. 5 panels b and e respectively,
using the same values of critical exponents (ν = 1, β = 1/8 and γ = 7/4) and critical temperature (Tc = 2.2691) as in the usual,
system dependent collapse. In Supp. Fig. 5 panels c and f, we show relative collapse errors as a function of critical exponents,
showing that above mentioned exponents are indeed reasonable values.
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Figure 5. Rescaling of order parameter and fluctuations for ferromagnetic 2D Ising model: Panel a: Magnetization as
a function of T for several values of W , with fixed L. Panel b: Collapse after rescaling of the data on panel a, using 2D Ising
critical exponents (ν = 1, β = 1/8). Panel c: Logarithm of the magnetization data collapse error as a function of ν and β . The
green ring denotes the parameter values used in panel b. Panel d: Magnetic susceptibility χ as a function of T for several values
of W , with fixed L. Panel e: Collapse after rescaling of the data in panel d, using Ising critical exponents (ν = 1, γ = 7/4).
Panel f: Logarithm of the susceptibility collapse error as a function of ν and γ . The green ring denotes the parameter values
used in panel e. In all cases, L = 600 and all simulation parameters are as in the main text.
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A data rescaling showing a collapse, is more challenging for the neuronal model and will require future work. The simple
definition of order parameter as the density of active neurons seems insufficient to describe ordering, at least in the same sense
that magnetization does it for the Ising model. In addition, neither the exact value of σc, nor the critical exponents (β , γ , and ν)
are known beforehand. Moreover, most of the windows we consider are either a few interaction lengths long (i.e W ∼ 5I) or
large compared to system size (W ∼ L/2). Despite these caveats, Supp. Fig. 6 shows the collapse after rescaling of the average
fraction of active neurons, f , and its related susceptibility, χ f =W 2〈[ f −〈 f 〉]2〉 (for neuron model, 〈〉 represents average over
long times). Based on error minimization, we have chosen the following rescaling parameters: σc = 1.021, and ν = 0.92,
β = 0.87, γ = 0.17. This values follow the scaling relation3 νd = 2β + γ . However, they cannot be linked to correlation
function collapse: the scaling relation η = 2− γ/ν , does not seem to hold (we had found η ' 0.54 in main text). Please note
these results may be shifted by interaction length effects for small windows (there is a large I/W ratio), while for large W ,
results may be perturbed by a small system size (large W/L ratio).
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Figure 6. Box-scaling for order parameter and fluctuations for neuronal model: Panel a: Fraction of active neurons, f ,
as a function of σ for several values of W , with fixed L. Panel b: Collapse of panel a, after rescaling using critical exponents
(σc = 1.021, ν = 0.92, β = 0.87). Panel c: Logarithm of f collapse error as a function of ν and β . A green ring denotes values
used in panel b. Panel d: Related susceptibility χ f as a function of σ for several values of W . Panel e: Rescaling collapse of the
results in panel d, using Ising critical exponents (σc = 1.021, ν = 0.92, γ = 0.17). Panel f: Logarithm of susceptibility collapse
error as a function of ν and γ . A green ring denotes values used in panel e. In all cases cases, L = 1000 and all simulation
parameters are as in main text.

Rescaling’ collapse error. In Fig. 5 on main text, collapse error was computed as the root mean square error. For each
value of ν , each curve is rescaled. The set of points {r,CW (r)} is replaced by yw(xi) (where x = r/r0 and y = c0CW ×W η in
Fig. 5). For each x value, we calculate the average function: yAV G(x) = 1

Nc
∑

Nc
w=1 yw(x), where yw(x) is calculated from the

linear interpolation of the two nearest values of yw(xi), and Nc is the number of curves. Error is then computed as the root mean
square distance to this curve:

rms =

√
∑w,i [yw(xi)− yAV G(xi)]

2

Np
, (8)

where Np is the number of data points. A similar rescaling is performed in Supp. Figs. 5 and 6 (now x = (T −Tc)×W 1/ν ).
Notice that now, changing β or γ values produces y→ αy (for some α value), which artificially multiples rms error by α (and
would lead to consider best collapse values as γ = ∞, β = 0). In order to correct this, in Supp. Figs. 5 and 6 we compute the
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normalized rms error, nrms = rms/||yAV G||, where ||yAV G||=
√

∑w,i yAV G(xi)2

Np
.
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