Supplementary Information

Viral vector-mediated reprogramming of the fibroblastic tumor stroma sustains curative melanoma treatment

Ring et al.

Ring et al., Supplementary Figure 1

Supplementary Figure 1. Tumor rejection after i.t. artLCMV-TRP2 treatment depends on TRP2specific T cells. a, Tumor growth kinetics of mice treated i.v. or i.t. with different doses of artLCMV-TRP2 . Dots indicate mean±s.e.m. for each time point. b, Flow cytometric analysis of TRP2-deficient B16F10 cells (B16F10-*Dct^{-/-}*). c, Survival of mice treated i.t. with artLCMV-TRP2 and injected with CD8- or CD4-depleting antibodies. d, Mice developed vitiligo-like fur depigmentation after i.t. treatment with artLCMV-TRP2 at the side of tumor inoculation. Data from one experiment with n=4 (PBS; 10⁴ artLCMV-TRP2, i.v., 10⁵ artLCMV-TRP2, i.v., 10⁵ artLCMV-TRP2, i.t., 10⁶ artLCMV-TRP2, i.v.), n=5 (10⁴ artLCMV-TRP2, i.t.) and n=6 (10⁶ artLCMV-TRP2, i.v.) mice (a). Data from one experiment with n=5 (artLCMV-TRP2, i.t.+ α -CD4; artLCMV-TRP2, i.t.+ α -CD8) and pooled data from two independent experiments with n=9 (PBS), n=17 (artLCMV-TRP2, i.t.) and n=11 (artLCMV-TRP2, i.t.+ α -CD8/ α -CD4) mice (c). Statistical analysis was performed using two-way analysis of variance (ANOVA) with Bonferroni (a), Log-Rank Mantel-Cox test (c). *P < 0.05: **P < 0.01; ***P < 0.001. Source data and exact P values are provided in the Source data file.

Supplementary Figure 2. Intratumoral artLCMV-TRP2 sustains the functionality of tumorinfiltrating T cells. B16F10-tumor bearing mice were immunized on day 7 with artLCMV-TRP2 i.v. or i.t. and tumor-infiltrating T cells were analyzed. **a**, Flow cytometry-based gating strategy for tumorinfiltrating T cell analysis used in Fig. 2a and b. **b and c**, Frequency of CD8⁺ (b) and CD4⁺ (c) T cells at indicated time points. Dots indicate mean±s.e.m. for each time point. **d and e**, Flow cytometry-based gating strategy for for IFN- γ expression in tumor-infiltrating CD8⁺ (d) and CD4⁺ (e) T cells on day 15 used in Fig. 2c. **f**, Representative plots for Granzyme B expression in CD8⁺ T cells in the TDLN. Dots represent individual mice and lines indicate mean values. Pooled data from two independent experiments with n=4 (Day 11, PBS; Day 11, 13 and 15, artLCMV-TRP2, i.v.), n=6 (Day 11, artLCMV-TRP2, i.t.), n=7 (Day 13, PBS), n=8 (Day 15, PBS) and n=10 (Day 13, 15, artLCMV-TRP2, i.t.) mice (b, c), n=9 mice (d, f) and from one experiment with n=4 (artLCMV-TRP2, i.t.) and n=5 (artLCMV-TRP2, i.v.) mice (f). Statistical analysis was performed using one-way ANOVA with Tukey's multiple comparison test (b, c), or unpaired two-tailed Student's t test (d-f) with *P < 0.05: **P < 0.01; ***P < 0.001. Source data and exact P values are provided in the Source data file.

Supplementary Figure 3. artLCMV vectors transduce human and murine FSCs. a, Mice were injected with B16F10-mCherry and treated on day 7 i.t. or i.v. with artLCMV-TRP2. On day 11 tumors were harvested. Gating scheme for mCherry⁺ tumor cells, CD45⁺ immune cells, PDPN⁺ FSCs and CD31⁺ BECs isolated from the tumor used in Fig. 3c. b-c, Representative FACS plots (b) and frequencies (c) of LCMV-NP⁺ cells in each cell subset in mice treated i.t. or i.v. with artLCMV-TRP2. d-f, Gating scheme for fibroblasts isolated from human skin and melanoma (d). Representative FACS plot for LCMV-NP staining after infection with artLCMV in (f) skin-derived fibroblasts and PBMCs used in Fig. 3f and g. g, Representative FACS Plot for PBMCs infected with artLCMV. Red dots indicate LCMV-NP⁺ cells within each plot. h, Frequencies of CD14^{+/} CD16⁺ monocytes, CD11c⁺ cDCs and CD11c⁺ CD123⁺ pDCs within LCMV-NP⁺ cells. Dots indicate mean±s.e.m. Data from one experiment with n=6 (artLCMV-TRP2, i.v.) and pooled data from n=5 patients (h). Statistical analysis was performed using unpaired two-tailed Student's t test (c) or one-way ANOVA with Tukey's multiple comparison test (h) with *P < 0.05: **P < 0.01; ***P < 0.001. Source data and exact P values are provided in the Source data file.

Supplementary Figure 4. Intratumoral artLCMV injection activates PDPN⁺ FSCs in the TME. B16F10-mCherry-tumor bearing mice were immunized with artLCMV-TRP2 or -GFP i.t. on day 7 and FSCs in tumor and TDLN were analyzed on day 11. **a**, Flow cytometry-based gating strategy for stromal cell analysis used in Fig. 4a. **b-d**, Representative FACS plots (b) and frequencies of stromal cell subsets in the tumor (c) and the TDLNs (d). Dots show mean±s.e.m. **e**, PDPN⁺ FSCs from the tumor were analyzed for the mean expression of the indicated marker. **f and g**, B16F10-mCherry cells were injected into Cxcl13-Cre/tdTom EYFP mice which were immunized i.t. on day 7 with artLCMV-TRP2. **f**, Representative FACS plots for EYFP⁺ PDPN⁺ FSCs in the TDLN. **g**, Analysis of current CXCL13 expression in EYFP⁺ PDPN⁺ FSCs as determined by the tdTomato reporter in the tumor as shown in Fig. 4f and in the TDLN. Values indicate mean±s.e.m. Pooled data from two independent experiments with n=11 (PBS, i.t.), n=14 (artLCMV-TRP2, i.t.) and n=9 (artLCMV-GFP, i.t.) mice (c); n=6 (PBS, i.t.) and n=5 to 7 (artLCMV-TRP2, i.t.) mice (f, g). Statistical analysis was performed using unpaired two-tailed Student`s t test (c, d, and e-g) with *P < 0.05: **P < 0.01; ***P < 0.001. Source data and exact P values are provided in the Source data file.

Ring et al., Supplementary Figure 5

Supplementary Figure 5. Molecular landscape of tumor-associated EYFP⁺ FSCs. a, EYFP⁺ or PDPN⁺ FSCs were sorted from B16F10-mCherry tumors on day 11 following i.t. artLCMV-TRP2 or PBS application. b, Hierarchical clustering of averaged expression of cluster specific marker genes for tumor FSC clusters in merged PBS and artLCMV-TRP2. c-f, Violin plots showing gene expression for Pan-CAF marker genes (c), myCAF marker genes (d), mural cells (e) and proliferating FSCs (f). g, Representative flow cytometric plots of iCAF-specific marker CD26⁺ CD34⁺, Ly6C⁺ CD34⁺ and Sca-1⁺ CD34⁺ cell populations within the EYFP⁺ PDPN⁺ cells used in Fig. 5d. Source data and exact P values are provided in the Source data file.

Ring et al., Supplementary Figure 6

Supplementary Figure 6. Intratumoral artLCMV-TRP2 activates *Cxcl13*-expressing iCAF2 cluster with an inflammatory gene signature. a, DE gene analysis of iCAF1 and iCAF2 following i.t. artLCMV-TRP2 vs PBS control treatment. Heatmaps for selected DE genes which were assigned to distinct immune-stimulating pathways. b, Heatmaps displaying iCAF signature genes across all six identified CAF clusters in EYFP⁺ FSCs merged from artLCMV and PBS-treated mice. c, Diffusion maps of EYFP⁺ tumor FSCs with trajectories constructed based on differential genes analysis in clusters iCAF1 and iCAF2 between PBS and artLCMV condition. Diffusions maps showing antigen presentation and type I IFN and interferon-stimulating gene (IFN I and ISG) signatures. d, Flow cytometric analysis for tdTomato⁺ cells showing current CXCL13 protein expression. Gates display CD26⁺ CD34⁺, Ly6C⁺ CD34⁺ and Sca-1⁺ CD34⁺ cell populations gated on EYFP⁺ PDPN⁺ cells. Values indicate mean±s.e.m. Pooled data from two independent experiments with n=6 mice (d). e, Representative confocal microscopy staining for IL-33 expression within EYFP⁺ cells from n=3 (PBS) and n=4 (artLCMV) mice. Arrowheads indicate IL-33⁺ EYFP⁺ cells. Scale bar 40 µm (overview), 5 µm (boxed area). Source data and exact P values are provided in the Source data file.

Supplementary Figure 7. Tumor FSC-derived IL-33 prevents exhaustion in tumor-infiltrating **CD8**⁺ **T cells. a,** Mice were inoculated s.c. with B16F10 melanoma cells and treated on day 7 i.t. with artLCMV-TRP2. Representative FACS plots for ST2 staining on CD8+ T cells in the tumor and TDLN at indicated time points as shown in Fig. 6a. b-d, Abundance of immune cell populations (b and c) and FoxP3⁺ CD4⁺ regulatory T cells (d) in the tumor on day 11 and day 15 in Cxcl13-Cre *II33*^{fl/fl} and Crenegative littermate control (Ctrl) mice. e and f, Representative FACS plots of CD8⁺ and CD4⁺ T cells on day 15 in the tumor as quantified in Fig. 6d and the TDLN in Cxcl13-Cre *Il33*^{fl/fl} and Ctrl mice. f, Pooled data showing frequency of CD8⁺ and CD4⁺ T cells in the TDLN. g-j, Representative FACS plots of KLRG1⁺ CD62L⁻ (g), CD69⁺ (h), PD-1^{hi} Eomes^{hi} (i) and PD-1^{hi} TOX⁺ (j) CD8⁺ T cells in the tumor of Cxcl13-Cre *Il33*^{fl/fl} and Ctrl mice as shown in Fig. 6d, h, i-k. k, Mean expression of Eomes, PD-1, TOX and T-bet on CD8⁺ T cells in the TDLN. Dots represent individual mice and lines indicate mean values. Pooled data from two independent experiments with n=6 (Day 11, Ctrl) and n=5 (Day 11, Cxcl13-Cre Il33^{fl/fl}) mice (b); n=7 (Day 11, Ctrl and Cxcl13-Cre Il33^{fl/fl}) mice (c); n=7 (TOX, Ctrl) and n=11 (TOX, Cxcl13-Cre *Il33*^{fl/fl}) mice (k). Pooled data from three independent experiments with n=8 (Day 11, Ctrl), n=9 (Day 15, Ctrl) and n=10 (Day 11 and Day 15, Cxcl13-Cre *Il33*^{fl/fl}) mice (d); n=10 (Ctrl) and n=15 (Cxcl13-Cre *Il33*^{fl/fl}) mice (f); n=10 (PD-1, Eomes, T-bet, Ctrl) and n=15 mice (PD-1, Eomes, T-bet, Cxcl13-Cre *Il33*^{fl/fl}) mice (k). Statistical analysis was performed using unpaired two-tailed Student's t test (b-d, f-k) with *P < 0.05: **P < 0.01; ***P < 0.001. Source data and exact P values are provided in the Source data file.

Supplementary Figure 8. Tumor FSC-derived IL-33 prevents exhaustion in tumor-infiltrating CD8⁺ T cells. a, Mice were inoculated s.c. with B16F10 and CD45.1⁺ P14 T cells (T cell receptor transgenic CD8⁺ T cells specific for the LCMV epitope GP₃₃₋₄₁) were transferred i.v. into recipient mice on day 7. Recipient mice were subsequently treated i.t. with artLCMV-TRP2 and cytokine-expressing intratumoral CD8⁺ P14 T cells were analyzed on day 15. b, Frequency of IFN- γ^+ TNF- α^+ CD8⁺ P14 T cells transferred into Cxcl13-Cre *1l33*^{fl/fl} and Cre-negative littermate control (Ctrl) mice. c, Frequency of cytokine⁺ *1l1rl1* (ST2)-proficient or -deficient P14 T cells transferred into WT recipients. Dots represent individual mice and lines indicate mean values. Pooled data from three (b) or two (c) independent experiments with n=11 (Ctrl and Cxcl13-Cre *1l33*^{fl/fl}) mice (b); n=8 (*1l1rl1*^{-/-} P14 \rightarrow B6) and n=15 (*1l1rl1*^{+/+} P14 \rightarrow B6) mice (c). Statistical analysis was performed using unpaired two-tailed Student's t-test (b, c) with *P < 0.05: **P < 0.01; ***P < 0.001. Source data and exact P values are provided in the Source data file.

Ring et al., Supplementary Figure 9

Supplementary Figure 9. FSC-specific IL-33 ablation does not impede CD8⁺ T cell responses after s.c. artLCMV-TRP2 immunization. a, Cxc13-Cre *1133*^{fl/fl} or Cre-negative littermate control (Ctrl) mice were immunized s.c. with artLCMV-TRP2. CD8⁺ T cell responses were analyzed in the skin draining lymph node (SDLN) on day 8 post immunization. b, Frequency of CD8⁺ T cell in the SDLN. c-f, Flow cytometric analysis of IFN- γ^+ (c) and IFN- γ^+ TNF- α^+ (e) CD8⁺ T cells after *ex vivo* stimulation with the LCMV-specific peptides GP33 and NP396 or the TRP2 peptide. Representative plots are shown for IFN- γ^+ (d) and IFN- γ^+ TNF- α^+ (f) CD8⁺ T cells. Dots represent individual mice and lines indicate mean values. Pooled data from two independent experiments with n=6 (Ctrl) and n=9 (Cxc13-Cre *1133*^{fl/fl}) mice. Statistical analysis was performed using unpaired two-tailed Student`s t-test (b, c, e) with *P < 0.05: **P < 0.01; ***P < 0.001. Source data are provided in the Source data file.

Antibody	Clone	Conjugate	Source, Cat no	Dilution
Mouse:				
CD106 (VCAM-1)	429	BV711	BD Biosciences	1:100
CD11b	M1/70	APC/Cy7	BioLegend	1:200
CD11c	N418	APC/Cy7, PE/Cy7	BioLegend	1:200
CD19	eBio1D3	PE/Cy7	eBioscience	1:100
CD279 (PD-1)	J43	BV421	BioLegend	1:100
CD26	H194-112	PE/Cy7	BioLegend	1:200
CD31	390	PerCP/Cy5, PE/Cy7	BioLegend	1:100
CD34	RAM34	BV421	BioLegend	1:100
CD4	RM4-5	BV605	BioLegend	1:100
CD45	30-F11	PerCP, PE/Cy7	BioLegend	1:100
CD45.1	A20	PE/Cy7	BioLegend	1:100
CD45.2	104	BV510, BV605	BioLegend	1:100
CD54 (ICAM-1)	3E2	BV421	BD Biosciences	1:100
CD62L	MEL-14	PerCP/Cy5.5	BioLegend	1:100
CD69	H1.2F3	FITC	BioLegend	1:100
CD8a	53-6.7	APC, APC/Cy7, BV786, BV711	BioLegend	1:100
Eomes	DAN11MAG	AF488	eBioscience	1:100
F4/80	BM8	AF647	BioLegend	1:100
FoxP3	FJK-165	PE	eBioscience	1:100
Granzyme B	GB11	AF647	BioLegend	1:100
H-2D ^b / H-2K ^b (MHC I)	28-8-6	PE/Cy7	BioLegend	1:100
I-A/ I-E	M5/114.15.2	AF700	BioLegend	1:200
IFN-γ	XMG1.2	PE	BioLegend	1:50
KLRG1	2F1	BV421	BioLegend	1:100
	VI 4	ASACIADCAT	BioXCell, in	1:100
LUM V-INP	VL-4	A340/ AF04/	house conjugation	
Ly6C	HK1.4	PerCP	BioLegend	1:100
Ly6G	1A8	PE	BioLegend	1:400
PDPN	8.1.1	APC, APC/Cy7	BioLegend	1:100
Sca-1 (Ly6A/E)	D7	BV605	BioLegend	1:400
ST2 (Il1r11)	DJ8	FITC	MD Bioproducts	1:100
T-bet	4B10	PE/Cy7	BioLegend	1:100
Ter119	Ter-119	BV510, PE/Cy7	BioLegend	1:100
TNF-α	MP6-XT22	FITC	BioLegend	1:50
TOX	TXRX10	eFluor660	eBioscience	1:100
Va2	B20.1	APC	BD Biosciences	1:100
Vβ8.1/ Vβ8.2	MR5-2	PE	BioLegend	1:100
Human:		_		
CD90 (Thy1)	5E10	PerCP	BioLegend	1:100
PDPN	NZ-1.3	PE	eBioscience	1:100
CD19	HIB19	PE/Cy7	BioLegend	1:100
CD3	OKT3	BV605	BioLegend	1:100
HLA-DR	L243	PerCP/Cy5.5	BioLegend	1:100
CD14	HCD14	FITC	BioLegend	1:100
CD16	3G8	APC/Cy7	BioLegend	1:100
CD11c	Bu15	APC	BioLegend	1:100
CD123	9F5	BV711	BD Biosciences	1:200

Ring et al., Supplementary Table 1. Antibodies for flow cytometry.