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Abstract

COVID-19 is a respiratory disease that, as of July 15th, 2021, has infected more

than 187 million people worldwide and is responsible for more than 4 million

deaths. An accurate diagnosis of COVID-19 is essential for the treatment and

control of the disease. The use of computed tomography (CT) has shown to be

promising for evaluating patients suspected of COVID-19 infection. The analysis

of a CT examination is complex, and requires attention from a specialist. This

paper presents a methodology for detecting COVID-19 from CT images. We

first propose a convolutional neural network architecture to extract features

from CT images, and then optimize the hyperparameters of the network using

a tree Parzen estimator to choose the best parameters. Following this, we

apply a selection of features using a genetic algorithm. Finally, classification

is performed using four classifiers with different approaches. The proposed

methodology achieved an accuracy of 0.997, a kappa index of 0.995, an AUROC

of 0.997, and an AUPRC of 0.997 on the SARS-CoV-2 CT-Scan dataset, and

an accuracy of 0.987, a kappa index of 0.975, an AUROC of 0.989, and an

AUPRC of 0.987 on the COVID-CT dataset, using our CNN after optimization
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of the hyperparameters, the selection of features and the multi-layer perceptron

classifier. Compared with pretrained CNNs and related state-of-the-art works,

the results achieved by the proposed methodology were superior. Our results

show that the proposed method can assist specialists in screening and can aid

in diagnosing patients with suspected COVID-19.

Keywords: COVID-19, Classification, Deep learning, Parameter optimization,

Genetic algorithm.

1. Introduction

COVID-19 is a disease caused by Severe Acute Respiratory Syndrome 2

(SARSCoV-2) [1]. As of July 15th, 2021, COVID-19 has infected around 187

million people worldwide, and has been responsible for about 4 million deaths

[2]. Early diagnosis of COVID-19 is important for the treatment and control of5

the disease. Real-time polymerase chain reaction (RT-PCR) or imaging exams

such as chest X-ray and computerized chest tomography (CT) examination

have been shown to be feasible alternatives for the first diagnosis of COVID-

19 [3]. Studies have reported that X-ray and CT scans show changes before

the onset of COVID-19 symptoms for some patients [4–6]. In particular, chest10

CT exams have given fast and efficient results, and show typical radiographic

characteristics for patients infected with COVID-19 [7–10].

However, due to the rapid increases in the number of patients with COVID-

19, overloading of the capacity of public health services may result in a shortage

of doctors and radiologists to analyze CT images. In this context, computer-15

aided diagnostic (CAD) systems can offer an alternative to assist the specialist

in medical diagnosis. These systems use computational techniques for image

processing and analysis, thus providing a second opinion to the doctor, and

are especially important in cases where diagnosis is challenging for the human

eye [11–13].20

Recently, deep learning methods have shown promise in the development of

CAD systems [14, 15]. Convolutional neural networks (CNNs), which are deep
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learning techniques, can automatically interpret CT images and predict whether

a patient is positive for COVID-19. Although CNN architectures perform very

well in image classification, the development of a CAD system using a CNN25

requires large datasets and high processing power in order to give good results.

In this work, we propose the use of a relatively simple CNN architecture

for image characterization that requires low processing power. We then use a

genetic algorithm to select the set of features that best represents the images,

and classification is performed using four classifiers with different approaches30

that are commonly used in CAD systems. Finally, we evaluate our method on

two public image databases. We believe that this work contributes to the fields

of medicine and computing in the following respects:

1. In the field of medicine, we propose an efficient, low-cost method that

can be applied in real clinical environments to aid in the diagnosis and35

screening of patients with COVID-19;

2. In the field of computing, and specifically in the context of methods for

COVID-19:

• We propose a relatively simple and robust CNN architecture;

• We use efficient techniques to optimize the hyperparameters of the40

architecture; and,

• We construct a genetic algorithm (GA) to select the best attributes

to classify CT scans into COVID-19 and Non-COVID-19 images.

The paper is organized as follows: in Section 2, related work is discussed;

in Section 3, we present the proposed methodology; the results are presented45

and discussed in Sections 4 and 5, respectively; and in Section 6, we present the

conclusions and suggest future work.

2. Background and related work

COVID-19 is a respiratory disease, the first case of which was detected

in Wuhan (in the Hubei province of China) and described as a case of50
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pneumonia [2]. Later, the virus was named Severe Acute Respiratory Syndrome

Coronavirus 2 (SARS-CoV-2), and the disease caused by this virus was called

COVID-19. On March 11th, 2020, the World Health Organization (WHO)

declared COVID-19 a pandemic [16]. COVID-19 can be transmitted from

person to person, and this poses the main challenge in terms of controlling its55

transmission and obtaining an early, quick, and accurate diagnosis [17]. Chest

X-Ray and CT scans have been the two main types of images used for the

classification and diagnosis of this disease [4, 18]. Since the focus of this work

is on the use of CT images for the diagnosis of COVID-19, this section reviews

the existing literature on the diagnosis of COVID-19 using CT images.60

The use of deep learning techniques for the detection of COVID-19 has

recently become a trending topic, and has attracted a lot of attention.

Chaudhary and Pachori [17] used subband images (SBIs) to train several pre-

trained CNN models using a transfer learning approach. Various classifiers

were used to differentiate COVID-19 from other viral and bacterial types of65

pneumonia and healthy individuals. Their methodology achieved an accuracy

of 650.976, a precision of 0.970, a sensitivity of 0.970, a specificity of 0.965,

an F-score of 0.970, and an AUC of 0.980. Wang et al. [19] proposed the

use of a redesigned COVID-Net architecture for the diagnosis of COVID-19.

Their methodology obtained an accuracy, F-score, recall, precision, and AUC of70

0.908, 0.908, 0.858, 0.957, and 0.962, respectively, for the SARS-CoV-2 CT scan

dataset, and an accuracy, F-score, recall, precision, and AUC of 0.786, 0.788,

0.797, 0.780 and 0.853, respectively, on the COVID-CT dataset.

Kaur et al. [20] proposed a system based on deep features extracted from

the MobileNetv2 architecture and a parameter-free BAT (PF-BAT)-optimized75

fuzzy K-nearest neighbor (PF-FKNN) classifier. Their methodology obtained

an accuracy of 0.993, a precision of 0.992, a recall of 0.996, an F-score of 0.994,

and an AUC of 0.995. Sen et al. [21] proposed a CNN architecture to extract

the characteristics of the images, and then carried out feature selection in two

stages. In the first stage, they applied a guided feature selection methodology80

that employed two filter methods, mutual information (MI) and Relief-F, for
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the initial screening of the characteristics obtained from the CNN model. In

the second stage, the dragonfly algorithm (DA) was used to select the most

relevant characteristics. Their methodology achieved an accuracy of 0.983 on

the SARSCoV-2 CT scan dataset and 0.900 on the COVID-CT dataset.85

Carvalho et al. [22] used a LeNet-5 architecture to extract the features

from CT images, and the classification was carried out by XGBoost. This

methodology obtained an accuracy of 0.950, a recall of 0.950, a precision of

0.949, an F-score of 0.950, an AUC of 0.950, and a kappa index of 0.900. The

same authors [14] developed a pre-processing step for images using histogram90

equalization and CLAHE, and used a basic CNN to extract the features from

the CT scans. Classification was then performed using several classifiers. The

results showed an accuracy of 0.978, a recall of 0.977, a precision of 0.979, an

F-score of 0.978, an AUC of 0.977, and a kappa index of 0.957.

Gifani et al. [23] proposed the use of 15 pre-trained CNN architectures.95

To improve the performance of their approach, they developed a method that

selected a set of architectures based on voting by the majority of the best

combination of results. This approach obtained an accuracy of 0.850, a recall

of 0.854, and a precision of 0.857. He et al. [24] proposed a method called

Self-Trans that combined contrasting self-supervised learning with transference100

learning to pre-train networks. This scheme obtained an F-score of 0.850 and

an AUC of 0.940 for the diagnosis of COVID-19.

Chen et al. [10] adopted a prototype network for the diagnosis of COVID-

19 that was pre-trained using a momentum contrasting learning method [25].

They obtained values for the accuracy, precision, recall, and AUC of 0.870,105

0.885, 0.874, and 0.932, respectively. Jaiswal et al. [26] used learning transfer

with a pre-trained DeseNet201 network on the ImageNet [27] dataset to diagnose

COVID-19, achieving an accuracy of 0.962, a precision of 0.962, a recall of 0.962,

an F-score of 0.962, and a specificity of 0.962. Hou et al. [28] proposed the use

of a CNN architecture with peripheral recognition enhanced with contrasting110

representation for the diagnosis of COVID-19. This scheme achieved values for

the accuracy, sensitivity, specificity, and AUC of 0.981, 0.977, 0.984, and 0.992,
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respectively. Loey et al. [29] used classical data augmentation techniques in

conjunction with a conditional generative adversarial network (CGAN) based

on a deep transfer learning model to diagnose COVID-19, obtaining an accuracy115

of 0.829, a sensitivity of 0.776, and a specificity of 0.876.

The medical imaging data sets used in the studies described above were

SARS-CoV-2 CT-Scan [17, 20, 26], COVID-CT [10, 14, 22–24, 28, 29], SARS-

CoV-2 CT-Scan and COVID-CT [19, 21]. These sets of images are too

small to train very deep CNN architectures, and lead to overfitting. To120

alleviate this problem, some authors have used pre-trained CNN architectures

on the ImageNet dataset [17, 23, 26] and others have used data augmentation

[29]. Some attempts have been made to explore the potential of contrasting

learning [10, 19, 24]. In addition, CNNs have been used to extract convolutional

features [14, 20–22], and have yielded very promising results.125

From the discussion above on prior research in this area, it is clear that

many researchers have been striving to develop automatic diagnostic methods

for COVID-19. Although these approaches have made significant contributions

to the diagnosis of COVID-19, it can be seen that methodologies based on deep

CNNs are slow, and that some of the methods have relatively low precision130

in terms of the diagnosis of COVID-19. In our work, we explore the use of a

simple CNN architecture to extract the convolutional features. We also apply

an additional step to optimise the CNN hyperparameters using the tree Parzen

estimator (TPE) and the selection of characteristics using a GA. In particular,

we have approached this as an auxiliary learning task that can effectively135

improve the performance of the COVID-19 rating of normal people.

3. Methodology

To enable a clearer understanding of the proposed methodology, Figure

1 illustrates the five steps followed in our approach, as follows: (i) image

acquisition; (ii) feature extraction, which is divided into two parts: (a) using the140

proposed CNN architecture; and (b) using the optimization of hyperparameters;
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(iii) feature selection using GA; (iv) the classification of images, using four

classifiers with different approaches; and (v) the validation of results.

Figure 1: Proposed methodology.

3.1. Image acquisition

To evaluate and validate the proposed method, we used two public CT image145

datasets, SARS-CoV-2 CT-Scan [30] and COVID-CT [31].

• SARS-COV-2 CT-Scan [30] is a publicly available set of 2D CT images.

It contains 2,482 CT images, 1,252 of which are positive CT scans for

SARS-CoV-2 infection (COVID-19), and 1,230 are CT scans of patients

that were not infected with SARS-CoV-2 (Non-COVID-19). The sizes of150

the images vary from 119×104 to 416×512. Figure 2 shows examples of

images from this dataset.

• COVID-CT [31] is a publicly available set of 2D CT images for the binary

classification of COVID-19. The set consists of 708 CT images, of which

312 show COVID-19 cases and 396 Non-COVID-19 cases. The resolution155

of these images ranges from 102×137 to 1853×1485. Figure 2 shows

examples of images from this dataset.

Although CT images are normally in DICOM format, the images in the two

databases used here are in PNG format. At the pre-processing stage, we resized

the images to 224×224 in the axial plane, which was the input size for the160

proposed CNN architecture, and the images were then normalized to between

0 and 1, to provide better stability for the CNN model [17].
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Figure 2: Example images from two different datasets, for (a) COVID-19 and (b) Non-COVID-

19 patients.

3.2. Feature extraction

In this section, we introduce the procedures used to build the proposed

architecture and carry out hyperparameter optimization, with the aim of165

achieving better performance.

3.2.1. Proposed architecture

Several CNN architectures are already established in the literature that were

designed to handle numerous different classes [32]. However, these architectures

were designed to be robust when trained on large datasets, and when trained170

on smaller datasets, they tend towards overfitting. Since the image datasets

contained 3,190 images, we decided to create a CNN architecture from scratch

in order to achieve high accuracy, to avoid overfitting of the CNN architecture

and to create a less complex architecture that required less hardware.

CNN is a neural network that implements several distinct layers, the main175

ones being convolutional, pooling, and fully connected layers [14, 22]. The
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convolutional layer has the function of extracting attributes from the input

data, composed of several filters followed by a non-linear activation function.

The pooling layer is responsible for reducing the dimensionality of the resulting

volume after the convolutional layers, helping to make the representation180

invariant to small translations at the entrance. Finally, the fully connected layer

is responsible for propagating the signal through point-to-point multiplication

and an activation function.

Initially, four CNN architectures were implemented. Figure 3 shows the

convolutional layers that were used to extract features and the fully connected185

layers with the final activation function used for classification. The architectures

shown in Figures 3(a) and (b) have four convolutional layers in the backbone,

where as those in Figures 3(c) and (d) have five and six convolutional layers,

respectively, in the backbone. In addition to the standard layers of a CNN,

batch normalization, regularization, and dropout operations were applied to190

reduce overfitting. A rectified linear unit (ReLu) was used as an activation

function and a maximum function for pooling operations. To calculate the

probability of data belonging to a particular class after the fully connected

layers, the architectures presented in Figures 3(a), (b), and (c) use a sigmoid

function, while in the architecture presented in Figure 3(d), this is changed to195

a softmax function.

To choose the best architecture from these four schemes, we randomly split

the features into training (80%) and test (20%) sets. It is important to note

that the same image sets defined for training and testing were used in all the

experiments, meaning that the image set used for testing was not known to the200

model. The set of training images was divided into two further sets of 90%,

which was used to train the architectures, and 10% as a validation set. After

training each epoch, the validation set was used to evaluate each architecture.

The ultimate goal was to achieve an architecture that achieved higher accuracy

while avoiding overfitting. The architecture most likely to yield these results205

would be the one with the smallest oscillations in the accuracy.
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(a) Architecture 1

(b) Architecture 2

(c) Architecture 3

(d) Architecture 4

Figure 3: The four proposed CNN architectures. Architectures (a) and (b) have four

convolutional layers in the backbone, whereas architectures (c) and (d) have five and six

convolutional layers, respectively.

After evaluating the four proposed architectures (Figure 3), we found that

the best results were yielded by Architecture 1. We believe this was due to the

properties of the images, since they had a resolution of only 8 bits per pixel and

varying dimensions. When converted to network input standards, they provided210

the best properties.

In addition, our network has low complexity, as it contains only a few layers

and consequently requires low processing power.
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Figure 4: Model evaluation for the proposed CNN architecture (architecture 1).

Figure 4 presents the learning curve for the best alternative (Architecture

1) over 200 training epochs. We can observe that as the number of training215

epochs increases, the accuracy tends to improve and the loss tends to decrease.

For 200 epochs, the proposed architecture shows a stable learning curve, with

a training accuracy of 0.985 and a loss of 0.014, a validation accuracy of 0.988,

and a validation loss of 0.008. Architecture 1 is composed of an input layer, four

convolutional layers with 32 filters and a 3×3 kernel, four pooling layers with220

step 2; a batch normalization layer in each convolutional block, a 30% dropout

layer in the third convolutional block and a 20% dropout layer in the fourth

convolutional block, and two fully connected layers, the first of which has 128

neurons and the second 100 neurons, where the latter is used to extract the

features of each image.225

3.2.2. Hyperarameter optimization

CNN architectures are sensitive to the choice of specific hyperparameters

for a given problem [33]. In this work, a hyperparameter optimization step

was applied to estimate the CNN parameters for the problem in an automated

and efficient way. We used the TPE [34] as an evolution mechanism and to230

select the parameters. When optimizing a hyperparameter x, TPE creates two

hierarchical processes, l(x) and g(x), for all target variables in the generative

models. Process modeling occurs when the objective function is defined in the

range specified by y∗, as shown in Equation 1.
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p(x|y,D) =

l(x) if (y < y∗),

g(x) if (y ≥ y∗).

(1)

The processes l(x) and g(x) are adjusted using Parzen’s univariate estimators235

[34]. Based on these two distributions, closed terms can be optimized according

to the expected improvement (EI) [34]. In this work, an EI acquisition function

was used [35]. The search space for the CNN hyperparameters used at the

optimization stage is presented in Table 1.

Table 1: Search space for the proposed CNN hyperparameters.

Parameters Value Range

Learning rate [0.1, 0.01, 0.001]

Decay rate [0, 1]

First fully connected layer [50, 200]

Second fully connected layer [50, 200]

First Dropout [0.1, 0.5]

Second Dropout [0.1, 0.5]

Within the search space shown in Table 1, the CNN was trained for240

200 epochs for each hyperparameter configuration, which was established in

Hyperopt. The hyperparameters selected for the proposed CNN architecture

are shown in Table 2, and the learning curve for the selected hyperparameters

is shown in Figure 5.

Over 200 training epochs, the architecture yielded a training accuracy245

of 0.998, a training loss of 0.008, a validation accuracy of 0.999, and a

validation loss of 0.001. For the evaluation data without parameter optimization

(Figure 4), we can see an improvement in the model’s performance evaluation

parameters.

As shown in Table 2, the network was changed as follows: the third and250

fourth block dropout layers were set to values of 33% (previously 30%) and

27% (previously 20%), respectively; the first fully connected layer contained
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Table 2: Selected hyperparameters.

Parameters Value

Learning rate 0.01

Decay rate 0.7

First Fully Connected Layer 72

Second Fully Connected Layer 120

First Dropout 0.33

Second Dropout 0.27

Figure 5: Learning curves for the CNN architecture with the selected hyperparameters.

72 neurons (previously 128), and the second contained 120 neurons (previously

100). As we used the last fully connected layer to extract the features, this

architectural configuration allowed us to extract a set of 120 features for each255

CT image.

Second Bergstra et al. [34], optimization methods based on Bayesian models

build a probability model of the objective function to propose smarter choices

for the next set of hyperparameters to be evaluated. Based on this, we

use TPE, an algorithm that uses Bayesian reasoning, to build the substitute260

model and select the next hyperparameters using EI. TPE recommends the

best candidate hyperparameters for evaluation, thereby improving the objective

function score much faster than with a random or grid search, requiring fewer

overall objective function evaluations, and giving a shorter execution time to

find the best hyperparameters. In addition, TPE is more efficient at finding the265
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best hyperparameters for a machine learning model than a random or gridded

search [36].

3.2.3. Platforms and hardware used

The CNN architectures were implemented using Tensorflow [37] and Keras

[38] in a Python environment. The experiments were run in the Google Colab270

[39] environment, which offers 12.72 GB of RAM and 358.27 GB of hard disk

space at each runtime of 12 hours, after which the runtime is reset and the

user must establish a new connection. The final model used to extract the

features (Architecture 1) was achieved by training the network with the following

parameters: 200 epochs, the Adam training algorithm [40], a decay rate of 0.9,275

a batch size of 32, and a learning rate of 10−3.

3.3. Feature selection

CNN models tend to extract and select only the most representative features

of the input image. However, the number of features extracted by the CNNs

is not always essential, since the number of features is directly related to the280

architecture used, especially when few images are available for training. The

deeper the network, the more features it will extract. Based on this, we

consider the possibility that the features extracted by the CNN are not the

most significant. Furthermore, working with a reduced set of features can offer

benefits in several respects, such as lower processing times and a reduction in285

the number of correlated, irrelevant, or noisy variables.

To address this issue, we use a GA [41] to select the set with the best features

extracted with the proposed architecture. We chose to use a GA because the

evolutionary process on which it is based can provide features that represent

the best solution for a particular dataset, and consequently give better results.290

The GA used in our method is detailed below. The aim is to find the best set

of features to classify CT images as COVID-19 and Non-COVID-19.

• Features are first extracted for each input image using the proposed model;
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• The initial population is then created with n individuals (in our tests, n295

= 50). Each individual is represented by values of zero or one, indicating

the absence or presence of a given attribute in the individual. Individual

values are initialized randomly. The size of each individual corresponds

to the total number of extracted features. Figure 6 shows an example of

one individual.300

• Classification is performed using a multi-layer perceptron (MLP) with all

the default parameters [42]. To assess the aptitude of each individual in a

given generation, we calculate the fitness based on the kappa index [43];

in other words, the individual with the best fitness will always be the one

with the highest kappa index value. The fitness calculation is shown in

Equation 2. This metric is calculated based on a confusion matrix made up

of the number of true positives (TP), false positives (FP), true negatives

(TN), and false negatives (FN).

fitness =
Po − Pe

1− Pe
(2)

where,

Po =
TP + TN

TP + TN + FP + FN
, (3)

and

Pe =
[(TP + TN)(TP + FP )] + [(TN + FN)(TN + FP )]

(TP + TN + FP + FN)2
(4)

• To select the pairs of parents who will mate to generate two new children,

the roulette method [44] is used to select individuals with the highest

aptitude. A one-point crossover [45] technique is used, in which one

crossover point is chosen at random for each pair of parents to be mated.

The first offspring generated from this cross is made up of the genes to

the right of the first parent’s crossover point and to the left of the second

parent’s crossover point, and vice versa for the second child. Equation 5

is used to calculate the crossing:

x[i] ←

P1[i] if i < γ

P2[i] if i >= γ < t
(5)

15



where x is the vector of child elements; i denotes the index of the

corresponding position between parents and children; t represents the size

of the parent; γ denotes a randomly chosen one-point crossover less than

t; and P1 and P2 represent the element vectors for the parents.

• A bitwise mutation [44] was used, which is the most common mutation305

operator in binary encodings. This approach considers each gene

separately, allowing each bit to be subjected to a small probability of

being inverted. The new population is created using a concept known

as elitism, in which some of the best individuals of the past generation

are taken to generate the best children. The proportion chosen was 20%310

elitism and 80% new children born. The mutation rate used in our method

was 5%. The evolutionary cycle was repeated until the stopping criterion

was reached.

Figure 6: Example of the creation of an individual.

Figure 7 presents a summary of the steps applied by the GA in our method.

It can be seen that after the stopping criterion is reached, following the selection315

criteria applied in the GA, the best feature set is found. The number of features

selected by the GA is independent, and can vary depending on the data analyzed

(Table 6). When the set of best features has been selected, the final classification

is then made. It is not necessary to retrain the network, since the task of the
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GA is only to select the most representative set of features for the data sample,320

and this set will then be passed as input to the classifiers.

Figure 7: Flowchart of the genetic algorithm used for feature selection.

3.4. Classification

Classification is a process of categorization based on the knowledge acquired

in a dataset that contains observations for which the category is known. In

this case, classification consisted of categorizing the CT images as COVID-19325

and Non-COVID-19 cases using several classifiers: a random forest approach

[46], a multi-layer perceptron (MLP) [42] and a support vector machine (SVM)

[47] (available in the sci-kitlearn library), and an eXtreme Gradient Boosting

(XGBoost) algorithm [48]. Table 3 presents a summary of the parameters used

for each classifier; in each case, the default parameters were used.330

3.5. Validation of results

We validated the results based on four commonly used statistical evaluation

metrics in the literature: the accuracy (A), recall (R), precision (P), and F-

score (F), as shown in Equations 6, 7, 8 and 9, respectively. These metrics are

calculated based on a confusion matrix containing the number of true positives335

(TP), false positives, (FP), true negatives (TN) and false negatives (FN).

A =
TP + TN

TP + TN + FP + FN
(6)
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Table 3: Summary of parameters used in each classifier.

Classifier Parameters

Random forest

bag size percent = 100, batch size = 100, number of

execution slots = 1, max depth = 0(unlimited),

number of randomly chosen attributes = 0, number

of iterations to be performed = 100, minimum number

of instances per leaf = 1.0, minimum variance for

split = 0.001, random number seed to be used = 1

MLP

learningrate = 0.3, momentum = 0.2, number of epochs

used for training = 500, validation set size = 0

(the network will by training for the specified number of

epochs), seed = 0, validation threshold = 20,

hidden layers = ((number of attributes + classes)/2)

SVM

C = 1.0, kernel = radial basis function (RBF), degree = 3,

gamma = scale, shrinking = true, probability = false, tol =

0.001, cache size = 200, max iter = -1, random state = none

XGBoost
max depth = 7, learning rate= 0.1, ite = 1000, gama = 0,

max delta step = 1, objective = “multi:softmax”

R =
TP

TP + FN
(7)

P =
TP

TP + FP
(8)

F = 2× R× P
R+ P

(9)

The kappa index (K) measures the agreement between the results from the

proposed methodology and the ground truth labels assigned by pathologists [43].

The area under the receiver operating characteristic (AUROC) curve measures

how well the classifier can distinguish between the classes based on the true340
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positive rate versus the false positive rate [49]. The area under the precision-

recall curve (AUPRC) measures the number of true positives divided by the

sum of the true positives and false positives [50]. The closer to one the value

of these validation metrics, the more effectively the classifier can distinguish

between COVID-19 and Non-COVID-19 images.345

4. Experiments and results

To demonstrate the efficiency of the proposed methodology, we performed

experiments on the test set containing 20% of the images (Section 3.2.1).

The features were first extracted with the proposed CNN architecture, and

classification was then carried out using the algorithms described in Section 3.4.350

Table 4 presents the results.

Table 4: Results of the proposed CNN without hyperparameter optimization.

Classifier A R P F K AUROC AUPRC

SARS-COV-2 CT-Scan Dataset

Random forest 0.979 0.980 0.979 0.979 0.959 0.910 0.913

MLP 0.981 0.981 0.982 0.981 0.963 0.935 0.944

SVM 0.979 0.979 0.980 0.979 0,959 0.908 0.911

XGBoost 0.985 0.985 0.985 0.985 0.971 0.937 0.958

COVID-CT Dataset

Random forest 0.917 0.916 0.912 0.914 0.829 0.906 0.904

MLP 0.905 0.902 0.910 0.904 0.810 0.899 0.879

SVM 0.905 0.906 0.907 0.904 0.809 0.900 0.889

XGBoost 0.917 0.917 0.917 0.917 0.835 0.908 0.905

Values in bold indicate the best results found for all classifiers.

As shown in Table 4, the results obtained by the classifiers in the two datasets

were satisfactory for the categorization of CT scans into COVID-19 and Non-

COVID-19 images. XGBoost performed best on both datasets, because as it

gives good results for large feature sets. Overall, the results showed that the355
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proposed CNN could extract robust features, allowing the classifiers to achieve

promising performance in terms of the categorization of CT images, since all of

the classifiers yielded comparable results.

CNNs are sensitive to the choice of specific hyperparameters for a problem.

To address this issue, we applied a step in which the best hyperparameters360

for the proposed architecture were determined (as described in Section 3.2.2).

When the proposed CNN architecture hyperparameters had been optimized, the

features were extracted from the CT images. The results from the optimized

network are presented in Table 5.

Table 5: Results from the proposed CNN with hyperparameter optimization.

Classifier A R P F K AUROC AUPRC

SARS-COV-2 CT-Scan Dataset

Random forest 0.989 0.989 0.989 0.989 0.979 0.950 0.962

MLP 0.993 0.994 0.994 0.993 0.988 0.974 0.970

SVM 0.989 0.990 0.990 0.989 0.980 0.946 0.951

XGBoost 0.990 0.990 0.991 0.990 0.981 0.966 0.962

COVID-CT Dataset

Random forest 0.930 0.932 0.932 0.930 0.860 0.928 0.917

MLP 0.953 0.948 0.948 0.948 0.897 0.932 0.926

SVM 0.930 0.932 0.932 0.927 0.855 0.927 0.915

XGBoost 0.929 0.936 0.929 0.929 0.858 0.930 0.919

Values in bold indicate the best results for all classifiers.

From the results in Table 5, we observed that the optimization of CNNs365

hyperparameters provided more representative features for categorizing CT

images into COVID-19 and Non-COVID-19 cases. The MLP classifier obtained

the best results on both datasets. Furthermore, when we compare the results in

Table 4 with those obtained after hyperparameter optimization, we notice that

all of the classifiers achieved better results in the second case. If we consider370

the kappa index as the most important metric, the classifiers are shown to
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be able to categorize CT images very efficiently. These results demonstrate

the effectiveness of optimizing the proposed CNN hyperparameters, as this

gives features that allow for better discrimination between COVID-19 and Non-

COVID-19 images.375

The set of features extracted from the images must be representative in

order to enable a useful classification, and must be sufficient to avoid causing

errors in the classification step. In view of this, another important aspect of

the proposed method is the selection of the most important features via a GA.

Table 6 presents a summary of the experiments performed with feature selection.380

Table 6: Number of features selected by GA for each architecture.

Dataset Description
Extracted

features

Selected

features

Without hyperparameter optimization 100 47SARS-COV-2

CT-Scan With hyperparameter optimization 120 53

Without hyperparameter optimization 100 68
COVID-CT

With hyperparameter optimization 120 76

We used a GA to carry out feature selection (Section 3.3) in the proposed

architecture, both with and without hyperparameter optimization. We present

the results for both architectures here to demonstrate that our feature selection

method with a GA is efficient. As shown in Table 6, the GA selects different

numbers of features for each experiment; this is as expected, since a specific385

solution will be found for each dataset. After feature selection, we carried

out data classification again, using only the MLP classifier, since this was the

algorithm that yielded the best results in our experiments (Table 5). Table 7

presents the results obtained with the feature selection by GA.

Table 7 shows that feature selection using GA performed best in terms390

of categorizing CT scans into COVID-19 and Non-COVID-19 images. A

comparison of the kappa index obtained with the MLP classifier for the SARS-

COV-2 CT-Scan dataset in Table 4 (without hyperparameter optimization)

with those obtained in Table 7 shows that the selection of features yielded an
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Table 7: Results using feature selection with a GA and the MLP classifier.

Architecture A R P F K AUROC AUPRC

SARS-COV-2 CT-Scan Dataset

Without optimization 0.993 0.993 0.994 0.993 0.987 0.993 0.993

With optimization 0.997 0.997 0.998 0.997 0.995 0.997 0.997

COVID-CT Dataset

Without optimization 0.975 0.975 0.975 0.975 0.951 0.975 0.975

With optimization 0.987 0.989 0.986 0.987 0.975 0.989 0.987

Values in bold indicate the best results found, for all experiments.

improvement of 0.024, while on the COVID-CT dataset, the MLP obtained an395

improvement of 0.141 in the kappa index. When the values of the kappa index

for the features obtained with the proposed architecture are compared with the

results of hyperparameter optimization (Table 5), we see that feature selection

(Table 7) gave an improvement in the kappa index of 0.007 on the SARS-COV-

2 CT-Scan dataset and 0.078 on the COVID-CT dataset. We can therefore400

conclude that even with a smaller feature set, it is still possible to improve on

the results obtained in all of our experiments with the proposed architectures.

Finally, to further evaluate the proposed method, we performed a new

experiment in which we considered all images in the SARS-CoV-2 CT-Scan

dataset (2,482 images) as a training set, and applied the final prediction model405

to the COVID-CT dataset (708 images). In this experiment, we applied the

proposed architecture with hyperparameter optimization, with the best features

selected by the AG that for this experiment were selected 64, using the MLP

classifier. The results were encouraging: in this experiment, our method

achieved an accuracy of 0.901, a recall of 0.901, a precision of 0.899, an F-410

score of 0.9, a kappa of 0.8, an AUROC of 0.901, and an AUPRC of 0.9. These

values demonstrate the efficiency of the proposed method, since the test set was

unknown to the constructed model.
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4.1. Comparison with related techniques and works

In this section, we report the results of further experiments with the same415

datasets. We first compare the results achieved by the proposed model with

those of other CNN models. We then carry out quantitative comparisons

with existing works from the literature (Section 2), in order to provide a fair

comparison and to allow our method to be reproduced in future work.

4.1.1. Classification using pre-trained CNNs420

To test the robustness of our method, we performed tests with five different

CNN architectures that are widely used for image problems, namely VGG16

and VGG19 [51], Xception [52], ResNet50 [53] and Inception-v4 [54]. Table 8

presents the results achieved by these models. We used only the MLP classifier

for these experiments, as our best results were achieved with this algorithm.425

The results in Table 8 show that our method achieved promising

performance. Our scheme achieved the highest accuracy on both datasets,

meaning that it can be used to categorize CT images into COVID-19 and

Non-COVID-19 cases more effectively than alternative methods. It should also

be noted that the number of features extracted per image with the proposed430

CNN architecture was much lower than with the pre-trained CNN architectures.

Furthermore, our architecture contained only a few layers, and this proved to be

more efficient for the problem at hand. Finally, although pre-trained network

methods are widely used for various data classification problems, the results

are not always satisfactory for certain problems, and in view of this, several435

proposals for improvements have been presented. Without undermining the

architectures presented in Table 8, we propose steps for optimizing architectures,

hyperparameters and selecting the best features with the aim of achieving more

efficient results for this particular problem.

4.1.2. Comparison with related works440

Ensuring a fair comparison of results is very complex, since many factors

can influence the reliability of comparison, such as the databases and techniques
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Table 8: Results using features extracted with pre-trained CNNs and an MLP classifier.

Dataset A R P F K AUROC AUPRC

VGG16

SARS-COV-2

CT-Scan
0.959 0.959 0.959 0.959 0.919 0,959 0,959

COVID-CT 0.877 0.876 0.874 0.875 0.750 0.876 0.874

VGG19

SARS-COV-2

CT-Scan
0.965 0.965 0.966 0.966 0.932 0.966 0.965

COVID-CT 0.863 0.862 0.863 0.862 0.725 0.862 0.861

Xception

SARS-COV-2

CT-Scan
0.957 0.957 0.957 0.957 0.915 0.957 0.957

COVID-CT 0.870 0.870 0.871 0.870 0.741 0.870 0.870

ResNet50

SARS-COV-2

CT-Scan
0.975 0.976 0.975 0.975 0.952 0.975 0.975

COVID-CT 0.823 0.820 0.822 0.821 0.642 0.820 0.821

Inception-v4

SARS-COV-2

CT-Scan
0.949 0.950 0.950 0.949 0.900 0.950 0.949

COVID-CT 0.836 0.833 0.839 0.835 0.670 0.833 0.833

Values in bold indicate the best results for each architecture.

used. We summarize the results obtained from the proposed method with those

of the approaches described in Section 2, in order to achieve an illustrative

quantitative comparison. Table 9 presents the results obtained using alternative445

state-of-the-art schemes for the diagnosis of COVID-19 from CT images.

It can be seen from Table 9 that the proposed methodology achieved very

promising results. On the SARS-CoV-2 CT-Scan dataset, the values for the
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Table 9: Comparison of results obtained with the proposed methodology and those of related

works.

Work Dataset A P F

He et al. [24]

COVID-CT

0.850

Chen et al. [10] 0.870 0.885

Carvalho et al. [22] 0.950 0.949 0.950

Carvalho et al. [14] 0.978 0.979 0.978

Gifani et al. [23] 0.850 0.857

Hou et al. [28] 0.981

Loey et al. [29] 0.829

Chaudhary and Pachori [17]

SARS-CoV-2 CT-Scan

0.976 0.970 0.970

Jaiswal et al. [26] 0.962 0.962 0.962

Kaur et al. [20] 0.993 0.992 0.994

SARS-CoV-2 CT-Scan 0.908 0.957 0.908
Wang et al. [19]

COVID-CT 0.786 0.780 0.788

SARS-CoV-2 CT-Scan 0.983 0.982 0.980
Sen et al. [21]

COVID-CT 0.900 0.935 0.885

Our work
SARS-CoV-2 CT-Scan 0.997 0.998 0.997

COVID-CT 0.987 0.986 0.987

accuracy of each scheme were as follows: Chaudhary and Pachori [17] obtained

0.993; Sen et al. [21] obtained 0.983; Wang et al. [19] obtained 0.908; Jia et al.450

[4] obtained 0.993; and Jaiswal et al. [26] obtained 0.962. On the COVID-CT

dataset, the accuracy values were as follows: Sen et al. [21] obtained 0.900;

Carvalho et al. [22], Carvalho et al. [14] and Gifani et al. [23] obtained 0.950,

0.978 and 0.850, respectively; Wang et al. [19] obtained 0.786; Chen et al. [10],

Hou et al. [28] and Loey et al. [29] obtained 0.870, 0.981 and 0.829, respectively,455

and Kaur et al. [20] obtained 0.993. On the SARS-CoV-2 CT-Scan dataset,

our approach obtained an accuracy of 0.997, which was better than the other

reported works. On COVID-CT, our algorithm obtained an accuracy of 0.987,

which again was higher than the other related works. To further evaluate the
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effectiveness of the proposed method, we performed an experiment using the460

SARS-CoV-2 CT-Scan dataset for training and COVID-CT for testing, which

yielded an accuracy of 0.901. These results demonstrate the superiority of the

proposed methodology.

5. Discussion

The proposed method used trainable features obtained with a CNN465

architecture to diagnose COVID-19 from CT images. Based on the results

presented here, we can identify some advantages of our approach and other

aspects that need to be investigated further.

5.1. Advances

1. Optimization of the hyperparameters of the CNN produced better470

features, which improved the final results;

2. The GA yielded an improvement in the results, in addition to achieving

a significant reduction in the dimensionality in the feature files, and

consequently making the classification process more agile;

3. Our architecture is robust, efficient, and has low complexity, meaning that475

it requires less processing power than other traditional models;

4. After the model had been constructed, the time required for

characterization and classification of the test set was only 0.035 h with

the MLP classifier;

5. The proposed architecture provided robust features for the classification480

of CT scans into COVID-19 and Non-COVID-19 cases, and could be used

as a diagnostic or screening aid for COVID-19.

5.2. Limitations

1. Since our method involves several optimizations (such as the choice of

architecture, optimization of hyperparameters, and use of a GA to select485

the best features), it requires a relatively long time to construct the
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final model. On average, it took about: (i) 1.5 hours to select the best

architecture; (ii) 22.2 h for the hyperparameter optimization step; and

(iii) 4 h for the selection of the best features;

2. The proposed methodology was developed based on a dataset of 2D490

CT images, and would require modifications for application to 3D CT

examinations.

6. Conclusion

The COVID-19 pandemic has plagued the world and has caused significant

losses and difficulties at a global level. Furthermore, a great deal of concern495

has arisen due to the emergence of new variants. Thus, in this paper, we have

proposed a method that is capable of diagnosing COVID-19 from CT images,

using two public image datasets. Our method consists of a CNN architecture

with hyperparameter optimization for feature extraction. A GA is employed to

select important features. Classification is then performed using four algorithms500

with different approaches. Our methodology gave promising results, achieving

a final accuracy of 98% on the two image databases used. We have also shown

that a GA can provide a relatively small feature set and gives good results in

terms of the metrics used. Our methodology was able to avoid the problem of

overfitting, which is common for small databases, and outperformed pre-trained505

architectures and other state-of-the-art approaches. Our method can therefore

be used as part of a computer-aided diagnostic system, and can serve as a second

opinion for a specialist in diagnosing patients with COVID-19.

In future work, we intend to use other datasets of images to make our model

more robust and generic; to apply other techniques, such as information gain,510

for feature selection; and to adapt our method for use directly with the volumes

generated by CT exams.
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