Supporting Information for

Original article

Discovery of 4-arylthiophene-3-carboxylic acid as inhibitor of ANO1 and its effect as analgesic agent

Yuxi Wang^{a,†}, Jian Gao^{a,†}, Song Zhao^b, Yan Song^a, Han Huang^a, Guiwang Zhu^a, Peili Jiao^a, Xiangqing Xu^b, Guisen Zhang^c, Kewei Wang^{d,*}, Liangren Zhang^{a,*}, Zhenming Liu^{a,*}

^aState Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China

^bJiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou 221116, China

^cCollege of life science and technology, Jiangsu Ocean University, Lianyungang 222005, China ^dDepartment of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China [†]These authors made equal contributions to this work.

Received 13 September 2020; received in revised form 26 October 2020; accepted 4 November 2020

*Corresponding authors. Tel: +86 532 82991070 (Kewei Wang), +86 10 82802567 (Liangren Zhang), +86 10 82805281 (Zhenming Liu).

E-mail addresses: wangkw@qdu.edu.cn (wangkw@qdu.edu.cn), liangren@bjmu.edu.cn (Liangren Zhang), zmliu@bjmu.edu.cn (Zhenming Liu).

Content

Figure S1 Structures of other compounds in shape and electronic distribution based virtual screening.

Figure S2 ANO1 inhibitory rate-concentration curve.

Figure S3 Hot plate test.

Figure S4 Writhing test.

Figure S5 ANO1 homology modeling

 Table S1 ANO1 inhibitoty activity of other compounds in shape and electronic distribution based virtual screening.

Structure characterization

сı

S19

0 II

N

S39

Figure S1 Structures of other compounds in shape and electronic distribution based virtual screening.

Figure S2 ANO1 inhibitory rate–concentration curve. Compounds 35 and 38 are not represented here because of no significant inhibition effect observed in 100 μ mol/L concentration.

Figure S3 Hot plate test on mice; n=10. The vehicle group was treated with saline by i.g. administration instead of the corresponding compound solution. MPE, maximal possible effect (%). All data are represented by the mean \pm SD. Statistical significance was determined by ANOVA, **P<0.01 vs. vehicle.

In the hot plate test, the latency of pain response appearing (foot licking or jumping) was measured before and 3 h after compound administration. As shown in Fig. S3, the latency of morphine group was significantly prolonged after 10 mg/kg morphine i.p. injection and its maximal possible effect (MPE, %) was about 30. However, no obvious differences in pain response latency were observed among vehicle group, 20 and 40 mg/kg CaCC_{inh}-A01 group, and 20 mg/kg compound **42** group.

Figure S4 Writhing test on mice; n=10. Inh., the inhibition ratio of pain response (number of writhing) in the corresponding compound group against the vehicle group. All data are represented by the mean \pm SD. Statistical significance was determined by ANOVA, **P<0.01 compared to vehicle.

In writhing test (Fig. S4), 0.6% (v/v) acetic acid solution was i.p. injected 1 h after compound administration, then the number of writhing was measured within 15 min immediately. Morphine (10 mg/kg, i.p.) significantly reduce the number of writhing in mice, the inhibition rate of writhing is about 98%. ANO1 inhibitors CaCC_{inh}-A01 (20 and 40 mg/kg) and compound **42** (20 mg/kg) displayed no significant analgesic effect on number of writhing.

	hANO1_H	hANO2_H	hAN03_H	hAN04_H	hANO5_H	hANO8_H	hANO7_H	hANO8_H	hANO9_H	hANO10_H	nhAN0_A	mANO1_50YB_A
hAND1_H	100	56	33	36	34	32	32	10	25	13	12	89
hANO2_H	56	100	33	34	33	29	31	10	25	13	12	56
hANO3_H	33	33	100	60	37	37	30	10	28	15	12	33
hANO4_H	36	34	60	100	38	39	31	10	31	16	13	36
hANO5_H	34	33	37	38	100	48	31	11	28	16	12	35
hANO6_II	32	29	37	39	48	100	30	11	27	17	13	33
hANO7_H	32	31	30	31	31	30	100	11	26	16	13	32
hAN08_H	10	10	10	10	11	11	11	100	11	15	11	10
hANO9_II	25	25	28	31	28	27	26	11	100	15	15	25
hAND10_H	13	13	15	16	16	17	16	15	15	100	16	13
nhANO_A	12	12	12	13	12	13	13	11	15	16	100	12
mANO1_50YB_A	89	56	33	36	35	33	32	10	25	13	12	100

А

	hANO1_H	hANO2_H	hAN03_H	hANO4_H	hANO5_H	hANO8_H	hANO7_H	hANO8_H	hANO9_H	hANO10_H	nhANO_A	mAN01_50YB_A
hAND1_H	100	70	48	51	50	48	47	20	39	27	25	93
hANO2_H	70	100	49	51	49	45	48	20	38	26	24	70
hANO3_H	48	49	100	73	53	53	47	19	41	27	23	48
hAND4_H	51	51	73	100	57	58	48	20	44	28	24	52
hANO5_H	50	49	53	57	100	66	47	20	43	29	26	51
hANO6_II	48	45	53	58	66	100	46	21	45	30	27	49
hANO7_H	47	48	47	48	47	46	100	20	40	30	25	48
hANO8_H	20	20	19	20	20	21	20	100	21	24	20	21
hANO9_H	39	38	41	44	43	45	40	21	100	30	29	40
hAND10_H	27	26	27	28	29	30	30	24	30	100	31	27
nhANO_A	25	24	23	24	26	27	25	20	29	31	100	26
mANO1_50YB_A	93	70	48	52	51	49	48	21	40	27	26	100

С

hano1_H + mANO1_50YB_A	
hANO1 H + mANO1_50YB_A	120 130 140 150 160 170 180 190 200 210 220 230 1 Alignment Index 121 100 100 100 100 100 100 100 100 100
hANO1_H ■ + mANO1_50YB_A	240 250 260 270 290 290 300 310 320 330 340 350 R 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
hANO1_H + mANO1_50YB_A	
hANO1_H ■ + mANO1_50YB_A	400 490 500 510 520 530 540 550 560 570 580 5 KRRH I PEEST NKW KORVKT AMAGVKL
hANO1_H + mANO1_50YB_A	
hano1 H	710 720 730 740 750 760 770 780 790 800 810 820 Output House Hou
hano1_H + mANO1_50YB_A	
hano1_H + mANO1_50YB_A	950 960 970 980 990 1000 1010 1020 1030 1040 1050 106 520 540 540 540 540 540 540 540 540 550 55

D

B

Figure S5 ANO1 homology modeling. (A) Sequence alignment: identity. (B) Sequence alignment: similarity. (C) Sequence alignment of hANO1 and mANO1. (D) 15 ns molecular dynamic optimization of hANO1 homo structure. (E) Ramachandran plot of hANO1 homo structure (Dimer).

Compd.	Inh. (%) ^a	Compd.	Inh. (%) ^a
S1	34.5	S26	15.7
S2	27.7	S27	14.9
S3	88.2	S28	5.6
S4	25.7	S29	1.9
S 5	-1.1	S30	-28.2
S6	22.7	S31	17.5
S7	11.0	S32	17.8
S8	10.5	S33	6.1
S9	26.6	S34	36.0
S10	7.0	S35	23.7
S11	24.1	S36	27.3
S12	28.9	S37	79.2
S13	7.2	S38	28.9
S14	25.1	S39	31.7
S15	28.8	S40	14.9
S16	12.6	S41	35.5
S17	14.2	S42	14.4
S18	19.8	S43	16.0
S19	-36.7	S44	23.6
S20	36.3	S45	60.8
S21	18.9	S46	18.0
S22	4.3	S47	23.3
S23	8.3	S48	16.6
S24	61.2	S49	26.9
S25	41.5	S50	13.4

Table S1ANO1 inhibitoty activity of other compounds in shape and electronicdistribution based virtual screening.

^aInh. (%) refers to the ANO1 inhibition rate as determined by in whole cell patch clamp recording at 100 μ mol/L; *n*=3.

Structure characterization

¹H and ¹³C NMR spectra were recorded on Bruker (400 MHz) instruments, using DMSO-*d*₆ or CDCl₃ as solvents. High-resolution mass spectra (HRMS) were recorded on Bruker Apex IV FTMS mass spectrometer using ESI (electrospray ionization).

6-(*tert*-Butyl)-2-(furan-2-carboxamido)-4,5,6,7-tetrahydrobenzo[*b*]thiophene-3-carboxylic acid (CaCC_{inh}-A01, **1**)

HPLC parameter:

Waters Xbridge C18 column(4.6 mm×250 mm 5 µm i.d.);

Flow rate: 1 mL/min;

Detector: UV 254 nm;

Eluent: A is water containing 0.1%TFA, B is MeOH; 0–5 min: 30% (*v*/*v*) A+70% (*v*/*v*) B, 25–35 min: 5% (*v*/*v*) A+95% (*v*/*v*) B.

2-(4-(*tert*-Butyl) benzamido)-4-(4-chlorophenyl) thiophene-3-carboxylic acid **(34)** ¹**H-NMR**

2-(4-(*tert*-Butyl) benzamido)-4-(4-(trifluoromethyl) phenyl) thiophene-3-carboxylic acid (35)

¹³C-NMR

- 167.37 - 163.51	- 156.53 - 150.08	-142.06 -138.67 $\int 130.34$ $\int 129.66$ 127.52 -117.29 -112.24	
----------------------	----------------------	--	--

-35.35-31.27

2-(4-(*tert*-Butyl) benzamido)-4-(4-(*tert*-butyl) phenyl) thiophene-3-carboxylic acid (36) ¹H-NMR

4-([1,1'-Biphenyl]-4-yl)-2-(4-(*tert*-butyl) benzamido) thiophene-3-carboxylic acid **(37) ¹H-NMR**

170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 2% f1 (ppm)

2-(4-(*tert*-Butyl) benzamido)-4-(2, 4-dichlorophenyl) thiophene-3-carboxylic acid (38) ¹H-NMR

2-(4-(*tert*-Butyl) benzamido)-4-(naphthalen-2-yl) thiophene-3-carboxylic acid (**39**) ¹**H-NMR**

4-(4-Methoxyphenyl)-2-(thiophene-2-carboxamido) thiophene-3-carboxylic acid (40) ¹H-NMR

4-(4-(*tert*-Butyl) phenyl)-2-(4-methoxybenzamido) thiophene-3-carboxylic acid (41) ¹H-NMR

2-(1-Naphthamido)-4-(4-chlorophenyl) thiophene-3-carboxylic acid (42) ¹H-NMR

HPLC parameter:

Waters Xbridge C18 column(4.6 mm×250 mm 5 μ m i.d.); Flow rate: 1 mL/min; Detector: UV 254 nm; Eluent: A is water containing 0.1% TFA, B is MeOH; 0–5 min: 50% (ν/ν) A+50% (ν/ν) B, 25–35 min: 5% (ν/ν) A+95% (ν/ν) B.

2-(2-Naphthamido)-4-(4-chlorophenyl) thiophene-3-carboxylic acid (43) ¹H-NMR

HRMS Xevo G2 Q-TOF/YCA166# 286 11 (0.216) Cm (10:17-(1:8+30:55)) 10-Apr-2017 Waters 1: TOF MS ES-1.22e4 406.0304 100₇ 216.9088 % 194.9270 408.0277 238.8922 336.8604 260.8722 118.9411 358.8391 409.0299 456.8106 500.7724 544.7420 620.7173642.6823 328.8699 294.9087 162.839(1 ччччч 300 ш 0-450 550 600 200 250 350 400 500 650 700

4-(4-Chlorophenyl)-2-(2,4-dichlorobenzamido)thiophene-3-carboxylic acid (44) ¹H-NMR

4-(4-Chlorophenyl)-2-(thiophene-2-carboxamido) thiophene-3-carboxylic acid (45) ¹H-NMR

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <th1</th>
 <th1</th>
 <th1</th>
 <th1</th>

4-(4-Chlorophenyl)-2-(4-methyl-1-naphthamido) thiophene-3-carboxylic acid (46) ¹H-NMR

2-(4-(*tert*-Butyl) benzamido)-8*H*-indeno [2,1-*b*] thiophene-3-carboxylic acid (47) ¹H-NMR

2-(4-(*tert*-Butyl) benzamido)-6-methoxy-8*H*-indeno [2,1-*b*] thiophene-3-carboxylic acid (48)

2-(Thiophene-2-carboxamido)-8*H*-indeno [2,1-*b*] thiophene-3-carboxylic acid (49) ¹H-NMR

2-(2-Naphthamido)-8*H*-indeno [2,1-*b*] thiophene-3-carboxylic acid (50) ¹H-NMR

2-(1-Naphthamido)-8*H*-indeno [2,1-*b*] thiophene-3-carboxylic acid (51) ¹H-NMR

2-(4-(*tert*-Butyl) benzamido)-8,8-dimethyl-8*H*-indeno [2,1-*b*] thiophene-3-carboxylic acid (52) ¹H-NMR

2-(4-(*tert*-Butyl) benzamido)-4,5-dihydronaphtho [2,1-*b*] thiophene-1-carboxylic acid (53)

HRMS

