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Holographic image reconstruction 

Free space propagation. Free space wave propagation1 is performed using the following 

equation: 

        FT , ; FT , ;0 , ;x yU x y z U x y H f f z   (S1) 

where FT{·} is the 2D Fourier transform operation, U(x, y; z) is the light field at an axial 

distance z, and H(fx, fy; z) is defined as: 
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where fx, fy are the spatial frequencies along x and y directions, respectively, λ is the wavelength, 

and n is the refractive index of the medium. 

Autofocusing. To accurately estimate the distance between the image sensor and the sample, 

an edge sparsity criterion (Tamura of the gradient (ToG)) based autofocusing is used2. First, we 

propagate the unfocused hologram to a series of z distances. At each distance, the ToG is 

computed, and the distance with the highest ToG is treated as the focusing distance. If the 

unfocused hologram is an amplitude only hologram (e.g. raw hologram captured using the 

image sensor), the propagation algorithm assumes zero phase by default. 

Multi-height phase recovery. To eliminate twin-image related artifacts we used an iterative 

multi-height phase recovery algorithm3–5. Raw holograms from 8 sample to sensor distances 

with ~10 μm step size were collected. The hologram at the 1st height was padded with a zero-

phase channel, and then propagated to the 2nd height. After the axial propagation, the amplitude 

channel values are averaged with the measured amplitude channel at the 2nd height, where the 

propagated phase channel was kept unchanged. This process is continued until it has been 

propagated to the 8th height, then back to the 1st height, which defines one iteration. The missing 

phase channel of a given hologram is typically recovered after 10-30 iterations. 

Shift-and-add pixel super resolution. A super resolution algorithm6 was used to improve the 

resolution of each hologram prior to the multi-height phase recovery step. Thirty-six low-

resolution raw holograms at different lateral positions (6x6 with ~0.3733 μm spacing along the 

x and y directions) were collected at each sample-to-sensor distance to generate these high-

resolution holograms. To accurately estimate the relative distance between the low-resolution 

holograms, a correlation-based method was used7. With the distance of these shifts being 

accurately obtained, the shift-and-add super resolution algorithm was used to fuse the low-

resolution holograms into a high-resolution corresponding hologram. 

 

SCPLM mathematical model derivation 

The design of the single-shot computational polarized light microscopy (SCPLM) setup8 is 
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demonstrated in the main text Figure 7(c). A birefringent sample of interest is illuminated using 

left-hand circularly polarized (LHCP) light, which is obtained by placing a left-hand circular 

polarizer behind an LED illumination source. The transmitted light is recorded using a pixelated 

polarizer camera. As shown in Figure 7(a), every four pixels of the camera sensor utilize four 

different directional polarizing filters (0°, 90°, 45°, and 135°) and form a repeated pattern across 

the sensor.  

The mathematical model of the SCPLM can be formulated by Jones calculus, where the optical 

components can be expressed as: 

I. Input left-hand circularly polarized (LHCP) light: 
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where i2 = -1, E0 is the amplitude of the incident LHCP light, and LHCP is defined from the 

point of view of the receiver. 

II. Birefringent sample: 
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where η and θ represent the retardance magnitude and the slow axis orientation of the 

birefringent object. Both η and θ are spatially varying. 

III. Detector on the pixelated image sensor: 

 detector
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for four different directional polarizing filters at 0°, 45°, 90°, and 135°, respectively. 

The output light field can be expressed as: 

 out detector sample LHCPE M M E  (S6) 

Consider a pixel with 0°-orientated polarizing filter, the corresponding light field can be 

formulated as:  
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Then the intensity value recorded by this 0°-orientated pixel can be written as: 
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Combining equation S7 and S8, we get: 
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where 
maxI  is a constant related to the intensity of the illumination light. Following the same 
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steps, the intensity values captured by other three different orientated pixels of the image sensor 

chip can be expressed as:  
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Gathering equation S9 and S10, two auxiliary variables A and B can be defined as: 
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Finally, the retardance magnitude and the slow axis orientation of the birefringent object can be 

reconstructed as: 
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DL-HPM mathematical model  

The mathematical model of the deep learning-based holographic polarization microscope (DL-

HPM) which is described by equation 7 in the main text can be expanded as: 
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where the illumination light is normalized to have an amplitude of 1, LHCP is defined from the 

point of view of the source, α represents the orientation of the fast axis of the λ/4 retarder with 

respect to the x-axis, β represents the orientation of the linear polarizer with respect to the x-

axis, θ represents the orientation of the fast axis of the sample with respect to the x-axis and η 

represents the relative phase retardance. 

 

In our optical design, we selected α to be 90° without a loss of generality, and therefore we 

have: 
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Then, using the terms before the linear polarizer, we have: 
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To further simplify the equation, we use Euler's formula: 
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where x and y are unit vectors pointing toward the positive x and y axis directions, respectively, 

and Ebefore_linear_x and Ebefore_linear_y are the x and y components of Ebefore_linear, defined as: 
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Since the final polarizer is a linear polarizer, the output field can be written as:  

  4 2
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where k is a unit vector pointing toward the direction with β degrees with respect to the positive 

x-axis. Based on equations S17-S18, we get: 
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where a and b are both real and functions of θ and η that are defined by:  
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Then, the amplitude and phase of the output field can be written as: 
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where atan2(y, x) is the four-quadrant inverse tangent function for point (x, y). 

 

To relate these results from equation S21 to the amplitude and phase channels obtained by the 

holographic reconstruction method, a background normalization procedure is required, where 

the background region is normalized to have a unit amplitude and zero phase. For the 

background region, the output field can be written as: 
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Thus, we have: 
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Hence, the reconstructed amplitude and phase can be expressed as: 
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Sources of error in DL-HPM 

An important source of error for DL-HPM comes from inaccuracies in the image co-registration 

step, which negatively affects both the quantitative analysis as well as the training of the 

network. As was demonstrated in Figure 1 of main text, two different image modalities (running 

on different set-ups) were used to capture the images, which constituted the training and testing 

datasets. Therefore, an accurate co-registration procedure is required to align the images 

resulting from the two-imaging systems. However, the registration algorithms are not always 

completely effective, leaving a relatively large registration error for e.g., MSU crystals. In 

Figure 4 of main text, an additional local registration step aligning the individual crystals was 

applied to help account for such co-registration errors. Furthermore, co-registration errors 

between the input and target images during the training phase also cause the loss function to be 

applied incorrectly, which relatively reduces the performance of the trained network. 

 

Another cause of error is related to larger crystals, as they are more likely to be formed by 

multiple MSU crystals which are stacked or clustered next to one another. This can lead to a 

more complex relationship between the amplitude/phase channel and the retardance/orientation 

channel, as the input phase channel may start to present phase wrapping effects. Since such 

larger crystals are rarely observed in the training dataset, the ability of the network to accurately 

infer the retardance and orientation channels corresponding to these clustered objects is 

generally reduced.  

 

In addition to these, various other aspects of the experimental set-up can also cause errors. 

Throughout the image acquisition procedures for training and testing phases, each sample slide 

was aligned after being moved between the two different imaging systems. This physical 

alignment procedure is used to ensure that the sample is aligned at the same angle relative to 

the polarizer-analyzer pair in each imaging system, and this alignment process can inevitably 
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cause experimental errors.  

 

MSU dataset 

The MSU dataset used for training and testing of DL-HPM contains 8 MSU slides obtained 

from different de-identified patients with different sample conditions in terms of the crystal 

density and dominant cell types. Figure S1 shows an example field of view for each of these 

slides obtained using the SCPLM method. 

 

Figure S1. Example fields of view of each MSU slide used for training and testing of DL-HPM. 

Color bar: from left to top to right, respectively, represents π, π/2, 0 Rad in the orientation channel. 

Retardance is represented by the distance from the center of the color bar, ranging from 0 to 0.4. 
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Impact of using different loss functions on network training 

 

 
Figure S2. Network output using different loss functions during the training. a) Loss function 

used mean squared error (MSE) loss only. b) Loss function used L1 loss only. c) Loss function used 

in the main text – i.e., a combination of GAN, L1 and TV losses (see the Methods section of the main 

text). d) Ground truth imaged by SCPLM. Color bar: from left to top to right, respectively, represents 

π, π/2, 0 Rad in the orientation channel. Retardance is represented by the distance from the center of 

the color bar, ranging from 0 to 0.4. 
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