Cell Metabolism, Volume 33

Supplemental information

SARS-CoV-2 infection induces

beta cell transdifferentiation

Xuming Tang, Skyler Uhl, Tuo Zhang, Dongxiang Xue, Bo Li, J. Jeya Vandana, Joshua A. Acklin, Lori L. Bonnycastle, Narisu Narisu, Michael R. Erdos, Yaron Bram, Vasuretha Chandar, Angie Chi Nok Chong, Lauretta A. Lacko, Zaw Min, Jean K. Lim, Alain C. Borczuk, Jenny Xiang, Ali Naji, Francis S. Collins, Todd Evans, Chengyang Liu, Benjamin R. tenOever, Robert E. Schwartz, and Shuibing Chen

SUPPLEMENTAL INFORMATION

Supplemental Figure S1-S7 and Tables S1-S5.

D

SUPPLEMENTAL FIGURES.

Figure S1. Related to Figure 1 and 2. Immunostaining and qRT-PCR analysis of the autopsy pancreas samples of a non-COVID-19 and COVID-19 subjects.

(A) A representative image of NRP1 expression in the autopsy pancreas sample of a non-COVID-19 subject. 20X confocal image using NRP1 antibody from abcam. The insert represents a high-resolution image from the larger field. Scale bar = 50 μ m. (*n* = 6 images examined in total) Red: NRP1; Green: INS; Grey: DAPI.

(B) A representative image of NRP1 in the autopsy pancreas sample of a non-COVID-19 subject. 63X confocal image using NRP1 antibody from NOVUS. Scale bar = $20 \mu m$. (*n* = 2 images examined in total) Red: NRP1; Green: INS; Grey: DAPI.

(C) A representative image of NRP1 in the autopsy pancreas sample of a non-COVID-19 subject. 20X confocal image using NRP1 antibody from NOVUS. The insert represents a high-resolution image from the larger field. Scale bar = $50 \ \mu m$. (*n* = 6 images examined in total) Red: NRP1; Green: INS; Grey: DAPI.

(D) qRT-PCR analysis of *subgenomic RNA*, *SARS-CoV-2-E*, *SARS-CoV-2-N* in the autopsy pancreas samples of non-COVID-19 and COVID-19 subjects. -Delta Ct = Ct (18S)-Ct (subgenomic RNA, SARS-CoV-2-E, or *SARS-CoV-2-N*). Red line highlights the detection limit. Data was presented as mean ± STDEV. *P* values were calculated by one-way ANOVA, *****P* < 0.0001.

Figure S2. Related to Figure 2. Single-cell RNA-seq analysis of mock versus SARS-CoV-2 infected human islets.

(A) Heatmap showing relative expression of top 10 markers defining the nine cell types in human islets. (n = 2 individual islet donors).

(B) UMAP and violin plots showing expression levels of pancreatic cell markers. (n = 2 individual islet donors).

(C) UMAP of human islets by conditions.

Figure S3. Related to Figure 2. SARS-CoV-2 infects multiple types of human pancreatic cells.

(A) UMAP and violin plots showing the expression levels of SARS-CoV-2 genes of mock infected human islets. (n = 2 individual islet donors).

(B and C) Flow cytometry analysis of SARS-CoV-2 (MOI=1) infected human islets at 48 hpi. Gating strategy of ACE2 and NRP1 (B). SARS-N expression in ACE2⁺/NRP1⁺, ACE2⁺/NRP1⁺, ACE2⁺/NRP1⁻, and ACE2⁻/NRP1⁻ cells (C). *n* = 3 replicates.

(D) Quantification of SARS-N⁺ percentage in ACE2⁺/NRP1⁺, ACE2⁺/NRP1⁻, ACE2⁻/NRP1⁺, and ACE2⁻/NRP1⁻ cells.

(E) Plaque assays of SARS-CoV-2 (MOI=1) infected human islets at 12, 24, 36, 48, 60, and 72 hpi (n = 3 replicates per time point) with replacement of media and 3 times washes after initial 3 hr infection.

(F) Plaque assays of SARS-CoV-2 (MOI=0.01) infected human islets at 12, 24, 36, 48, 60 and 72 hpi (*n* = 3 replicates per time point).

(G) Plaque assays of SARS-CoV-2 (MOI=0.01) infected Vero cells at 24, 48, and 72 hpi (n = 3 replicates per time points from two individual experiments).

(H) Fold change of glucose stimulated insulin secretion (GSIS) or KCl stimulated insulin secretion (KSIS) of SARS-CoV-2 (MOI=1) infected human islets. Human islets from non-COVID-19_6 (n = 5 replicates per condition) and non-COVID-19_7 (n = 4 replicates per condition) were analyzed at 48 hpi. Human islets from non-COVID-19_8 (n = 3 replicates per condition) were analyzed at 72 hpi.

Data was presented as mean \pm STDEV. *P* values were calculated by two-way ANOVA. **P* < 0.05, ***P* < 0.01, ****P* < 0.001 and *****P* < 0.0001.

Figure S4

Α

Figure S4. Related to Figure 4. Human beta cells undergo transdifferentiation upon SARS-CoV-2 infection.

(A) UMAP plot showing the two sub-clusters of beta cell population. (n = 2 individual islet donors).

(B) Dot blot illustrating expression level of *INS*, *GCG*, *PRSS1*, *PRSS2* in two sub-clusters of mock versus SARS-CoV-2-infected human islets at 24 hpi (MOI=1). Dot size shows the fraction of cells with non-zero expression; Dot color indicates the relative expression level in the two conditions. (n = 2 individual islet donors).

(C) UMAP plot showing the expression level of *PRSS2* of SARS-CoV-2 infected human islets. (n = 2 individual islet donors).

(D) Bar plot illustrating mean expression difference of *PRSS2* between mock and SARS-CoV-2 infected cells in different clusters of human islets; Bar color indicates increased (red) or decreased (blue) expression in the SARS-CoV-2 infected cells. (n = 2 individual islet donors).

(E) Dot blot illustrating expression level of acinar cell markers, including *PRSS1*, *PRSS2*, *CELA3A*, *CELA3B*, *CELA2A* in beta cell cluster of mock versus SARS-CoV-2-infected human islets at 24 hpi (MOI=1). Dot size shows the fraction of cells with non-zero expression; Dot color indicates the relative expression level in the two conditions. (n = 2 individual islet donors).

(F and G) Flow cytometry analysis of SARS-CoV-2 (MOI=1) infected human islets at 48 hpi. Gating strategy of ACE2 and NRP1 (F). Insulin expression in ACE2⁺/NRP1⁺, ACE2⁻/NRP1⁺, ACE2⁺/NRP1⁻, and ACE2⁻/NRP1⁻ cells (G). (n = 3 replicates).

(H-J) Quantification of the relative INS intensity in INS⁺ cells (H), the percentage of Typsin1⁺INS⁺ cells in INS⁺ cells (I) and the average Typsin1 intensity in INS⁺ cells (J) of autopsy samples of COVID-19 subjects or age-matched non-COVID-19 subjects. Three images of each sample were used for quantification for each subject (n = 2 individual non-COVID-19 subjects; n = 5 individual COVID-19 subjects).

Data was presented as mean \pm STDEV. *P* values were calculated by paired or unpaired two-tailed Student's t test. ****P* < 0.001 and *****P* < 0.0001.

PKR

D Ε **INSOPPDAPI** INS OPP **** 50000ſ OPP signal in INS+ cells 8 0 Mock 40000 Ø 30000 20000 SARS-CoV-2 10000 0 Mock SARS-CoV-2

Figure S5. Related to Figure 4. SARS-CoV-2 infection causes the change of eIF2 pathway and the decrease of protein synthesis.

(A) Representative confocal images of INS and SARS-N of mock and SARS-CoV-2 (MOI=1) infected EndoC-betaH1 cells at 48 hpi (MOI=1). Scale bar = 50 μm. Red: SARS-N; Green: INS; Blue: DAPI.
(B) Western blotting of p-PKR, PKR, p-eIF2alpha, eIF2alpha and beta-actin of mock and SARS-CoV-2

(MOI=1) infected EndoC-betaH1 cells at 48 hpi (MOI=1).

(C) Whole gel images of western blotting at (B).

(D and E) Representative confocal images of INS and OPP (O-propargyl-puromycin) (D) and quantification of OPP staining intensity (E) of mock versus SARS-CoV-2 infected human islets at 48 hpi (n = 3 replicates, MOI=1). Scale bar = 50 µm. Red: OPP; Green: INS; Blue: DAPI.

Figure S6

Figure S6. Related to Figure 6 and 7. High-throughput chemical screen.

(A) Toxicity curve of *trans*-ISRIB on hESC-derived *INS*-GFP⁺ beta-like cells. Data was presented as mean \pm STDEV. (*n* = 3 biological replicates).

(B) Isotype control of flow cytometry analysis of *trans*-ISRIB treated hESC-derived *INS*-GFP⁺ beta-like cells. (C) UMAP and violin plots showing the expression levels of SARS-CoV-2 genes of control or 10 μ M *trans*-ISRIB treated human islets at 24 hpi (*n* = 2 individual islet donors, MOI=1).

atentie All

Figure S7. Related to Figure 7. *Trans*-ISRIB blocks human beta cells transdifferentiation upon SARS-CoV-2 infection.

(A) Representative confocal images of GCG and INS expression in control or 10 μ M *trans*-ISRIB treated human islets at 48 hpi (*n* = 3 individual islet donors, MOI=1). Scale bar = 50 μ m. Red: INS; Green: GCG; Blue: DAPI.

(B) Representative confocal images of Typsin1 and INS expression in control or 10 μ M *trans*-ISRIB treated human islets at 48 hpi (*n* = 3 individual islet donors, MOI=1). Scale bar = 50 μ m. Red: INS; Green: Typsin1; Blue: DAPI.

(C and D) Representative confocal images of INS and OPP (C) and quantification of OPP staining intensity (D) of control or 10 μ M *trans*-ISRIB treated human islets at 48 hpi (*n* = 3 replicates, MOI=1). Scale bar = 50 μ m. Red: OPP; Green: INS; Blue: DAPI.

(E) Representative confocal images of G3BP1 and INS expression in control or 10 μ M *trans*-ISRIB treated human islets at 48 hpi (*n* = 3 individual islet donors, MOI=1). Scale bar = 50 μ m. Red: INS; Green: G3BP1; Blue: DAPI.

(F and G) Representative confocal images of G3BP1 and INS (F) and quantification of G3BP1 expression (G) in control, 0.5 mM NaAsO₂ and 10 μ M *trans*-ISRIB+ 0.5 mM NaAsO₂ treated human islets after 30 min treatment (*n* = 3 replicates). Scale bar = 50 μ m. Green: INS; Red: G3BP1; Blue: DAPI.

(H) Dot blot illustrating expression level of ALDH1A3 in mock versus SARS-CoV-2 infected human islets at 24 hpi (n = 2 individual islet donors, MOI=1).

(I) Dot blot illustrating expression level of *ALDH1A3* in control or 10 μ M *trans*-ISRIB treated human islets at 24 hpi (*n* = 2 individual islet donors, MOI=1).

Dot size shows the fraction of cells with non-zero expression; Dot color indicates the relative expression level in the two conditions.

Data was presented as mean \pm STDEV. *P* values were calculated by paired or unpaired two-tailed Student's t test. ***P* < 0.01 and *****P* < 0.0001.

Sample ID	Gender	Age	Assays	Chronic comorbiditi es	Inflammat ory status WBC	COVID- 19 disease course	Blood glucose level (mg/dL)
COVID-19_1	Female	87	Immunostaining	DM2, HTN	17.4	7	248
COVID-19_2	Female	70	Immunostaining	Dementia, DM2	4.9	12	223
COVID-19_3	Male	87	Immunostaining	None	9.7	26	213
COVID-19_4	Male	91	Immunostaining	Dementia, HTN	6.8	5	229
COVID-19_5	Female	71	Immunostaining	Alzheimer's, HTN, AFIB	4.2	7	100
Non-COVID- 19_1	Male	75	Immunostaining	HTN, CAD	18.9	N/A	201
Non-COVID- 19_2	Female	74	Immunostaining	CAD, mild HTN	9.2	N/A	190
Non-COVID- 19_3	Male	19	Immunostaining	Asthma	20.4	N/A	150
Non-COVID- 19_4	Male	27	Immunostaining	Ashama, HTN, OB	21.6	N/A	137
Non-COVID- 19_5	Male	27	SARS-CoV-2 infection, scRNA-seq and immunostaining	Allergic rhinitis, pharyngitis	7.7	N/A	129
Non-COVID- 19_6	Female	58	SARS-CoV-2 infection, scRNA-seq and immunostaining, ELISA	HTN, Stroke	12.4	N/A	144
Non-COVID- 19_7	Male	52	SARS-CoV-2 infection and immunostaining, ELISA	HTN	7.1	N/A	104
Non-COVID- 19_8	Male	18	SARS-CoV-2 infection, immunostaining, ELISA	N/A	N/A	N/A	N/A
Non-COVID- 19_15	Male	50	scRNA-seq (Table S3)	N/A	N/A	N/A	N/A
Non-COVID- 19_16	Male	28	scRNA-seq (Table S3)	N/A	N/A	N/A	N/A
Non-COVID- 19_17	Male	35	scRNA-seq (Table S3)	N/A	N/A	N/A	N/A

Table S1. Related to Figure 1. Summary of samples.

Non-COVID- 19_18	Male	22	scRNA-seq (Table S3)	N/A	N/A	N/A	N/A
Non-COVID- 19_19	Female	41	scRNA-seq (Table S3)	N/A	N/A	N/A	N/A
Non-COVID- 19 (T2D)_20	Male	61	scRNA-seq (Table S3)	N/A	N/A	N/A	N/A

DM2: diabetes mellitus, type 2; HTN: Hypertension; AFIB: Atrial fibrillation; CAD: Coronary Artery Disease; OB: obesity.

Table S2. Related to Figure 1.	The SARS-N ⁺	cells i	n autopsv	samples*.
Tuble OL. Related to Figure 1.		00110 1	n aatopsy	Sumples .

Sample ID	COVID-19_1	COVID-19_2	COVID-19_3	COVID-19_4	COVID-19_5
# of SARS-N⁺INS⁺ cells	6.5±2.0	9.7±4.7	14.5±4.8	8.0±7.0	23.6±7.5
% of SARS-N ⁺ INS ⁺ cells in INS ⁺ cells	10.0±10.9%	15.7±15.3%	7.7±4.1%	8.1±5.9%	12.0±9.1%
# of SARS-N⁺ KRT19⁺ cells	22.0±18.5	4.9±5.8	8.3±8.5	3.3±3.2	8.0±13.9
% of SARS-N⁺ KRT19⁺ cells in KRT19⁺ cells	9.0±6.8%	2.1±2.4%	7.8±6.6%	1.9±1.4%	3.0±5.1%
# of SARS-N⁺ CD31⁺ cells	29.3±6.0	34.1±22.6	3.0±3.0	9.3±3.5	1.6±1.5
% of SARS-N⁺ CD31⁺ cells in CD31⁺ cells	21.0±0.9%	27.4±13.1%	4.1±4.8%	11.8±4.2%	2.3±2.3%
# of SARS-N ⁺ VIM ⁺ cells	84.7±68.7	5.3±1.5	10.4±4.8	4.2±2.4	7.7±4.0
% of SARS-N⁺ VIM⁺cells in VIM ⁺ cells	16.3±10.8%	2.4±1.5%	2.6±1.0%	4.1±1.9%	4.1±0.4%
# of SARS-N ⁺ Trypsin1 ⁺ cells	133.7±111.4	4.0±1.0	21.6±15.9	18.2±4.4	5.7±4.5
% of SARS-N⁺ Trypsin1⁺ cells in Trypsin1⁺ cells	15.4±11.0%	0.8±0.0%	2.9±2.1%	2.2±0.5%	1.2±1.0%

*The staining was only performed using autopsy samples that contain viral transcripts as confirmed by qRT-PCR.

	Percentage of <i>FURIN</i> ⁺ cells (Mean±STDEV)	Percentage of CTSL ⁺ cells (Mean±STDEV)
acinar cells	27.3±17.5	25.9±19.0
alpha cells	23.5±13.8	51.5±22.9
beta cells	31.1±19.0	51.4±30.2
delta cells	33.1±12.1	62.7±22.7
PP cells	36.6±26.0	48.5±28.7
ductal cells	42.8±17.9	51.3±24.6
fibroblasts	47.2±19.4	76.1±18.5
endothelial cells	32.8±32.8	47.3±28.6
immune cells	29.9±17.8	90.5±11.5

Table S3. Related to Figure 2. The percentage of $FURIN^+$ or $CTSL^+$ cells in six human islet samples.

Usage	Antibody	Clone#	Host	Catalog #	Vendor	Dilution
Immuno- staining	Polyclonal Guinea Pig Anti-Insulin	Polyclonal	Guinea Pig	#A0564	Dako	1:500
Immuno- staining	Anti-Glucagon antibody	Monoclonal	Mouse	#ab1098 8	Abcam	1:1,000
Immuno- staining	Human/Mouse Somatostatin Antibody	Monoclonal	Rat	#MAB23 58	R&D Systems	1:100
Immuno- staining	Pancreatic Polypeptide/PP Antibody	Polyclonal	Goat	#NB100- 1793	NOVUS Biologicals	1:200
Immuno- staining	Human Serpin A1/ alpha 1-Antitrypsin Antibody	Monoclonal	Mouse	#MAB12 68	R&D Systems	1:200
Immuno- staining	Trypsin1/PRSS1 Antibody	Polyclonal	Sheep	#AF3848	NOVUS Biologicals	1:2,500
Immuno- staining	Anti-Cytokeratin 19 antibody	Monoclonal	Mouse	# ab7754	Abcam	1:200
Immuno- staining	Human CD31/PECAM- 1 Antibody	Polyclonal	Sheep	#AF806	R&D Systems	1:200
Immuno- staining	Vimentin antibody	Monoclonal	Mouse	#ab8978	Abcam	1:200
Immuno- staining	NRP1 antibody	Monoclonal	Rabbit	#ab8132 1	Abcam	1:200
Immuno- staining	NRP1 antibody	Monoclonal	Rabbit	#ST05- 30	NOVUS Biologicals	1:200
Immuno- staining	G3BP1 Antibody	Polyclonal	Rabbit	#17798	Cell Signaling Technology	1:500
Immuno- staining	SARS-CoV/SARS-CoV- 2 Nucleocapsid Antibody	Monoclonal	Rabbit	#40143- R001	Sino Biological	1:500
Immuno- staining	Human ACE-2 Antibody	Polyclonal	Goat	#AF933	R & D Systems	1:400
Immuno- staining	Alexa Fluor 488 AffiniPure Donkey Anti- Guinea Pig IgG (H+L)	Polyclonal	Donkey	#706- 545-148	Jackson ImmunoRese arch Labs	1:1,000

Donkey

#A-

21202

Thermo

Scientific

Fisher

1:1,000

Polyclonal

Donkey anti-Mouse IgG

(H+L) Highly Cross-

Adsorbed Secondary

Antibody, Alexa Fluor

488

Immuno-

staining

Table S4. Related to STAR Methods. Antibodies used for immunocytochemistry, intracellular flow cytometry analysis.

Immuno- staining	Donkey anti-Mouse IgG (H+L) Highly Cross- Adsorbed Secondary Antibody, Alexa Fluor 594	Polyclonal	Donkey	#A- 21203	Thermo Fisher Scientific	1:1,000
Immuno- staining	Donkey anti-Mouse IgG (H+L) Highly Cross- Adsorbed Secondary Antibody, Alexa Fluor 647	Polyclonal	Donkey	#A- 31571	Thermo Fisher Scientific	1:1,000
Immuno- staining	Donkey anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 594 conjugate	Polyclonal	Donkey	#A- 21207	Thermo Fisher Scientific	1:1,000
Immuno- staining	Donkey anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 647 conjugate	Polyclonal	Donkey	#A- 31573	Thermo Fisher Scientific	1:1,000
Immuno- staining	Donkey anti-Goat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488	Polyclonal	Donkey	#A- 11055	Thermo Fisher Scientific	1:1,000
Immuno- staining	Donkey anti-Rat IgG (H+L) Highly Cross- Adsorbed Secondary Antibody, Alexa Fluor 488	Polyclonal	Donkey	#A- 21208	Thermo Fisher Scientific	1:1,000
Immuno- staining	Donkey anti-Sheep IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488	Polyclonal	Donkey	#A- 11015	Thermo Fisher Scientific	1:1,000
Flow Cytometry	Polyclonal Guinea Pig Anti-Insulin	Polyclonal	Guinea Pig	#A0564	Dako	1:500
Flow Cytometry	Anti-Glucagon antibody	Monoclonal	Mouse	#ab1098 8	Abcam	1:1,000
Flow Cytometry	Neuropilin-1 antibody	Polyclonal	Sheep	#AF3870	NOVUS Biologicals	1:200
Flow Cytometry	Alexa Fluor 488 AffiniPure Donkey Anti- Guinea Pig IgG (H+L)	Polyclonal	Donkey	#706- 545-148	Jackson ImmunoRese arch Labs	1:1,000
Flow Cytometry	Donkey anti-Mouse IgG (H+L) Highly Cross- Adsorbed Secondary Antibody, Alexa Fluor 647	Polyclonal	Donkey	#A- 31571	Thermo Fisher Scientific	1:1,000

Flow Cytometry	Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Pacific Blue	Polyclonal	Goat	#P- 10994	Thermo Fisher Scientific	1:1,000
Western Blot	elF2alpha Rabbit mAb	Monoclonal	Rabbit	#5324S	Cell Signaling	1:1,000
Western Blot	Phospho-eIF2alpha (Ser51) Rabbit mAb	Monoclonal	Rabbit	#3398S	Cell Signaling	1:1,000
Western Blot	PKR Rabbit mAb	Monoclonal	Rabbit	#12297S	Cell Signaling	1:1,000
Western Blot	β-Actin Rabbit mAb #8457	Monoclonal	Rabbit	#8457S	Cell Signaling	1:1,000
Western Blot	Recombinant Anti-PKR (phospho T446) antibody	Monoclonal	Rabbit	# ab32036	Abcam	1:1,000
Western Blot	IRDye [®] 800CW Donkey anti-Rabbit lgG Secondary Antibody	Polyclonal	Donkey	#926- 32213	LI-COR	1:15,000

Primer name	Sequence
ACTB-human-F	CGTCACCAACTGGGACGACA
ACTB- human-R	CTTCTCGCGGTTGGCCTTGG
SARS-CoV-2-TRS-F	CTCTTGTAGATCTGTTCTCTAAACGAAC
SARS-CoV-2-TRS-R	GGTCCACCAAACGTAATGCG
SARS-CoV-2-N-R	TAATCAGACAAGGAACTGATTA
SARS-CoV-2-N-R	CGAAGGTGTGACTTCCATG
SARS-CoV-2-E-F	ACAGGTACGTTAATAGTTAATAGCGT
SARS-CoV-2-E-R	ATATTGCAGCAGTACGCACACA
18S-F	GGCCCTGTAATTGGAATGAGTC
18S-R	CCAAGATCCAACTACGAGCTT

Table S5. Related to STAR Methods. Primers used for qRT-PCR.