Supplementary Information

Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement

Peipei Du^{1,2†}, Jinghui Li^{1†}, Liang Wang^{1†}, Liang Sun¹, Xi Wang¹, Xiang Xu², Longbo Yang¹, Jincong Pang¹, Wenxi Liang¹, Jiajun Luo^{1*}, Ying Ma², Jiang Tang^{1*}

¹Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China. ²State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China.

* To whom correspondence should be addressed: luojiajun@mail.hust.edu.cn; jtang@mail.hust.edu.cn

† These authors contributed equally to this work.

Fabrication process	Scalability	Repeatability	Pixelability	Manufacturability	Ref.
Spin-coating	Low	Moderate	Difficult	Low	1,2
Inkjet printing	High	Moderate	Easy	Moderate	$3 - 6$
Blading- coating	High	Moderate	Difficult	Low	7,8
Thermal evaporation	High	High	Easy	High	This work

Supplementary Table 1 The comparison of thermal evaporation method with traditional solution-processed methods for PeLEDs.

Supplementary Fig. 1 Thermogravimetric analyses of all-inorganic CsPbBr₃ and organicinorganic hybrid perovskites conducted under N₂ atmosphere with a heating rate of 10 °C/min. CsPbBr3 inorganic perovskite begins weight loss at over 500℃.

Supplementary Fig. 2 Schematic diagram of co-evaporation for Cs-Pb-Br film deposition. The stoichiometry of the as-deposited film is controlled by adjusting the evaporation rate ratio of CsBr and PbBr2. To further enhance the confinement strength, a high evaporation rate and low substrate temperature (RT) are adopted to expect forming small grain size.

Supplementary Note 1

The evaporation rate is a key parameter in determining the optoelectronic properties of thermally evaporated perovskite films. The growth mechanism of thermally evaporated perovskite follows well with Volmer-Weber growth (Supplementary Fig. 3a), where the initial nucleus will grow to grains and then determine the final grain size. Generally, The more the initial nucleus (larger condensation rate N_d), the smaller final grain size, and the condensation rate N_d is further related to evaporation rate N_e according to the following equation:

$$
N_d = \frac{N_e A cos\theta}{4\pi r^2} \alpha_2
$$

where A is the area of the source (Supplementary Fig. 3b).

It is clear that evaporation rate *Ne* will influence the grain size and morphology of our thermally evaporated perovskite films. To gain a better understanding, we have performed additional SEM images of thermally evaporated perovskite films with different evaporation speeds (Supplementary Fig. 3c). The average grain size of the film with a 1 Å/s evaporation rate is relatively smaller than that of 0.5 Å/s, which matches well with the above analysis. Small grain size is generally beneficial for confining electrons and holes to improve radiative recombination in PeLEDs⁹.

Supplementary Fig. 3 The film growth mechanism. **a** Schematic illustration of the Volmer-Weber growth mechanism. **b** Parameter description in the formula of condensation rate. **c** SEM of films with different evaporation rates.

Supplementary Table 2 Energy-dispersive spectrometer (EDS) results of Cs-Pb-Br films with different Cs/Pb ratios.

Supplementary Fig. 4 Photographs of Cs/Pb=1.56 and Cs/Pb=1.24. Under daylight, the former is transparent while the latter is semi-transparent, consistent with the absorption character.

Supplementary Fig. 5 The PL tunability is dependent on the size-induced spatial confinement. **a** Moisture in the air that easily extracts CsBr could trigger the transformation of nonluminescent Cs_4PbBr_6 to PL-active $CsPbBr_3$ ¹⁰. **b** The PL evolution of extremely cesium-rich film with the permeation of the external air: at the beginning, the film encapsulated in a nitrogen environment is non-nonluminous (XRD in (a) indicates it is the mixture of Cs_4PbBr_6 and $CsBr$); after exposure to the air, it emitted bright fluorescence, along with the phase transportation of $Cs₄PbBr₆/CsPbBr₃$. We explain this phenomenon by the reversible reactions: CsPbBr₃+3CsBr≒Cs₄PbBr₆. **c** XRD of Cs-Pb-Br films whose PL peaks correspond to 480 nm, 492 nm, and 500 nm, [respectively.](javascript:;) It indicates Cs₄PbBr₆ is the dominant phase for these films.

d The blue-fluorescence gradually changed to green-fluorescence after exposure to the air, we attribute to the reduced confinement strength of Cs_4PbBr_6 to $CsPbBr_3$ for moisture decreases the CsBr concentration.

Supplementary Fig. 6 The integrated PL intensity as a function of carrier density. Herein, the carrier density is estimated through the absorption coefficient combined with excitation photon numbers (excitation wavelength: 375 nm).

Supplementary Fig. 7 Temperature-dependent PL spectra of Cs/Pb=1.56 and Cs/Pb=1.24. **a**,**b** The integrated PL intensity as a function of temperature for Cs/Pb=1.56 (a) and Cs/Pb=1.24 (b). The PL quenches with the increase of temperature, which always for the thermal dissociation of excitons. Then the fitted activation energy (through equation $I(T) = I_0/(1+A*exp(-E_b/KT))$) corresponds to the exciton binding energy¹¹. c,d PL spectra at different temperatures of the two films.

Supplementary Fig. 8 Time-resolved fluorescence spectra of Cs/Pb=1.56 and Cs/Pb=1.24 under extremely low carrier density. The effective lifetime is 1.4 ns and 0.59 ns for Cs/Pb=1.56 and Cs/Pb=1.24. Under low carrier density $({\sim}10^{12} \text{ cm}^{-3})$, the bimolecular recombination and Auger recombination are [negligible,](javascript:;) and the monomolecular recombination constant k_l can be obtained through the equation $(\tau_{1/e} = 1/(k_1 + k_2 * n/2 + k_3 * n^2/3))^{12}$.

Supplementary Fig. 9 a, b The I-V curves of Cs/Pb=1.56 (a) and Cs/Pb=1.24 (b) devices with structure of ITO/PEDOT/perovskite/TAPC/MoO3/Al. **c, d** The I-V curves of Cs/Pb=1.56 and Cs/Pb=1.24 devices with structure of ITO/ZnO/perovskite/TPBi/LiF/Al. The defect density is evaluated through the equation of $n=2\varepsilon V_{TFL}/e d^2$, where the d (400 nm) is the thickness of perovskite in the whole device and the value of ε for CsPbBr₃ was reported as 4.8¹³. The mobility can be extracted from the child region according to the equation of *J=9εμV² /8d³* . The Cs/Pb=1.56 film shows lower defect density and mobility than Cs/Pb=1.24.

Supplementary Table 3 The carrier mobility of Cs-Pb-Br films, which is extracted from Supplementary Fig. 9. The Cs/Pb=1.24 film processes a larger gap between hole mobility and electron mobility causing charge imbalance.

Materials	hole mobility $\text{cm}^2/\text{V/s}$)	electron mobility ($\text{cm}^2/\text{V/s}$)	electron/hole
$Cs/Pb=1.56$	1.98 (\pm 0.09) \times 10 ⁻²	3.38 (\pm 0.15) \times 10 ⁻²	\sim 1.7
$Cs/Pb=1.24$	2.58 (\pm 0.25) \times 10 ⁻²	0.21 ± 0.01	~ 8.1

The calculation of carrier recombination constants

In perovskite materials, there are always three pathways of mono-, bi-, and tri-molecular recombination, which can be described as following equation 2:

$$
-\frac{dn(t)}{dt} = k_1 \cdot n(t) + k_2 \cdot n^2 + k_3 \cdot n^3 \qquad (2)
$$

The absorption intensity *ΔA(t)* of the ground-state blenching peak indicates the excited carrier density *n(t),* and the linear relationship between *n(t)* and *ΔA(t)* can be described as equation S1:

$$
n(t) = C \cdot \Delta A(t) \tag{S1}
$$

Where C is the conversion coefficient between excited carriers and the absorption intensity. Usually, the value of C could be extracted from the equation S2:

$$
C = \frac{n_0}{\Delta A_0} \tag{S2}
$$

The *n0* and *ΔA⁰* are the initial carrier density and maximal absorption intensity after pulsed excitation, respectively. Finally, we got C from the average of *n0*/*ΔA0* at three excitation powers P within the non-saturated absorption region (in Supplementary Fig. 10a and Supplementary Fig. 10c, the *ΔA0* grows linearly with P). Assuming that all the photons absorbed are converted to excited carriers, the *n0* could be estimated through the equation S3 below:

$$
n_0 = \frac{P}{f E_p d\pi r^2}
$$
 (S3)

Where P is the energy power absorbed by perovskite films, f is the laser repetition rate, *Ep* is the photon energy of the pump laser, d is the film thickness, and r is the radius of the laser spot. Put the values of C into equation S1, we could obtain the carrier density *n(t)*. Taking the time derivative of $n(t)$, the curves of $-\frac{dn(t)}{dt}$ verse $n(t)$ is plotted in Fig. 2e and Fig. 2f. Then k_2 and k_3 could be extracted through the curve global fitting using equation $2^{14,15}$.

Supplementary Fig. 10 Transient absorption spectra. **a**, **c** Initial TA bleach signal plotted over pump power for Cs/Pb=1.56 and Cs/Pb=1.24, which indicate they are in the unsaturated absorption region. **b**, **d** The pseudo-color maps of Cs/Pb=1.56 and Cs/Pb=1.24 under the excitation power of 7.9 μW and 18.1 μW.

Supplementary Fig. 11 Ultraviolet Photoelectron Spectroscopy (UPS) spectra of NiO_x sputtered at low temperature $(LT-NiO_x)$ and high temperature $(HT-NiO_x)$. **a** The Fermi level $(E_f-E_{cut-off}-21.22)$ and the valence band $(E_f-E_v \approx 0.4 \text{ eV}$ for LT-NiO_x and 0.5 eV for HT-NiO_x). **b** The lower barrier between NiO_x and perovskites for LT-Ni O_x is believed to promote the hole injection.

Supplementary Fig. 12 The conductive atomic force microscope (c-AFM) characterization of the sputtered NiO_x layer. **a** The c-AFM of ITO film. **b** The c-AFM of ITO/ NiO_x layer. The ITO/NiO_x film shows uniform conductivity without significant leakage, suggesting the good quality of the sputtered NiO_x .

Supplementary Fig. 13 EL spectra of Cs/Pb=1.56 (a) and Cs/Pb=1.24 (b) at different voltage bias. As bias voltage increased from 3.0 to 6.0 V, the EL peak positions remain unchanged.

Supplementary Fig. 14 Histogram of max. EQE of 30 devices.

Supplementary Fig. 15 The [spatial](javascript:;) [distribution](javascript:;) maps of PL peak fluctuation (a) and FWHM (b) indicating outstanding uniformity of thermally evaporated perovskite film in the micro area. Noted that the scale bar in (a) is leveled.

Supplementary Fig. 16 Morphology characterization of the large-area perovskite film. **a** The measured morphology of five regions covering the center and edge in the film. **b-f** Top-view SEM images (low magnification) of the spot 1-5, which are almost the same.

Supplementary Fig. 17 EDS mapping of the large-area perovskite film. **a-e** Cs, Pb, and Br mapping, which corresponding to the 1-5 regions illustrated in Supplementary Fig. 16a.

Supplementary Fig. 18 Composition characterization of the large-area perovskite film. We extracted the Cs/Pb ratios of EDS from 25 spots evenly distributed in the large-area film, and the fluctuations are negligible.

Supplementary Table 4 The reported large-area PeLEDs

Supplementary Note 2

The thermal evaporated Cs-Pb-Br films show fascinating morphology with dense grains over the substrate²⁰, which is a prerequisite for highly efficient LEDs. As shown in Supplementary Fig. S19, the Cs/Pb ratio will affect the morphology of thermally evaporated films, and the average grain size decreases from $93(\pm 24)$ nm to $42(\pm 10)$ nm as the Cs/Pb ratio increases from 1.24 to 1.77. The reason for that is because Cs_4PbBr_6 with zero-dimensional (0D) structure impede the growth of the CsPbBr₃ crystals²¹⁻²³. Thereby, excess Cs₄PbBr₆ may lead to lower crystallinity of our $CsPbBr₃/Cs₄PbBr₆$ films (Supplementary Fig. S19c), and inadequate Cs4PbBr6 will enlarge grain sizes and induce rough morphology (Supplementary Fig. S19a). A moderate Cs/Pb ratio of 1.56 possesses a uniform and dense morphology (Supplementary Fig. S19b), laying the foundation for large-area and efficient PeLED fabrications.

Supplementary Fig. 19 The top-view SEM of Cs-Pb-Br films and their corresponding grain size distributions are presented below. The films exhibit excellent compactness. From a to c, the Cs/Pb ratio is increased from 1.24 to 1.77. The scale bar is 200 nm.

Supplementary References

- 1. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. *Nature* **562**, 249–253 (2018).
- 2. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. *Nature* **562**, 245–248 (2018).
- 3. Li, H. et al. Coffee ring elimination and crystalline control of electrohydrodynamically printed high-viscosity perovskites. *J. Mater. Chem. C* **7**, 14867-14873 (2019).
- 4. Yang, J. et al. Toward Full-Color Electroluminescent Quantum Dot Displays. *Nano Lett.* **21**, 26-33 (2021).
- 5. Li, D. et al. Inkjet Printing Matrix Perovskite Quantum Dot Light-Emitting Devices. *Adv. Mater. Technol.* **5**, 2000099 (2020).
- 6. Zhu, M. et al. Electrohydrodynamically Printed High-Resolution Full-Color Hybrid Perovskites. *Adv. Func. Mater.* **29**, 1903294 (2019).
- 7. Chu, S. et al. Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating. *Nat. Commun.* **12**, 147 (2021).
- 8. Liu, C., Cheng, Y.-B. & Ge, Z. Understanding of perovskite crystal growth and film formation in scalable deposition processes. *Chem. Soc. Rev.* **49**, 1653-1687 (2020).
- 9. Liu, X.-K. et al. Metal halide perovskites for light-emitting diodes. *Nat. Mater.* **20**, 10-21 (2021).
- 10. Wu, L. et al. From Nonluminescent Cs₄Pb X_6 (X = Cl, Br, I) Nanocrystals to Highly Luminescent CsPbX₃ Nanocrystals: Water-Triggered Transformation through a CsX-Stripping Mechanism. *Nano Lett.* **17**, 5799-5804 (2017).
- 11. Shin, M. et al. Modulation of growth kinetics of vacuum-deposited CsPbBr₃ films for efficient light-emitting diodes. *ACS Appl. Mater. Interfaces* **12**, 1944–1952 (2020).
- 12. Xing, G. et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. *Nat. Commun.* **8**, 14558 (2017).
- 13. Dong, Y. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. *Nat. Nanotechnol.* **15**, 668-674 (2020).
- 14. Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. *Nat. Commun.* **7**, 13941 (2016).
- 15. Chen, Z. et al. Recombination Dynamics Study on Nanostructured Perovskite Light-Emitting Devices. *Adv. Mater.* **30**, 1801370 (2018).
- 16. Zhao, X. & Tan, Z.-K. Large-area near-infrared perovskite light-emitting diodes. *Nat. Photonics* **14**, 215–218 (2020).
- 17. Xie, C., Zhao, X., Ong, E. W. Y. & Tan, Z.-K. Transparent near-infrared perovskite lightemitting diodes. *Nat. Commun.* **11**, 4213 (2020).
- 18. Wang, H. et al. A Multi-functional Molecular Modifier Enabling Efficient Large-Area Perovskite Light-Emitting Diodes. *Joule* **4**, 1977-1987 (2020).
- 19. Chen, C. et al. Efficient Flexible Inorganic Perovskite Light-Emitting Diodes Fabricated with CsPbBr₃ Emitters Prepared via Low-Temperature in Situ Dynamic Thermal Crystallization. *Nano Lett.* **20**, 4673-4680 (2020).
- 20. Ling, Y. et al. Enhanced Optical and Electrical Properties of Polymer-Assisted All-Inorganic Perovskites for Light-Emitting Diodes. *Adv. Mater.* **28**, 8983-8989 (2016).
- 21. Quan, L. N. et al. Highly Emissive Green Perovskite Nanocrystals in a Solid State Crystalline Matrix. *Adv. Mater.* **29**, 1605945 (2017).
- 22. Tong, G. et al. Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr3 perovskite solar cells. *Nano Energy* **65**, 104015 (2019).
- 23. Li, H. et al. Interface engineering using a perovskite derivative phase for efficient and stable CsPbBr3 solar cells. *Journal of Materials Chemistry A* **6**, 14255-14261 (2018).