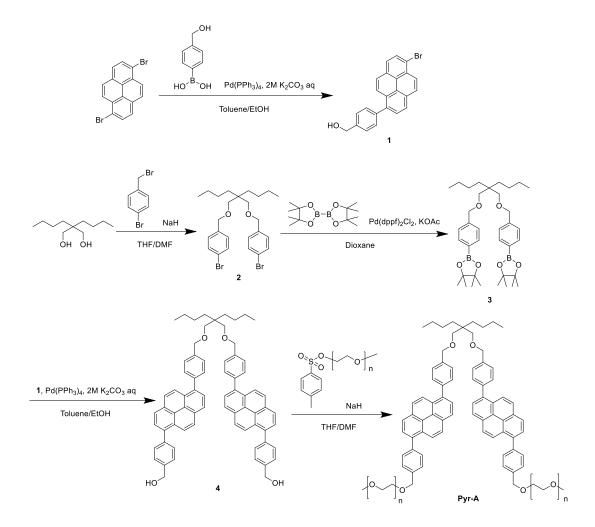
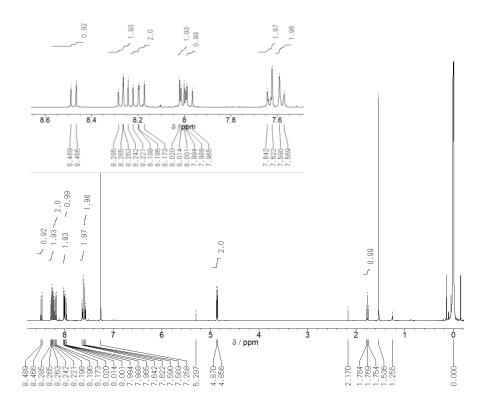
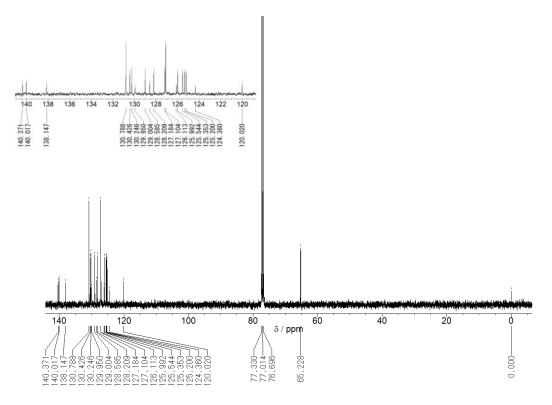
iScience, Volume 24

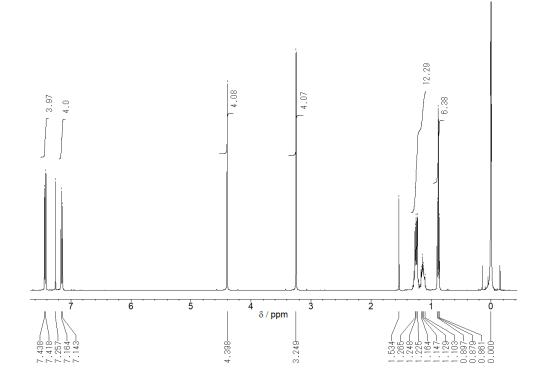

Supplemental information

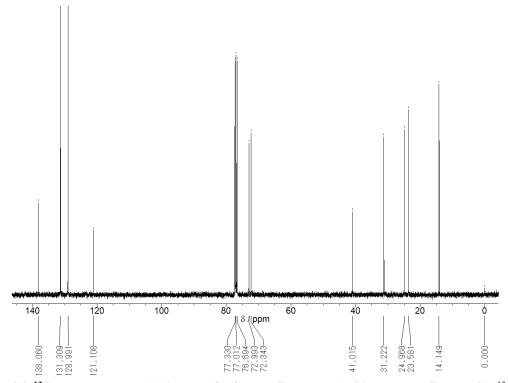
A light-switching pyrene probe to detect

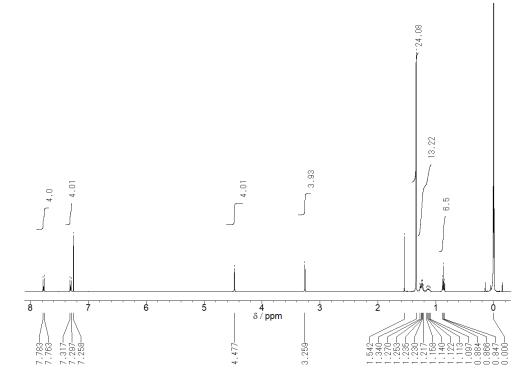

phase-separated biomolecules

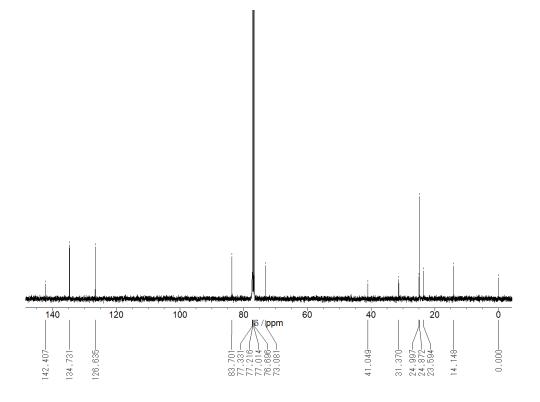
Masaharu Hazawa, Shogo Amemori, Yoshio Nishiyama, Yoshihiro Iga, Yuki Iwashima, Akiko Kobayashi, Hirohisa Nagatani, Motohiro Mizuno, Kenji Takahashi, and Richard W. Wong

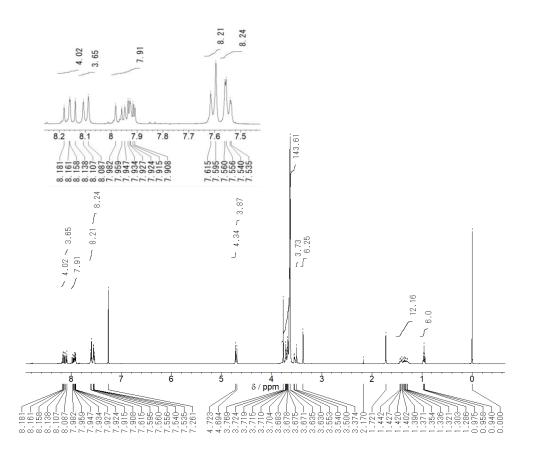

SUPPLEMENTAL INFORMATION


Scheme S1. Synthetic route of Pyr-A, related to Figure 2 and STAR Methods.


Data S1. ¹H NMR spectrum (400 MHz, CDCl₃, TMS standard) of 1, related to **Scheme S1.** ¹H NMR (400 MHz, CDCl₃, TMS standard): δ (ppm) 1.77 (t, *J* = 5.9 Hz, 1 H, O*H*), 4.86 (t, *J* = 5.9 Hz, 2 H, C*H*₂), 7.58 (d, *J* = 8.3 Hz, 2 H, Ar*H*), 7.63 (d, *J* = 8.3 Hz, 2 H, Ar*H*), 7.98 (d, *J* = 9.3 Hz, 1 H, Ar*H*), 8.00 (d, *J* = 8.3 Hz, 1 H, Ar*H*), 8.01 (d, *J* = 7.9 Hz, 1 H, Ar*H*), 8.18 (d, *J* = 9.3 Hz, 1 H, Ar*H*), 8.21 (d, *J* = 9.2 Hz, 1 H, Ar*H*), 8.25 (d, *J* = 8.3 Hz, 1 H, Ar*H*), 8.27 (d, *J* = 7.9 Hz, 1 H, Ar*H*), 8.48 (d, *J* = 9.2 Hz, 1 H, Ar*H*).


Data S2. ¹³C NMR spectrum (100 MHz, CDCl₃, TMS standard) of 1, related to Scheme S1. ¹³C NMR (100 MHz, CDCl₃, TMS standard): δ (ppm) 65.23, 120.02, 124.36, 125.20, 125.35, 125.54, 125.99, 126.11, 127.10, 127.18, 128.21, 128.59, 129.00, 129.95, 130.25, 130.43, 130.79. 138.15, 140.02, 140.37. HRMS(EI) Calcd for C₂₃H₁₅BrO [M⁺]: m/z 386.0306, Found: m/z 386.0312. Elemental analysis; Calcd for C₂₃H₁₅BrO: C 71.33, H 3.90, Found: C 71.28, H 4.10.


Data S3. ¹**H NMR spectrum (400 MHz, CDCl₃, TMS standard) of 2**, related to **Scheme S1**. ¹H NMR (400 MHz, CDCl₃, TMS standard): δ (ppm) 0.88 (t, *J* = 7.2 Hz, 6 H, C*H*₃), 1.08-1.32 (m, 12 H, C*H*₂), 3.25 (s, 4 H, C*H*₂), 4.40 (s, 4 H, C*H*₂), 7.15 (d, *J* = 8.3 Hz, 4 H, Ar*H*), 7.43 (d, *J* = 8.3 Hz, 4 H, Ar*H*).


Data S4. ¹³C NMR spectrum (100 MHz, CDCl₃, TMS standard) of 2, related to Scheme S1. ¹³C NMR (100 MHz, CDCl₃, TMS standard): δ (ppm) 14.15, 23.58, 24.97, 31.22, 41.02, 72.34, 72.99, 121.11, 128.99, 131.31, 138.06. HRMS(EI) Calcd for C₂₅H₃₄Br₂O₂ [M⁺]: m/z 524.0926, Found: m/z 524.0938. Elemental analysis; Calcd for C₂₅H₃₄Br₂O₂: C 57.05, H 6.51, Found: C 56.84, H 6.39.

Data S5. ¹H NMR spectrum (400 MHz, CDCl₃, TMS standard) of 3, related to Scheme S1. ¹H NMR (400 MHz, CDCl₃, TMS standard): δ (ppm) 0.87 (t, *J* = 7.3 Hz, 6 H, C*H*₃), 1.08-1.30 (m, 12 H, C*H*₂), 1.34 (s, 24 H, C*H*₃), 3.26 (s, 4 H, C*H*₂), 4.48 (s, 4 H, C*H*₂), 7.31 (d, *J* = 8.1 Hz, 4 H, Ar*H*), 7.77 (d, *J* = 8.1 Hz, 4 H, Ar*H*).

Data S6. ¹³C NMR spectrum (100 MHz, CDCl₃, TMS standard) of 3, related to Scheme S1. ¹³C NMR (100 MHz, CDCl₃, TMS standard): δ (ppm) 14.15, 23.59, 24.87, 25.00, 31.37, 41.05, 73.08, 77.22, 83.70, 126.64, 134.73, 142.41. HRMS(FAB) Calcd for C₃₇H₅₉O₆B₂ [(M+H)⁺]: m/z 621.4498, Found: m/z 621.4500.

Data S7. ¹**H NMR spectrum (400 MHz, CDCl₃, TMS standard) of Pyr-A,** related to **Scheme S1**. ¹H NMR (400 MHz, CDCl₃, TMS standard): δ (ppm) 0.96 (t, *J* = 7.0 Hz, 6 H, C*H*₃), 1.24-1.45 (m, 12 H, C*H*₂), 3.37 (s, 6 H, OC*H*₃), 3.50 (s, 4 H, OC*H*₂CH), 3.52-3.80 (m, 144 H, OC*H*₂C*H*₂O), 4.69 (s, 4 H, OC*H*₂Ar), 4.72 (s, 4 H, OC*H*₂Ar), 7.53-7.58 (8 H, Ar*H*), 7.61 (d, *J* = 8.0 Hz, 8 H, Ar*H*), 7.90-7.99 (8 H, Ar*H*), 8.10 (d, *J* = 8.0 Hz, 4 H, Ar*H*), 8.13-8.19 (4 H, Ar*H*).

solvent ^a	$\lambda_{\max}^{abs}(nm)$	$\mathcal{E} (\mathrm{M}^{\text{-1}} \mathrm{cm}^{\text{-1}})^{\mathrm{b}}$	$\Phi_{ m f}$	$\tau_{\rm M}({\rm ns})$	$\tau_{\rm E}({\rm ns})$	$I_{470/400}$	E _T (30) ^c
benzene	359	7.6×10 ⁴	0.46	3.9	4.2	0.29	34.3
THF	358	8.1×10^4	0.53	3.5	4.7	0.29	37.4
CHCl ₃	359	8.0×10 ⁴	0.48	3.7	5.1	0.28	39.1
acetone	356	7.8×10^4	0.45	3.8	11	0.69	42.2
DMSO	360	8.0×10^{4}	0.47	4.5	9.5	0.39	45.1
ACN	356	8.0×10^{4}	0.39	4.5	12	1.17	45.6
1-OcOH	358	7.9×10 ⁴	0.52	3.9	10	0.41	48.3
1-PrOH	357	8.1×10^{4}	0.47	4.1	10	0.67	50.7
EtOH	356	8.0×10^{4}	0.44	4.0	11	0.90	51.9
MeOH	356	8.0×10^{4}	0.40	4.2	12	1.54	55.4
water	356	4.1×10 ⁴	0.08	2.4	2.5	25.8	63.8
	1						1

Table S1. Spectroscopic parameters of Pyr-A in various solvents, related to Figure 2.

a THF: tetrahydrofuran; CHCl₃: chloroform; DMSO: dimethylsulfoxide; ACN: acetonitrile; 1-OcOH : 1octanol; 1-PrOH : 1-propanol; EtOH: ethanol; MeOH: methanol

b Measured at absorption peak wavelength

c Reichardt 1994

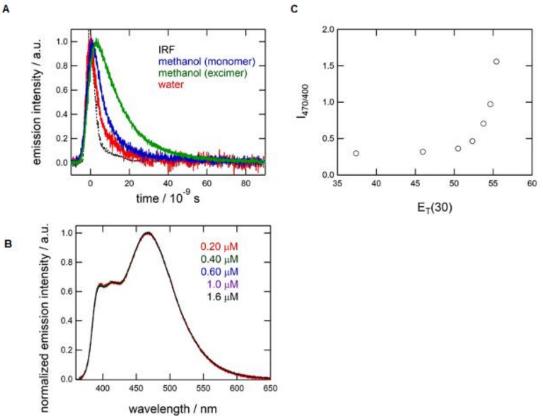


Figure S1. In Vitro Spectroscopic Properties of Pyr-A, related to Figure 2. (A) Time-resolved fluorescence curves of Pyr-A in methanol (blue, 400 nm; green, 470 nm) and water (red, 470 nm). A dotted curve is the instrumental response function (IRF). (B) Emission spectra of Pyr-A in methanol at 0.20, 0.40, 0.60, 1.0 and 1.6 µM concentrations. (C) Fluorescence intensity ratio of excimer emission (at 470 nm) to monomer emission (at 400 nm), I_{470/400}, plotted against E_T(30) of binary mixed solvents of methanol and tetrahydrofuran.

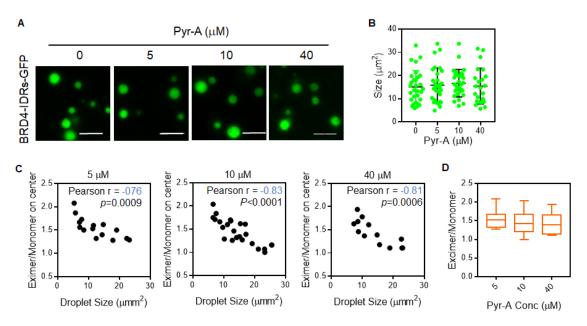
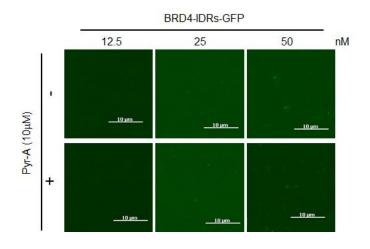
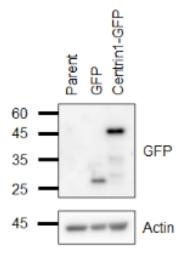




Figure S2. The Size and E/M ratio Profiles of BRD4-IDR-mEGFP Droplets in The Presence of Different Concentration of Pyr-A, related to Figure 3. (A) Representative image of BRD4-IDRs-GFP in the presence of different concentration of Pyr-A from the droplets formation assays. Bar=10µm. (B) Quantitative analysis was performed (Mean +/- SD; n=23-30). There is no statistical difference. (C) E/M ratio on the center of droplets was analyzed. Correlation analysis was performed using GraphPad Prizm. (D) E/M values were quantified. Box plot element: medians with interquartile range and whiskers (min to max). There is no statistical difference between conditions.

Figure S3. The Effects of Pyr-A on The Csat of BRD4-IDR-mEGFP, related to **Figure 3.** Droplets formation assay of BRD4-IDRs-GFP was performed in the absence of Pyr-A (Upper) or presence of Pyr-A (Lower). Csat is between 12.5 and 25 nM in the both conditions.

Figure S4, The Expression of Exogenous Centrin1-GFP in HeLa Cells, related to **Figure 4.** Western blotting analysis of centrin1-GFP protein levels. Lysate was obtained from parental cells (MOCK), GFP expressed cells or centrin1-GFP expressed cells. Cell lysates were subjected to SDS-PAGE and immunoblotting using anti-GFP antibody.